1
|
Legesse TG, Xiao J, Dong G, Dong X, Daba NA, Abeshu GW, Qu L, Zhu W, Wang L, Xin X, Shao C. Differential responses of plant and microbial respiration to extreme precipitation and drought during spring and summer in the Eurasian meadow steppe. ENVIRONMENTAL RESEARCH 2025; 269:120883. [PMID: 39828193 DOI: 10.1016/j.envres.2025.120883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Increasing extreme precipitation and drought events along changes in their seasonal patterns due to climate change are expected to have profound consequences for carbon cycling. However, how these climate extremes impact ecosystem respiration (Reco) and whether these impacts differ between seasons remain unclear. Here, we reveal the responses of Reco and its components to extreme precipitation and drought in spring and summer by conducting a five-year manipulative experiment in a temperate meadow steppe. Based on a 5-year average, the seasonal mean values (±SE) of Reco, Rh, Rroot, Rabg and Rplant significantly increased (p < 0.01) under both extreme precipitation treatments: wet spring (WSP) and wet summer (WSU), and significantly decreased (p < 0.01) under both extreme drought treatments: dry spring (DSP) and dry summer (DSU), except in Rabg under DSU, which remained comparable to the control. The sensitivity of Reco, Rh, Rroot and Rplant to extreme precipitation was significantly higher in spring than in summer. On average, Rplant was the primary contributor of Reco, accounting for 37.18% and 38.31% of the total across all its components under WSP and WSU, respectively during the growing season over the five study years. Moreover, linear models revealed Rplant explained 87% of the variance in Reco. Our findings indicate that future changes in precipitation events, particularly extreme precipitation may lead to increased carbon release from ecosystems, largely driven by enhanced plant respiration rather than microbial respiration. However, due to this study focused solely on respiration and did not measure photosynthesis, the findings represent only the carbon release processes and do not account for potential carbon uptake by plants during the same conditions. These emergent identified contribution to ecosystem respiration provide valuable insights for improving model benchmarks to better predict ecosystem respiration responses to extreme climate in specified season.
Collapse
Affiliation(s)
- Tsegaye Gemechu Legesse
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunbuir Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, 03824, USA.
| | - Gang Dong
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaobing Dong
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunbuir Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Nano Alemu Daba
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunbuir Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guta Wakbulcho Abeshu
- Computational Climate Science, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Luping Qu
- Forest Ecology Stable Isotope Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wen Zhu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunbuir Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lulu Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunbuir Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoping Xin
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunbuir Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Changliang Shao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunbuir Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
2
|
Chai H, Ma J, Zhang J, Li J, Meng B, Wang C, Pan D, Li J, Sun W, Zhou X. Nonlinear responses of ecosystem carbon fluxes to precipitation change in a semiarid grassland. FRONTIERS IN PLANT SCIENCE 2025; 16:1519879. [PMID: 39980482 PMCID: PMC11840572 DOI: 10.3389/fpls.2025.1519879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025]
Abstract
Carbon (C) fluxes in semiarid grasslands subject to precipitation variability play a critical role in the terrestrial C cycle. However, how ecosystem C fluxes respond to variability in precipitation (both decreases and increases precipitation along a gradient) remains unclear. In this study, we conducted a three-year field experiment in a semiarid grassland, with six precipitation treatments (precipitation decreased by 70%, 50%, and 30% [P-70%, P-50%, and P-30%], natural precipitation [P+0%], and precipitation increased by 30% and 50% [P+30% and P+50%]) to examine how variations in precipitation influence ecosystem C fluxes, specifically focusing on gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem CO2 exchange (NEE). We found that both decreased and increased precipitation significantly altered the GEP (from -26% to 14%), but only decreased precipitation significantly reduced the ER and NEE (from 1% to 31%), relative to their values during natural precipitation. This suggests that ecosystem C fluxes are more sensitive to decreased precipitation, and respond nonlinearly to the precipitation gradient. Furthermore, structural equation modeling indicated that the soil water content was the primary controlling factor driving changes in ecosystem C fluxes. Our research underscores the nonlinear response of ecosystem C fluxes to changes in precipitation within semiarid ecosystems, particularly their sensitivity to extreme drought. Considering this nonlinear response, it is crucial to improve dynamic models of the C cycle and predict ecosystem responses to precipitation variability.
Collapse
Affiliation(s)
- Hua Chai
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, School of Ecology, Northeast Forestry University, Harbin, China
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Jianying Ma
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Jinwei Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Junqin Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Bo Meng
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Chengliang Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Duofeng Pan
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jie Li
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, School of Ecology, Northeast Forestry University, Harbin, China
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Xuhui Zhou
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, School of Ecology, Northeast Forestry University, Harbin, China
| |
Collapse
|
3
|
Zhao Y, Wang L, Jiang Q, Wang Z. Sensitivity of gross primary production to precipitation and the driving factors in China's agricultural ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174938. [PMID: 39047829 DOI: 10.1016/j.scitotenv.2024.174938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Recent climate warming has significantly affected the sensitivity of Gross Primary Productivity (GPP) to precipitation within China's agricultural ecosystems. Nonetheless, the spatial and temporal nonlinear evolution patterns of GPP-precipitation sensitivity under climate change, as well as the underlying drivers and long-term trends of this sensitivity, are not well understood. This study employs correlation analysis to quantify the sensitivity between GPP and precipitation in China's agricultural ecosystems, and utilizes nonlinear detection algorithms to examine the long-term changes in this sensitivity. Advanced machine learning techniques and frameworks are subsequently applied to analyze the driving factors of GPP-precipitation sensitivity in China's agricultural ecosystems. The findings reveal that approximately 49.00 % of the analyzed pixels exhibit a significant positive correlation between GPP and precipitation. Nonlinear change analysis indicates spatial heterogeneity in GPP-precipitation sensitivity across China's agricultural ecosystems, with patterns showing initial increases followed by decreases accounting for 25.12 %, and patterns of initial decreases followed by increases at 13.27 %. Machine learning analysis identifies temperature, soil moisture, and crop water footprint as the primary factors influencing GPP-precipitation sensitivity in agricultural ecosystems. This study is the first to introduce crop water footprint as a significant factor in the analysis of GPP-precipitation sensitivity. It not only offers new insights into the temporal nonlinear changes and driving factors of GPP-precipitation sensitivity but also underscores the importance of enhancing agricultural water efficiency to maintain agricultural ecosystem health and ensure food security under climate change.
Collapse
Affiliation(s)
- Youzhu Zhao
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Luchen Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Qiuxiang Jiang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Zilong Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Du L, Luo Y, Zhang J, Shen Y, Zhang J, Tian R, Shao W, Xu Z. Reduction in precipitation amount, precipitation events, and nitrogen addition change ecosystem carbon fluxes differently in a semi-arid grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172276. [PMID: 38583634 DOI: 10.1016/j.scitotenv.2024.172276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The increases in extent and frequency of extreme drought events and increased nitrogen (N) deposition due to global change are expected to have profound impacts on carbon cycling in semi-arid grasslands. However, how ecosystem CO2 exchange processes respond to different drought scenarios individually and interactively with N addition remains uncertain. In this study, we experimentally explored the effects of different drought scenarios (early season extreme drought, 50 % reduction in precipitation amount, and 50 % reduction in precipitation events) and N addition on net ecosystem CO2 exchange (NEE), ecosystem respiration (ER), and gross ecosystem productivity (GEP) over three growing seasons (2019-2021) in a semi-arid grassland in northern China. The growing-season ecosystem carbon fluxes in response to drought and N addition were influenced by inter-annual precipitation changes, with 2019 as a normal precipitation year, and 2020 and 2021 as wet years. Early season extreme drought stimulated NEE by reducing ER. 50 % reduction in precipitation amount decreased ER and GEP consistently in three years, but only significantly suppressed NEE in 2019. 50 % reduction in precipitation events stimulated NEE. Nitrogen addition stimulated NEE, ER, and GEP, but only significantly in wet years. The structural equation models showed that changes in carbon fluxes were regulated by soil moisture, soil temperature, microbial biomass nitrogen (MBN), and the key plant functional traits. Decreased community-weighted means of specific leaf area (CWMSLA) was closely related to the reduced ER and GEP under early season extreme drought and 50 % reduction in precipitation amount. While increased community-weighted means of plant height (CWMPH) largely accounted for the stimulated ER and GEP under 50 % reduction in precipitation events. Our study stresses the distinct effects of different drought scenarios and N enrichment on carbon fluxes, and highlights the importance of soil traits and the key plant traits in determining carbon exchange in this water-limited ecosystem.
Collapse
Affiliation(s)
- Lan Du
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yonghong Luo
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jiatao Zhang
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yan Shen
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jinbao Zhang
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ru Tian
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wenqian Shao
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhuwen Xu
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
5
|
Li C, Li X, Yang Y, Shi Y, Zhang J. Comparative responses of carbon flux components in recovering bare patches of degraded alpine meadow in the Source Zone of the Yellow River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168343. [PMID: 37931819 DOI: 10.1016/j.scitotenv.2023.168343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
The patchy degradation of alpine grasslands is a common phenomenon on the Qinghai-Tibetan Plateau, and the presence of bare patches (BP) in degraded grasslands significantly affects the functioning of the alpine meadow ecosystem. The succession of vegetation-recovered BP may lead to significant changes in ecosystem carbon (C) cycling. To date, it is unclear whether different components of net ecosystem carbon exchange (NEE) respond similarly or differently to the succession of recovering BP. Here, we conducted a field monitoring experiment in a degraded alpine meadow, and selected three successional stages for recovering BP to study the response of NEE and its components. We found that the succession of recoevering BP increased ecosystem respiration (ER) during the growing season and decreased ER during the off-growing season, with the differences in annual carbon output between different successional stages being insignificant. However, gross primary productivity increased with the successional gradient, and carbon input at the later stage of succession was significantly greater than that at the middle stage of succession. The succession of recovering BP promoted the carbon sequestration function of the alpine grassland, with the grassland acting as a carbon sink when it reached the state of healthy alpine meadow, while it acted as a carbon source during the middle stage of succession. Compared with BP, the amount of carbon sequested by healthy alpine meadows increased significantly by 219 g·C·m-2·yr-1. We also found that the responses of other components to the succession of recovering BP were inconsistent. In addition, the effects of succession of recovering BP on carbon flux were related to field-monitored variables (soil temperature and water content) and other considered variables (biomass, organic carbon, and microbial biomass carbon). These research findings highlight the importance of restoring vegetation in BPs, and are crucial for predicting the carbon balance in the future and formulating sustainable grassland management strategies.
Collapse
Affiliation(s)
- Chengyi Li
- College of Agriculture and Animal Husbandry, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Xilai Li
- College of Agriculture and Animal Husbandry, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China.
| | - Yuanwu Yang
- College of Agriculture and Animal Husbandry, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yan Shi
- School of Environment, the University of Auckland, Auckland 1010, New Zealand
| | - Jing Zhang
- College of Agriculture and Animal Husbandry, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| |
Collapse
|
6
|
Li T, Tian D, He Y, Zhang R, Wang J, Wang F, Niu S. Threshold response of ecosystem water use efficiency to soil water in an alpine meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168345. [PMID: 37935265 DOI: 10.1016/j.scitotenv.2023.168345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/26/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Ecosystem water use efficiency (WUE) is a coupled index of carbon (gross ecosystem productivity, GEP) and water fluxes (transpiration, Tr or evapotranspiration, ET), reflecting how ecosystem uses water efficiently to increase its carbon uptake. Though ecosystem WUE is generally considered to decrease with increasing precipitation levels, it remains elusive whether and how it nonlinearly responds to extreme water changes. Here, we performed a 5-year precipitation halving experiment in an alpine meadow, combined with extremely interannual precipitation fluctuations, to create a large range of soil water variations. Our results showed that WUETr and WUEET consistently showed a quadratic pattern in response to soil water. Such quadratic patterns were steadily held at different stages of growing seasons, with minor changes in the optimal water thresholds (25.0-28.4 %). Below the water threshold, more soil water stimulated GEP but reduced Tr and ET by lowering soil temperature, resulting in a positive response of ecosystem WUE to soil water. Above the threshold, soil water stimulated GEP less than Tr (ET), leading to a negative response of ecosystem WUE to soil water. However, biological processes, including plant cover and belowground biomass as well as vertical root biomass distribution, had less effect on ecosystem WUE. Overall, this work is among the first to reveal the nonlinearity and optimal water thresholds of ecosystem WUE across a broad range of soil water, suggesting that future extreme precipitation events will more frequently surpass the water threshold and differently change the coupling relationships of carbon and water fluxes in alpine grasslands.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yicheng He
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Furong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Ren J, Wang C, Wang Q, Song W, Sun W. Nitrogen addition regulates the effects of variation in precipitation patterns on plant biomass formation and allocation in a Leymus chinensis grassland of northeast China. FRONTIERS IN PLANT SCIENCE 2024; 14:1323766. [PMID: 38283970 PMCID: PMC10810989 DOI: 10.3389/fpls.2023.1323766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Global warming is predicted to change precipitation amount and reduce precipitation frequency, which may alter grassland primary productivity and biomass allocation, especially when interact with other global change factors, such as nitrogen deposition. The interactive effects of changes in precipitation amount and nitrogen addition on productivity and biomass allocation are extensively studied; however, how these effects may be regulated by the predicted reduction in precipitation frequency remain largely unknown. Using a mesocosm experiment, we investigated responses of primary productivity and biomass allocation to the manipulated changes in precipitation amount (PA: 150 mm, 300 mm, 450 mm), precipitation frequency (PF: medium and low), and nitrogen addition (NA: 0 and 10 g N m-2 yr-1) in a Leymus chinensis grassland. We detected significant effects of the PA, PF and NA treatments on both aboveground biomass (AGB) and belowground biomass (BGB); but the interactive effects were only significant between the PA and NA on AGB. Both AGB and BGB increased with an increment in precipitation amount and nitrogen addition; the reduction in PF decreased AGB, but increased BGB. The reduced PF treatment induced an enhancement in the variation of soil moisture, which subsequently affected photosynthesis and biomass formation. Overall, there were mismatches in the above- and belowground biomass responses to changes in precipitation regime. Our results suggest the predicted changes in precipitation regime, including precipitation amount and frequency, is likely to alter primary productivity and biomass allocation, especially when interact with nitrogen deposition. Therefore, predicting the influence of global changes on grassland structure and functions requires the consideration of interactions among multiple global change factors.
Collapse
Affiliation(s)
- Jianli Ren
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin, China
- Institute of Resources and Ecology, Yili Normal University, Yining, Xinjiang, China
- School of Resources and Environment, Yili Normal University, Yining, Xinjiang, China
| | - Chengliang Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin, China
| | - Qiaoxin Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin, China
| | - Wenzheng Song
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin, China
- College of Tourism, Resources and Environment, Zaozhuang University, Zaozhuang, China
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
8
|
Zhang A, Yin J, Zhang Y, Wang R, Zhou X, Guo H. Plants alter their aboveground and belowground biomass allocation and affect community-level resistance in response to snow cover change in Central Asia, Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166059. [PMID: 37543343 DOI: 10.1016/j.scitotenv.2023.166059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
It is important to elucidate the changing distribution pattern of net primary productivity (NPP) to mechanistically understand the changes in aboveground and belowground ecosystem functions. In water-scarce desert environments, snow provides a crucial supply of water for plant development and the spread of herbaceous species. Yet uncertainty persists regarding how herbaceous plants' NPP allocation responds to variation in snow cover. The goal of this study was to investigate how variation in snow cover in a temperate desert influenced the NPP allocation dynamics of herbaceous species and their resistance to environmental change in terms aboveground and belowground productivity. In the Gurbantunggut Desert, wintertime snow cover depth was adjusted in plots by applying four treatments: snow removal (-S), ambient snow, double snow (+S), and triple snow (+2S). We examined their species richness, aboveground NPP (ANPP), belowground NPP (BNPP), and the resistance of ANPP and BNPP. We found that species diversity of the aboveground community increased significantly with increasing snow cover and decreased significantly Pielou evenness in plots. This resulted in greater ANPP with increasing snow cover; meanwhile, BNPP first increased and then decreased with increasing snow cover. However, this productivity in different soil layers responded differently to changed snow cover. In the 0-10 cm soil layer, productivity first rose and then declined, while it declined linearly in both the 10-20 cm and 20-30 cm soil layers, whereas in the 30-40 cm soil layer it showed an increasing trend. Belowground resistance would increase given that greater snow cover improved the BNPP in deeper soil and maintained the resource provisioning for plant growth, thus improving overall belowground stability. These results can serve as a promising research foundation for future work on how the functioning of desert ecosystems becomes altered due to changes in plant community expansion and, in particular, changes in snow cover driven by global climate change.
Collapse
Affiliation(s)
- Ailin Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jinfei Yin
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Yuanming Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Ruzhen Wang
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Hao Guo
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
9
|
Legesse TG, Dong G, Dong X, Qu L, Chen B, Daba NA, Sorecha EM, Zhu W, Lei T, Shao C. The extreme wet and large precipitation size increase carbon uptake in Eurasian meadow steppes: Evidence from natural and manipulated precipitation experiments. ENVIRONMENTAL RESEARCH 2023; 237:117029. [PMID: 37659645 DOI: 10.1016/j.envres.2023.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
The distribution of seasonal precipitation would profoundly affect the dynamics of carbon fluxes in terrestrial ecosystems. However, little is known about the impacts of extreme precipitation and size events on ecosystem carbon cycle when compared to the effects of average precipitation amount. The study involved an analysis of carbon fluxes and water exchange using the eddy covariance and chamber based techniques during the growing seasons of 2015-2017 in Bayan, Mongolia and 2019-2021 in Hulunbuir, Inner Mongolia, respectively. The components of carbon fluxes and water exchange at each site were normalized to evaluate of relative response among carbon fluxes and water exchange. The investigation delved into the relationship between carbon fluxes and extreme precipitation over five gradients (control, dry spring, dry summer, wet spring and wet summer) in Hulunbuir meadow steppe and distinct four precipitation sizes (0.1-2, 2-5, 5-10, and 10-25 mm d-1) in Bayan meadow steppe. The wet spring and summer showed the greatest ecosystem respiration (ER) relative response values, 76.2% and 73.5%, respectively, while the dry spring (-16.7%) and dry summer (14.2%) showed the lowest values. Gross primary production (GPP) relative response improved with wet precipitation gradients, and declined with dry precipitation gradients in Hulunbuir meadow steppe. The least value in net ecosystem CO2 exchange (NEE) was found at 10-25 mm d-1 precipitation size in Bayan meadow steppe. Similarly, the ER and GPP increased with size of precipitation events. The structural equation models (SEM) satisfactorily fitted the data (χ2 = 43.03, d.f. = 11, p = 0.215), with interactive linkages among soil microclimate, water exchange and carbon fluxes components regulating NEE. Overall, this study highlighted the importance of extreme precipitation and event size in influencing ecosystem carbon exchange, which is decisive to further understand the carbon cycle in meadow steppes.
Collapse
Affiliation(s)
- Tsegaye Gemechu Legesse
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gang Dong
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaobing Dong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Luping Qu
- Forest Ecology Stable Isotope Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baorui Chen
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Nano Alemu Daba
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Eba Muluneh Sorecha
- State Engineering Laboratory of Efficient Water Use of Crops and Disaster Loss Mitigation/Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Zhu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tinajie Lei
- State Engineering Laboratory of Efficient Water Use of Crops and Disaster Loss Mitigation/Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Changliang Shao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
10
|
Wang X, Zhang Q, Zhang Z, Li W, Liu W, Xiao N, Liu H, Wang L, Li Z, Ma J, Liu Q, Ren C, Yang G, Zhong Z, Han X. Decreased soil multifunctionality is associated with altered microbial network properties under precipitation reduction in a semiarid grassland. IMETA 2023; 2:e106. [PMID: 38868425 PMCID: PMC10989785 DOI: 10.1002/imt2.106] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 06/14/2024]
Abstract
Our results reveal different responses of soil multifunctionality to increased and decreased precipitation. By linking microbial network properties to soil functions, we also show that network complexity and potentially competitive interactions are key drivers of soil multifunctionality.
Collapse
Affiliation(s)
- Xing Wang
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Qi Zhang
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Zhenjiao Zhang
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Wenjie Li
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Weichao Liu
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Naijia Xiao
- Institute for Environmental Genomics and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Hanyu Liu
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Leyin Wang
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Zhenxia Li
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Jing Ma
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Quanyong Liu
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Chengjie Ren
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Gaihe Yang
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| | - Zekun Zhong
- Institute of Soil and Water ConservationNorthwest A&F UniversityYanglingChina
| | - Xinhui Han
- College of AgronomyNorthwest A&F UniversityYanglingChina
- Shaanxi Engineering Research Center of Circular AgricultureYanglingChina
| |
Collapse
|
11
|
Dong S, Liu B, Ma M, Xia M, Wang C. Effects of groundwater level decline to soil and vegetation in arid grassland: a case study of Hulunbuir open pit coal mine. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1793-1806. [PMID: 35648327 DOI: 10.1007/s10653-022-01292-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Coal mine in arid and semi-arid area is one of the most severely degraded ecosystems on the earth. The continuous decrease in groundwater level caused by coal mining will inevitably affect biogeochemical environment of the vadose zone, and then lead to the replacement of surface vegetation. Yimin open-pit coal mine was taken as an example to reveal the relationship between the groundwater depth and soil water content (SWC), soil salt content, soil electrical conductivity (SEC), soil organic matter (SOM), soil available potassium (SAK), soil available nitrogen (SAN), vegetation coverage, aboveground biomass and species richness. The results show that, the change of groundwater depth can affect soil properties and then change the characteristics of surface vegetation, and the change of surface vegetation can also react on soil properties. Vegetation coverage and aboveground biomass are negatively correlated with groundwater depth, and positively correlated with SWC, SEC, SOM and SAK. The shallow groundwater table is conducive to the accumulation of SOM, so that the surface biomass and vegetation coverage are high. The higher the surface biomass, the more the SAN is absorbed. Under natural conditions, the relative strength of biological nitrogen fixation and plant absorption determine the content of SAN. In the research area, when the depth of groundwater is less than 0.4 m will cause soil salinization, then lead to low species richness; Species richness is exponentially correlated with groundwater depth and decreases with the increase in groundwater depth.
Collapse
Affiliation(s)
- Shaogang Dong
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
- Key Laboratory of River and Lake Ecology of Inner Mongolia Autonomous Region, Hohhot, 010021, Inner Mongolia, China
| | - Baiwei Liu
- Academic Affair Office, Inner Mongolia University, No. 235 University West Road, Saihan District, Hohhot, 010021, Inner Mongolia, China.
| | - Mingyan Ma
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Manhong Xia
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Chao Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| |
Collapse
|
12
|
Zhang J, Yang Z, Qiao D, Su L. Increasing precipitation during first half of growing season enhances ecosystem water use efficiency in a semiarid grassland. FRONTIERS IN PLANT SCIENCE 2023; 14:1119101. [PMID: 36818851 PMCID: PMC9932802 DOI: 10.3389/fpls.2023.1119101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Precipitation amount and seasonality can profoundly impact ecosystem carbon (C) and water fluxes. Water use efficiency (WUE), which measures the amount of C assimilation relative to the amount of water loss, is an important metric linking ecosystem C and water cycles. However, how increasing precipitation at different points in the growing season affects ecosystem WUE remains unclear. A manipulative experiment simulating increasing first half (FP+) and/or second half (SP+) of growing-season precipitation was conducted for 4 years (2015-2018) in a temperate steppe in the Mongolian Plateau. Gross ecosystem productivity (GEP) and evapotranspiration (ET) were measured to figure out ecosystem WUE (WUE = GEP/ET). Across the four years, FP+ showed no considerable impact on ecosystem WUE or its two components, GEP and ET, whereas SP+ stimulated GEP but showed little impact on ET, causing a positive response of WUE to FP+. The increased WUE was mainly due to higher soil water content that maintained high aboveground plant growth and community cover while ET was stable during the second half of growing season. These results illustrate that second half of growing-season precipitation is more important in regulating ecosystem productivity in semiarid grasslands and highlight how precipitation seasonality affects ecosystem productivity in the temperate steppe ecosystem.
Collapse
Affiliation(s)
- Jiayang Zhang
- International Joint Research Laboratory for Global Change Ecology, Laboratory of Biodiversity Conservation and Ecological Restoration, School of Life Sciences, Henan University, Kaifeng, Henan, China
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, China
| | - Zhongling Yang
- International Joint Research Laboratory for Global Change Ecology, Laboratory of Biodiversity Conservation and Ecological Restoration, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Daiyu Qiao
- International Joint Research Laboratory for Global Change Ecology, Laboratory of Biodiversity Conservation and Ecological Restoration, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Lei Su
- International Joint Research Laboratory for Global Change Ecology, Laboratory of Biodiversity Conservation and Ecological Restoration, School of Life Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
13
|
Du Y, Wang YP, Hui D, Su F, Yan J. Significant effects of precipitation frequency on soil respiration and its components-A global synthesis. GLOBAL CHANGE BIOLOGY 2023; 29:1188-1205. [PMID: 36408676 DOI: 10.1111/gcb.16532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Global warming intensifies the hydrological cycle, which results in changes in precipitation regime (frequency and amount), and will likely have significant impacts on soil respiration (Rs ). Although the responses of Rs to changes in precipitation amount have been extensively studied, there is little consensus on how Rs will be affected by changes in precipitation frequency (PF) across the globe. Here, we synthesized the field observations from 296 published papers to quantify the effects of PF on Rs and its components using meta-analysis. Our results indicated that the effects of PF on Rs decreased with an increase in background mean annual precipitation. When the data were grouped by climate conditions, increased PF showed positive effects on Rs under the arid condition but not under the semi-humid or humid conditions, whereas decreased PF suppressed Rs across all the climate conditions. The positive effects of increased PF mainly resulted from the positive response of heterotrophic respiration under the arid condition while the negative effects of decreased PF were mainly attributed to the reductions in root biomass and respiration. Overall, our global synthesis provided for the first time a comprehensive analysis of the divergent effects of PF on Rs and its components across climate regions. This study also provided a framework for understanding and modeling responses of ecosystem carbon cycling to global precipitation change.
Collapse
Affiliation(s)
- Yue Du
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Ying-Ping Wang
- CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Fanglong Su
- School of Life Sciences, Henan University, Kaifeng, China
| | - Junhua Yan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
14
|
Song W, Ochoa-Hueso R, Li F, Cui H, Zhong S, Yang X, Zhao T, Sun W. Mowing enhances the positive effects of nitrogen addition on ecosystem carbon fluxes and water use efficiency in a semi-arid meadow steppe. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115889. [PMID: 35932732 DOI: 10.1016/j.jenvman.2022.115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Grasslands are now facing a continuously increasing supply of nitrogen (N) fertilizers, resulting in alterations in ecosystem functioning, including changes in carbon (C) and water cycling. Mowing, one of the most widely used grassland management techniques, has been shown to mitigate the negative impacts of increased N availability on species richness. However, knowledge of how N addition and mowing, alone and/or in combination, affect ecosystem-level C fluxes and water use efficiency (WN) is still limited. We experimentally manipulated N fertilization (0 and 10 g N m-2 yr-1) and mowing (once per year at the end of the growing season) following a randomized block design in a meadow steppe characterized by salinization and alkalinization in northeastern China. We found that, compared to the control plots, N addition, mowing, and their interaction increased net ecosystem CO2 exchange by 65.1%, 14.7%, and 133%, and WN by 40.7%, 18.5%, and 96.1%, respectively. Nitrogen enrichment also decreased soil pH, which resulted in greater aboveground biomass (AGB). Moreover, N addition indirectly increased AGB by inducing changes in species richness. Our results indicate that mowing enhances the positive effects of N addition on ecosystem C fluxes and WN. Therefore, appropriate grassland management practices are essential to improve ecosystem C sequestration, WN, and mitigate future species diversity declines due to ecosystem eutrophication.
Collapse
Affiliation(s)
- Wenzheng Song
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China; Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia Internacional Agroalimentario (ceiA3), Campus Del Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia Internacional Agroalimentario (ceiA3), Campus Del Rio San Pedro, 11510, Puerto Real, Cádiz, Spain; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700, AB, Wageningen, the Netherlands.
| | - Fei Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Haiying Cui
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Shangzhi Zhong
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China; Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuechen Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China; Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Tianhang Zhao
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
15
|
Qian R, Hao Y, Li L, Zheng Z, Wen F, Cui X, Wang Y, Zhao T, Tang Z, Du J, Xue K. Joint control of seasonal timing and plant function types on drought responses of soil respiration in a semiarid grassland. FRONTIERS IN PLANT SCIENCE 2022; 13:974418. [PMID: 36046587 PMCID: PMC9421296 DOI: 10.3389/fpls.2022.974418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Globally, droughts are the most widespread climate factor impacting carbon (C) cycling. However, as the second-largest terrestrial C flux, the responses of soil respiration (Rs) to extreme droughts co-regulated by seasonal timing and PFT (plant functional type) are still not well understood. Here, a manipulative extreme-duration drought experiment (consecutive 30 days without rainfall) was designed to address the importance of drought timing (early-, mid-, or late growing season) for Rs and its components (heterotrophic respiration (Rh) and autotrophic respiration (Ra)) under three PFT treatments (two graminoids, two shrubs, and their combination). The results suggested that regardless of PFT, the mid-drought had the greatest negative effects while early-drought overall had little effect on Rh and its dominated Rs. However, PFT treatments had significant effects on Rh and Rs in response to the late drought, which was PFT-dependence: reduction in shrubs and combination but not in graminoids. Path analysis suggested that the decrease in Rs and Rh under droughts was through low soil water content induced reduction in MBC and GPP. These findings demonstrate that responses of Rs to droughts depend on seasonal timing and communities. Future droughts with different seasonal timing and induced shifts in plant structure would bring large uncertainty in predicting C dynamics under climate changes.
Collapse
Affiliation(s)
- Ruyan Qian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanbin Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Linfeng Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenzhen Zheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fuqi Wen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanfen Wang
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Tong Zhao
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ziyang Tang
- The High School Affiliated to Renmin University of China, Beijing, China
| | - Jianqing Du
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Xue
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Chai H, Li J, Ochoa-Hueso R, Yang X, Li J, Meng B, Song W, Zhong X, Ma J, Sun W. Different drivers of soil C accumulation in aggregates in response to altered precipitation in a semiarid grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154760. [PMID: 35341864 DOI: 10.1016/j.scitotenv.2022.154760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Soil carbon (C) stabilization partially depends on its distribution within soil structural aggregates, and on the physicochemical processes of C within these aggregates. Changes in precipitation can alter the size distribution of aggregate classes within soils, and C input and output processes within these aggregates, which have potential consequences for soil C storage. However, the mechanisms underlying C accumulation within different aggregates under various precipitation regimes remain unclear. In this study, we conducted a 3-year field manipulation experiment to test the effects of a gradient of altered precipitation (-70%, -50%, -30%, 0%, +30%, and +50% amounts compared with ambient rainfall) on soil aggregate distribution and C accumulation in aggregates (53-250 μm, microaggregates; < 53 μm, silt and clay fractions) in a meadow steppe of northeastern China. Our results revealed that the distribution of soil microaggregates decreased along the precipitation gradient, with no detectable discrepant responses with respect to soil C accumulation within the microaggregates to precipitation treatments. In contrast, higher precipitation amounts coupled with a greater proportion of silt and clay fractions enhanced the accumulation of soil C. Importantly, structural equation models revealed that the pathways by which changes in precipitation control the accumulation of soil C varied across aggregate size fractions. Plant biomass was the main direct factor controlling the accumulation of C within soil microaggregates, whereas soil aggregate distribution and enzyme activities strongly interacted with soil C accumulation in the silt and clay fractions. Our findings imply that identifying how plant and soil aggregate properties respond to precipitation changes and drive C accumulation among soil particles will enhance the ability to predict responses of ecosystem processes to future global change.
Collapse
Affiliation(s)
- Hua Chai
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, China; Center for Ecosystem Sciences and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86001, United States of America
| | - Jie Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, China
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia Internacional Agroalimentario (ceiA3), Campus del Rio San Pedro, Puerto Real, Cádiz 11510, Spain
| | - Xuechen Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, China; Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, China
| | - Junqin Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, China
| | - Bo Meng
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, China; Institute of Ecology, College of Urban and Environmental Science, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Wenzheng Song
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, China; Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia Internacional Agroalimentario (ceiA3), Campus del Rio San Pedro, Puerto Real, Cádiz 11510, Spain
| | - Xiaoyue Zhong
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jianying Ma
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, China.
| |
Collapse
|
17
|
Zhang X, Zhai P, Huang J. Leaf Carbon Exchange of Two Dominant Plant Species Impacted by Water and Nitrogen Application in a Semi-Arid Temperate Steppe. FRONTIERS IN PLANT SCIENCE 2022; 13:736009. [PMID: 35586215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Photosynthetic characteristics are widely used as indicators of plant responses to global environmental changes such as precipitation change and nitrogen (N) deposition increase. How different plant species respond physiologically to the future precipitation change combined with increasing N availability is largely unclear. A field experiment was conducted to study responses in seasonal and interannual leaf carbon (C) exchange of two dominant plant species, Leymus chinensis and Stipa grandis, to additional water (either as spring snow or as summer water) and N application in a semi-arid temperate steppe of China. Our results showed that spring snow and summer water addition both increased the maximum photosynthetic rate (Amax) of two dominant species. Such effect was likely caused by raised light saturation point, the maximum apparent quantum yield, stomatal conductance, and transpiration rate. The N application combined with spring snow or summer water addition both enhanced Amax of S. grandis in both experimental years, whereas N application only increased Amax of L. chinensis combined with summer water addition. Their responses were attributed to a concurrent increase in leaf N concentration (Nleaf) and decrease in leaf phosphorus (P) concentration (Pleaf), indicating that Nleaf and Pleaf affect photosynthetic characteristics to regulate leaf C exchange. Our results suggest that differentiated responses among different species in photosynthetic characteristics may lead to changes in ecosystem structure and functioning under increasing precipitation and N deposition.
Collapse
Affiliation(s)
- Xiaolin Zhang
- College of Grassland Science, Shanxi Agricultural University, Taigu, China
| | - Penghui Zhai
- College of Grassland Science, Shanxi Agricultural University, Taigu, China
| | - Jianhui Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Xu M, Zhu X, Chen S, Pang S, Liu W, Gao L, Yang W, Li T, Zhang Y, Luo C, He D, Wang Z, Fan Y, Han X, Zhang X. Distinctive pattern and mechanism of precipitation changes affecting soil microbial assemblages in the Eurasian steppe. iScience 2022; 25:103893. [PMID: 35243251 PMCID: PMC8866155 DOI: 10.1016/j.isci.2022.103893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/09/2022] [Accepted: 02/04/2022] [Indexed: 11/19/2022] Open
Abstract
Precipitation may increase or decrease by different intensities, but the pattern and mechanism of soil microbial community assembly under various precipitation changes remain relatively underexplored. Here, although ±30% precipitation caused a small decrease (∼19%) in the within-treatment taxonomic compositional dissimilarity through the deterministic competitive exclusion process in a steppe ecosystem, ±60% precipitation caused a large increase (∼35%) in the dissimilarity through the stochastic ecological drift process (random birth/death), which was in contrast with the traditional thought that increasing the magnitude of environmental changes (e.g., from +30% to +60%) would elevate the importance of deterministic relative to stochastic processes. The increased taxonomic dissimilarity/stochasticity under ±60% precipitation translated into functional dissimilarity/stochasticity at the gene, protein, and enzyme levels. Overall, our results revealed the distinctive pattern and mechanism of precipitation changes affecting soil microbial community assembly and demonstrated the need to integrate microbial taxonomic information to better predict their functional responses to precipitation changes.
Collapse
Affiliation(s)
- Minjie Xu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xunzhi Zhu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Shiping Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shuang Pang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lili Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tingting Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuhan Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chun Luo
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai 201318, China
| | - Dandan He
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai 201318, China
| | - Zhiping Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yi Fan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ximei Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
19
|
Yue P, Zuo X, Li K, Li X, Wang S, Misselbrook T. Precipitation changes regulate the annual methane uptake in a temperate desert steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150172. [PMID: 34798732 DOI: 10.1016/j.scitotenv.2021.150172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Desert soils are an important sink of atmospheric methane (CH4) and regulate the global CH4 budget. However, it is still unclear how CH4 fluxes respond to precipitation changes in desert-steppe soils. Therefore, a two-year in situ control experiment was conducted to investigate the effect of precipitation changes on CH4 uptake in desert steppe of Inner Mongolia in northwest China and its driving mechanism. The result showed that this desert steppe was an important sink of CH4, with an annual uptake of 2.93 (2.64-3.22) kg C ha-1. It was found that CH4 uptake was reduced significantly for decreasing precipitation, especially in spring and summer. In contrast, an increasing trend of CH4 uptake was observed for increasing precipitation, although it was not statistically significant. Further analyses found that CH4 uptake was more sensitive to decreasing precipitation than increasing precipitation. This may be mainly due to the fact that only moderate water-filled pore space (WFPS) induced by precipitation promoted CH4 uptake, while too-high (>32%) or too-low WFPS inhibited its uptake. A structural equation model showed that the copy number of the pmoA functional gene was the most important factor affecting CH4 uptake. In contrast, soil moisture had a very important indirect effect on CH4 uptake, mainly through significantly affected soil porosity, the above-ground plant biomass and NO3--N content, further affected CH4 uptake. Overall, CH4 sinks in desert steppe was still mainly controlled by methane-oxidizing bacteria containing the key functional gene pmoA and WFPS. Therefore, precipitation plays an important role in regulating the intensity of CH4 sinks in desert steppe, while it is worth noting that too-little precipitation will significantly weaken CH4 sinks.
Collapse
Affiliation(s)
- Ping Yue
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology, Lanzhou 730000, Gansu Province, China
| | - Xiaoan Zuo
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology, Lanzhou 730000, Gansu Province, China.
| | - Kaihui Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xiangyun Li
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology, Lanzhou 730000, Gansu Province, China
| | - Shaokun Wang
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology, Lanzhou 730000, Gansu Province, China
| | | |
Collapse
|
20
|
Zhang K, Yan Z, Li M, Kang E, Li Y, Yan L, Zhang X, Wang J, Kang X. Divergent responses of CO 2 and CH 4 fluxes to changes in the precipitation regime on the Tibetan Plateau: Evidence from soil enzyme activities and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149604. [PMID: 34467923 DOI: 10.1016/j.scitotenv.2021.149604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/14/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Carbon fluxes (CO2 and CH4) are important indicators of the response of alpine meadow ecosystems to global climate change. Alpine meadows on the Qinghai-Tibet Plateau are sensitive to climate change. Although the temporal allocation of precipitation can vary, its intensity is expected to increase, and its frequency is expected to decrease in the future. In this study, a manipulative field experiment was conducted to investigate how carbon fluxes are altered in response to moderate and severe changes in the precipitation regime. Fluctuations in CH4 flux were large under a severely altered precipitation regime (range of -0.048-0.038 mg m-2 h-1). Severe changes in the precipitation regime significantly reduced soil CH4 uptake by approximately 54.3%. This was probably affected by the decrease in the dissolved organic carbon concentration and changes in the microbial community (mainly Gammaproteobacteria), which were induced by variation in soil water conditions under various precipitation regimes. Under moderate changes in the precipitation regime, the average value of CO2 fluxes (ecosystem respiration) was 698.21 ± 35.19 mg m-2 h-1, which was significantly decreased by 20.7% compared with the control. This likely stems from the suppression of enzyme activity (particularly α-1,4-glucosidase and β-1,4-glucosidase) and the alteration of microbial community structure in this treatment, which led to a decrease in organic matter breakdown and a reduction in the release of CO2 to the atmosphere. However, CO2 fluxes were slightly (i.e., not significantly) decreased under the severely altered precipitation regime. Such different responses of CO2 flux are probably driven by differences in microbial strategies. This study not only increases our understanding of the mechanisms underlying the adaptation of alpine meadow ecosystems to global climate change but also provides new insight into the carbon source/sink functions of alpine meadows.
Collapse
Affiliation(s)
- Kerou Zhang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Zhongqing Yan
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Meng Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Enze Kang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Yong Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Liang Yan
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Xiaodong Zhang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Jinzhi Wang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Xiaoming Kang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China.
| |
Collapse
|
21
|
Guo X, Zhou H, Dai L, Li J, Zhang F, Li Y, Lin L, Li Q, Qian D, Fan B, Lan Y, Si M, Li B, Cao G, Du Y, Wang B. Restoration of Degraded Grassland Significantly Improves Water Storage in Alpine Grasslands in the Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2021; 12:778656. [PMID: 34975963 PMCID: PMC8716879 DOI: 10.3389/fpls.2021.778656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Alpine grassland has very important water conservation function. Grassland degradation seriously affects the water conservation function; moreover, there is little understanding of the change of water state during grassland restoration. Our study aims to bridge this gap and improve our understanding of changes in soil moisture during the restoration process. In this study, the water storage, vegetation, and meteorology of a non-degradation grassland (grazing intensity of 7.5 sheep/ha) and a severely degraded grassland (grazing intensity of 12-18 sheep/ha) were monitored in the Qinghai-Tibet Plateau for seven consecutive years. We used correlation, stepwise regression, and the boosted regression trees (BRT) model analyses, five environmental factors were considered to be the most important factors affecting water storage. The severely degraded grassland recovered by light grazing treatment for 7 years, with increases in biomass, litter, and vegetation cover, and a soil-water storage capacity 41.9% higher in 2018 compared to that in 2012. This increase in soil-water storage was primarily due to the increase in surface soil moisture content. The key factors that influenced water storage were listed in a decreasing order: air temperature, litter, soil heat flux, precipitation, and wind speed. Their percentage contributions to soil-water storage were 50.52, 24.02, 10.86, 7.82, and 6.77%, respectively. Current and future climate change threatens soil-water conservation in alpine grasslands; however, grassland restoration is an effective solution to improve the soil-water retention capacity in degraded grassland soils.
Collapse
Affiliation(s)
- Xiaowei Guo
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Huakun Zhou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Licong Dai
- College of Ecology and Environment, Hainan University, Haikou, China
| | - Jing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Fawei Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Yikang Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Li Lin
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Qian Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Dawen Qian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Bo Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Yuting Lan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Mengke Si
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Bencuo Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Guangmin Cao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Yangong Du
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Bin Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- New South Wales Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| |
Collapse
|
22
|
Yang Z, Wei Y, Fu G, Xiao R, Chen J, Zhang Y, Wang D, Li J. Decreased precipitation in the late growing season weakens an ecosystem carbon sink in a semi‐arid grassland. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zhongling Yang
- International Joint Research Laboratory for Global Change Ecology School of Life Sciences Henan University Kaifeng Henan China
| | - Yueyue Wei
- International Joint Research Laboratory for Global Change Ecology School of Life Sciences Henan University Kaifeng Henan China
| | - Guangya Fu
- International Joint Research Laboratory for Global Change Ecology School of Life Sciences Henan University Kaifeng Henan China
| | - Rui Xiao
- International Joint Research Laboratory for Global Change Ecology School of Life Sciences Henan University Kaifeng Henan China
| | - Ji Chen
- Aarhus University Centre for Circular Bioeconomy Aarhus University Tjele Denmark
| | - Yaojun Zhang
- International Joint Research Laboratory for Global Change Ecology School of Life Sciences Henan University Kaifeng Henan China
| | - Dong Wang
- International Joint Research Laboratory for Global Change Ecology School of Life Sciences Henan University Kaifeng Henan China
| | - Junyong Li
- International Joint Research Laboratory for Global Change Ecology School of Life Sciences Henan University Kaifeng Henan China
| |
Collapse
|
23
|
Hossain ML, Li J. Disentangling the effects of climatic variability and climate extremes on the belowground biomass of C 3- and C 4-dominated grasslands across five ecoregions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143894. [PMID: 33341628 DOI: 10.1016/j.scitotenv.2020.143894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Elucidating the variation in grassland belowground biomass (BGB) and its response to changes in climatic variables are key issues in plant ecology research. In this study, BGB data for five ecoregions (cold steppe, temperate dry steppe, savanna, humid savanna, and humid temperate) were used to examine the effects of climatic variability and extremes on the BGB of C3- and C4-dominated grasslands. Results showed that BGB varied significantly across the ecoregions, with the highest levels in cold steppe and the lowest in savanna. The results indicated that growing-season temperature, maximum and minimum temperatures and their interactions had significantly positive effects on the single-harvest BGB of C3 plants in colder ecoregions (i.e., humid temperate and cold steppe) and of C4 plants in arid ecoregions (i.e., temperate dry steppe and savanna). The single-harvest BGB of C3 plants in arid ecoregions and C4 plants in humid savanna ecoregion declined with increasing temperature during the growing season. Growing-season precipitation exerted significant positive effects on the single-harvest BGB of C4 plants in arid ecoregions. Annual temperature variables negatively impacted the annual BGB of humid temperate ecoregion, because of the dominance of C3 plants. Increasing cumulative growing-season precipitation elevated and the mean annual temperature reduced the annual BGB of both categories of plants in arid ecoregions. Compared with normal climates, extreme dry events during the growing season enhanced single-harvest BGB in colder ecoregions. The single-harvest BGB of C4 plants in savanna tended to increase during extreme wet and decrease during moderate dry events compared to normal climates. This study suggests that the differential effects of climatic variability and extremes on BGB can be explained by differences in plant types, and ecoregions. These findings on the responses of the BGB to climatic variability and extremes constitute important scientific evidence emphasizing the need to maintain ecosystem stability across ecoregions.
Collapse
Affiliation(s)
- Md Lokman Hossain
- Department of Geography, Hong Kong Baptist University, Hong Kong, China; Department of Environmental Protection Technology, German University Bangladesh, Gazipur, Bangladesh
| | - Jianfeng Li
- Department of Geography, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
24
|
Post AK, Knapp AK. How big is big enough? Surprising responses of a semiarid grassland to increasing deluge size. GLOBAL CHANGE BIOLOGY 2021; 27:1157-1169. [PMID: 33295017 DOI: 10.1111/gcb.15479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Climate change has intensified the hydrologic cycle globally, increasing the magnitude and frequency of large precipitation events, or deluges. Dryland ecosystems are expected to be particularly responsive to increases in deluge size, as their ecological processes are largely dependent on distinct soil moisture pulses. To better understand how increasing deluge size will affect ecosystem function, we conducted a field experiment in a native semiarid shortgrass steppe (Colorado, USA). We quantified ecological responses to a range of deluge sizes, from moderate to extreme, with the goal of identifying response patterns and thresholds beyond which ecological processes would not increase further (saturate). Using a replicated regression approach, we imposed single deluges that ranged in size from 20 to 120 mm (82.3rd to >99.9th percentile of historical event size) on undisturbed grassland plots. We quantified pre- and postdeluge responses in soil moisture, soil respiration, and canopy greenness, as well as leaf water potential, growth, and flowering of the dominant grass species (Bouteloua gracilis). We also measured end of season above- and belowground net primary production (ANPP, BNPP). As expected, this water-limited ecosystem responded strongly to the applied deluges, but surprisingly, most variables increased linearly with deluge size. We found little evidence for response thresholds within the range of deluge sizes imposed, at least during this dry year. Instead, response patterns reflected the linear increase in the duration of elevated soil moisture (2-22 days) with increasing event size. Flowering of B. gracilis and soil respiration responded particularly strongly to deluge size (14- and 4-fold increases, respectively), as did ANPP and BNPP (~60% increase for both). Overall, our results suggest that this semiarid grassland will respond positively and linearly to predicted increases in deluge size, and that event sizes may need to exceed historical magnitudes, or occur during wet years, before responses saturate.
Collapse
Affiliation(s)
- Alison K Post
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Alan K Knapp
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
25
|
Han J, Chen J, Shi W, Song J, Hui D, Ru J, Wan S. Asymmetric responses of resource use efficiency to previous‐year precipitation in a semi‐arid grassland. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Juanjuan Han
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station School of Geographical Sciences Southwest University Chongqing China
| | - Jiquan Chen
- Department of Geography, Environment, and Spatial Sciences Michigan State University East Lansing MI USA
| | - Weiyu Shi
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station School of Geographical Sciences Southwest University Chongqing China
| | - Jian Song
- College of Life Science Institute of Life Science and Green Development Hebei University Baoding Hebei China
| | - Dafeng Hui
- Department of Biological Sciences Tennessee State University Nashville TN USA
| | - Jingyi Ru
- College of Life Science Institute of Life Science and Green Development Hebei University Baoding Hebei China
| | - Shiqiang Wan
- College of Life Science Institute of Life Science and Green Development Hebei University Baoding Hebei China
| |
Collapse
|
26
|
Liao Q, Wang Z, Huang C. Green Infrastructure Offset of the Negative Ecological Effects of Urbanization and Storing Water in the Three Gorges Reservoir Area, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17218077. [PMID: 33147838 PMCID: PMC7663030 DOI: 10.3390/ijerph17218077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022]
Abstract
Land use planning usually increases the uncertainties of the ecosystem structures and functions because various human demands usually bring both positive and negative ecological effects. It is critical for estimating various land use changes and their ecological effects, but the previous studies have failed to decouple the respective and the combined effects of different land use changes on ecosystem services. Net primary productivity (NPP) could be used to indicate many ecosystem services such as carbon sequestration and storage. Here, we employed a light use efficiency model to estimate the spatial and temporal dynamics of NPP in the Three Gorges Reservoir (TGR) area from 2000 to 2015, and designed four scenarios to analyze the relative roles of afforestation, urbanization and storing water on NPP dynamics. Our results documented that terrestrial NPP of the TGR area increased from 547.40 gC•m-2 to 629.96 gC•m-2, and carbon sequestration capacities were 31.66 TgC (1Tg = 1012g) and 36.79 TgC in 2000 and 2015, respectively. Climate change and land use change both could contribute to carbon sequestration with 4.08 TgC and 1.05 TgC. Among these land use changes, only afforestation could sequester carbon with 2.04 TgC, while urbanization-induced and impoundment-induced emissions were 0.12 TgC and 0.32 TgC, respectively, and other land use changes also could release 0.55 TgC of carbon. This finding suggested that although positive and negative environmental effects happened simultaneously over the past decades, green infrastructure could effectively offset the carbon emissions from urbanization and storing water in the TGR area, which provides some fundamental supports for further ecological restoration and contributes to empowering land use policies towards carbon sequestration and storage at the regional scale.
Collapse
Affiliation(s)
- Qipeng Liao
- School of Arts and Communication, China University of Geosciences, Wuhan 430078, China; (Q.L.); (Z.W.)
- Faculty of Fine Art, University of Barcelona, 08028 Barcelona, Spain
| | - Zhe Wang
- School of Arts and Communication, China University of Geosciences, Wuhan 430078, China; (Q.L.); (Z.W.)
| | - Chunbo Huang
- Research Center for Spatial Planning and Human-Environment System Simulation, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430078, China
- Correspondence: or
| |
Collapse
|
27
|
Su F, Wang F, Li Z, Wei Y, Li S, Bai T, Wang Y, Guo H, Hu S. Predominant role of soil moisture in regulating the response of ecosystem carbon fluxes to global change factors in a semi-arid grassland on the Loess Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139746. [PMID: 32531591 DOI: 10.1016/j.scitotenv.2020.139746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Climate warming, altered precipitation and nitrogen deposition may critically affect plant growth and ecosystem carbon fluxes. However, the underlying mechanisms are not fully understood. We conducted a 2-yr, multi-factor experiment (warming (W), altered precipitation (+30% and - 30%) and nitrogen addition (N)) in a semi-arid grassland on the Loess Plateau to study how these factors affect ecosystem carbon fluxes. Surprisingly, no interactive effects of warming, altered precipitation and nitrogen addition were detected on parameters of ecosystem carbon fluxes, including net ecosystem CO2 exchange (NEE), ecosystem respiration (ER), gross ecosystem productivity (GEP) and soil respiration (SR). Warming marginally reduced NEE and GEP mainly due to its negative effects on them in July and August. Altered precipitation significantly affected all parameters of carbon fluxes with precipitation reduction decreasing NEE, ER and GEP, whereas precipitation addition increasing SR. In contrast, nitrogen addition had little effect on any parameters of carbon fluxes. Soil moisture was the most important driver and positively correlated with ecosystem carbon fluxes and warming impacted ecosystem carbon fluxes indirectly by decreasing soil moisture. While plant community cover did not show significant association with carbon fluxes, semi-shrubs cover was positively related to NEE, ER and GEP. Together, these results suggest that soil water availability, rather than soil temperature and nitrogen availability, may dominate the effect of the future multi-faceted global changes on semi-arid grassland carbon fluxes on the Loess Plateau.
Collapse
Affiliation(s)
- Fanglong Su
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Fuwei Wang
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhen Li
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanan Wei
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Shijie Li
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Tongshuo Bai
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yi Wang
- State Key Laboratory of Loess and Quaternary, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, People's Republic of China
| | - Hui Guo
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Shuijin Hu
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
28
|
Zhang B, Hautier Y, Tan X, You C, Cadotte MW, Chu C, Jiang L, Sui X, Ren T, Han X, Chen S. Species responses to changing precipitation depend on trait plasticity rather than trait means and intraspecific variation. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bingwei Zhang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- Department of Ecology State Key Laboratory of Biocontrol and School of Life Sciences Sun Yat‐sen University Guangzhou China
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology Beijing Normal University at Zhuhai Zhuhai China
| | - Yann Hautier
- Ecology and Biodiversity Group Department of Biology Utrecht University Utrecht The Netherlands
| | - Xingru Tan
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Cuihai You
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Marc W. Cadotte
- Department of Biological Sciences University of Toronto‐Scarborough Toronto ON Canada
| | - Chengjin Chu
- Department of Ecology State Key Laboratory of Biocontrol and School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Lin Jiang
- School of Biological Sciences Georgia Institute of Technology Atlanta GA USA
| | - Xinghua Sui
- Department of Ecology State Key Laboratory of Biocontrol and School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Tingting Ren
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Shiping Chen
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
29
|
Wang J, Zhang Q, Song J, Ru J, Zhou Z, Xia J, Dukes JS, Wan S. Nighttime warming enhances ecosystem carbon‐use efficiency in a temperate steppe. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Wang
- College of Life Sciences Hebei University Baoding Hebei China
| | - Qian Zhang
- International Joint Research Laboratory for Global Change Ecology School of Life Sciences Henan University Kaifeng Henan China
| | - Jian Song
- College of Life Sciences Hebei University Baoding Hebei China
| | - Jingyi Ru
- International Joint Research Laboratory for Global Change Ecology School of Life Sciences Henan University Kaifeng Henan China
| | - Zhenxing Zhou
- International Joint Research Laboratory for Global Change Ecology School of Life Sciences Henan University Kaifeng Henan China
| | - Jianyang Xia
- Research Center for Global Change and Ecological Forecasting and Tiantong National Field Observation Station for Forest Ecosystem School of Ecological and Environmental Sciences East China Normal University Shanghai China
| | - Jeffrey S. Dukes
- Department of Forestry and Natural Resources Purdue Climate Change Research CenterPurdue University West Lafayette IN USA
- Department of Biological Sciences Purdue Climate Change Research CenterPurdue University West Lafayette IN USA
| | - Shiqiang Wan
- College of Life Sciences Hebei University Baoding Hebei China
| |
Collapse
|
30
|
Comprehensive Grassland Degradation Monitoring by Remote Sensing in Xilinhot, Inner Mongolia, China. SUSTAINABILITY 2020. [DOI: 10.3390/su12093682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Grassland degradation is a complex process and cannot be thoroughly measured by a single indicator, such as fractional vegetation cover (FVC), aboveground biomass (AGB), or net primary production (NPP), or by a simple combination of these indicators. In this research, we combined measured data with vegetation and soil characteristics to establish a set of standards applicable to the monitoring of regional grassland degradation by remote sensing. We selected indicators and set their thresholds with full consideration given to vegetation structure and function. We optimized the indicator simulation, based on which grassland degradation in the study area during 2014–2018 was comprehensively evaluated. We used the feeding intensity of herbivores to represent the grazing intensity. We analyzed the effects of climate and grazing activities on grassland degradation using the constraint line method. The results showed degradation in approximately 69% of the grassland in the study area and an overall continued recovery of the degraded grassland from 2014 to 2018. We did not identify any significant correlation between temperature and grassland degradation. The increase in precipitation promoted the recovery of degraded grassland, whereas increased grazing may have aggravated degradation. Our findings can not only improve the scientific quality and accuracy of grassland degradation monitoring by remote sensing but also provide clear spatial information and decision-making help in sustainable management of grassland regions.
Collapse
|
31
|
The response of root traits to precipitation change of herbaceous species in temperate steppes. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Zhang B, Cadotte MW, Chen S, Tan X, You C, Ren T, Chen M, Wang S, Li W, Chu C, Jiang L, Bai Y, Huang J, Han X. Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation. Ecology 2019; 100:e02828. [PMID: 31323118 DOI: 10.1002/ecy.2828] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 11/07/2022]
Abstract
Elucidating the variation of allocation pattern of ecosystem net primary productivity (NPP) and its underlying mechanisms is critically important for understanding the changes of aboveground and belowground ecosystem functions. Under optimal partitioning theory, plants should allocate more NPP to the organ that acquires the most limiting resource, and this expectation has been widely used to explain and predict NPP allocation under changing precipitation. However, confirmatory evidence for this theory has mostly come from observed spatial variation in the relationship between precipitation and NPP allocation across ecosystems, rather than directly from the influences of changing precipitation on NPP allocation within systems. We performed a 6-yr five-level precipitation manipulation experiment in a semiarid steppe to test whether changes in NPP allocation can be explained by the optimal partitioning theory, and how water requirement of plant community is maintained if NPP allocation is unaltered. The 30 precipitation levels (5 levels × 6 yr) were divided into dry, nominal, and wet precipitation ranges, relative to historical precipitation variation over the past six decades. We found that NPP in both aboveground (ANPP) and belowground (BNPP) increased nonlinearly as precipitation increased, while the allocation of NPP to BNPP (fBNPP ) showed a concave quadratic relationship with precipitation. The declined fBNPP as precipitation increased in the dry range supported the optimal partitioning theory. However, in the nominal range, NPP allocation was not influenced by the changed precipitation; instead, BNPP was distributed more in the surface soil horizon (0-10 cm) as precipitation increased, and conversely more in the deeper soil layers (10-30 cm) as precipitation decreased. This response in root foraging appears to be a strategy to satisfy plant water requirements and partially explains the stable NPP allocation patterns. Overall, our results suggest that plants can adjust their vertical BNPP distribution in response to drought stress, and that only under extreme drought does the optimal partitioning theory strictly apply, highlighting the context dependency of the adaption and growth of plants under changing precipitation.
Collapse
Affiliation(s)
- Bingwei Zhang
- Department of Ecology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.,State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Shiping Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingru Tan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cuihai You
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minling Chen
- College of Chinese Language and Culture, Jinan University, Guangzhou, 510610, China
| | - Shanshan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Weijing Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chengjin Chu
- Department of Ecology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhui Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Zhang H, Yu H, Zhou C, Zhao H, Qian X. Aboveground net primary productivity not CO2 exchange remain stable under three timing of extreme drought in a semi-arid steppe. PLoS One 2019; 14:e0214418. [PMID: 30913282 PMCID: PMC6435166 DOI: 10.1371/journal.pone.0214418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/12/2019] [Indexed: 11/18/2022] Open
Abstract
Precipitation patterns are expected to change in the semi-arid region within the next decades, with projected increasing in extreme drought events. Meanwhile, the timing of extreme drought also shows great uncertainty, suggesting that the timing of drought, especially during growing season, may subsequently impose stronger stress on ecosystem functions than drought itself. However, how the timing of extreme drought will impact on community productivity and carbon cycle is still not clear. In this study, three timing of extreme drought (a consecutive 30-day period without precipitation event) experiments were set up separately in early-, mid- and late-growing season in a temperate steppe in Inner Mongolia since 2013. The data, including soil water content (SWC), soil temperature (ST) chlorophyll fluorescence parameter (Fv/Fm), ecosystem respiration (Re), gross primary productivity (GPP), net ecosystem carbon absorption (NEE) and aboveground net primary productivity (ANPP) were collected in growing season (from May to September) of 2016. In this study, extreme drought significantly decreased SWC during the drought treatment but not for the whole growing season. Extreme drought decreased maximum quantum efficiency of plant photosystem II (Fv/Fm) under "optimum" value (0.75~0.85) of two dominant species (Leymus chinensis and Stipa grandis). While ANPP kept stable under extreme drought treatments due to the different responses of two dominant species, which brought a compensating effect in relative abundance and biomass. In addition, only early-growing season drought significantly decreased the average Re (P < 0.01) and GPP (P < 0.01) and depressed net CO2 uptake (P < 0.01) than mid- and late-growing season drought. ST and SWC influenced the changes of GPP directly and indirectly through photosynthetic ability of the dominant species by path analysis. Our results indicated that the timing of drought should be considered in carbon cycle models to accurately estimate carbon exchange and productivity of semi-arid grasslands in the context of changing climate.
Collapse
Affiliation(s)
- Hui Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Hua Yu
- Department of Foreign Languages, University of the Chinese Academy of Sciences, Beijing, China
| | - Chaoting Zhou
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Haitao Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xiaoqing Qian
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
- * E-mail:
| |
Collapse
|
34
|
Zhang F, Quan Q, Ma F, Tian D, Zhou Q, Niu S. Differential responses of ecosystem carbon flux components to experimental precipitation gradient in an alpine meadow. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Fangyue Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Quan Quan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Fangfang Ma
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
| | - Qingping Zhou
- Institute of Qinghai‐Tibetan Plateau Southwest Minzu University Chengdu China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
35
|
Temporal Variability of Precipitation and Biomass of Alpine Grasslands on the Northern Tibetan Plateau. REMOTE SENSING 2019. [DOI: 10.3390/rs11030360] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The timing regimes of precipitation can exert profound impacts on grassland ecosystems. However, it is still unclear how the peak aboveground biomass (AGBpeak) of alpine grasslands responds to the temporal variability of growing season precipitation (GSP) on the northern Tibetan Plateau. Here, the temporal variability of precipitation was defined as the number and intensity of precipitation events as well as the time interval between consecutive precipitation events. We conducted annual field measurements of AGBpeak between 2009 and 2016 at four sites that were representative of alpine meadow, meadow-steppe, alpine steppe, and desert-steppe. Thus, an empirical model was established with the time series of the field-measured AGBpeak and the corresponding enhanced vegetation index (EVI) (R2 = 0.78), which was used to estimate grassland AGBpeak at the regional scale. The relative importance of the three indices of the temporal variability of precipitation, events, intensity, and time interval on grassland AGBpeak was quantified by principal component regression and shown in a red–green–blue (RGB) composition map. The standardized importance values were used to calculate the vegetation sensitivity index to the temporal variability of precipitation (VSIP). Our results showed that the standardized VSIP was larger than 60 for only 15% of alpine grassland pixels and that AGBpeak did not change significantly for more than 60% of alpine grassland pixels over the past decades, which was likely due to the nonsignificant changes in the temporal variability of precipitation in most pixels. However, a U-shaped relationship was found between VSIP and GSP across the four representative grassland types, indicating that the sensitivity of grassland AGBpeak to precipitation was dependent on the types of grassland communities. Moreover, we found that the temporal variability of precipitation explained more of the field-measured AGBpeak variance than did the total amount of precipitation alone at the site scale, which implies that the mechanisms underlying how the temporal variability of precipitation controls the AGBpeak of alpine grasslands should be better understood at the local scale. We hypothesize that alpine grassland plants promptly respond to the temporal variability of precipitation to keep community biomass production more stable over time, but this conclusion should be further tested. Finally, we call for a long-term experimental study that includes multiple natural and anthropogenic factors together, such as warming, nitrogen deposition, and grazing and fencing, to better understand the mechanisms of alpine grassland stability on the Tibetan Plateau.
Collapse
|
36
|
Felton AJ, Zavislan-Pullaro S, Smith MD. Semiarid ecosystem sensitivity to precipitation extremes: weak evidence for vegetation constraints. Ecology 2019; 100:e02572. [PMID: 30516267 DOI: 10.1002/ecy.2572] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/09/2018] [Accepted: 11/11/2018] [Indexed: 11/10/2022]
Abstract
In semiarid regions, vegetation constraints on plant growth responses to precipitation (PPT) are hypothesized to place an upper limit on net primary productivity (NPP), leading to predictions of future shifts from currently defined linear to saturating NPP-PPT relationships as increases in both dry and wet PPT extremes occur. We experimentally tested this prediction by imposing a replicated gradient of growing season PPT (GSP, n = 11 levels, n = 4 replicates), ranging from the driest to wettest conditions in the 75-yr climate record, within a semiarid grassland. We focused on responses of two key ecosystem processes: aboveground NPP (ANPP) and soil respiration (Rs ). ANPP and Rs both exhibited greater relative responses to wet vs. dry GSP extremes, with a linear relationship consistently best explaining the response of both processes to GSP. However, this responsiveness to GSP peaked at moderate levels of extremity for both processes, and declined at the most extreme GSP levels, suggesting that greater sensitivity of ANPP and Rs to wet vs. dry conditions may diminish under increased magnitudes of GSP extremes. Underlying these responses was rapid plant compositional change driven by increased forb production and cover as GSP transitioned to extreme wet conditions. This compositional shift increased the magnitude of ANPP responses to wet GSP extremes, as well as the slope and variability explained in the ANPP-GSP relationship. Our findings suggest that rapid plant compositional change may act as a mediator of semiarid ecosystem responses to predicted changes in GSP extremes.
Collapse
Affiliation(s)
- Andrew J Felton
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Sam Zavislan-Pullaro
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Melinda D Smith
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
37
|
Felton AJ, Knapp AK, Smith MD. Carbon exchange responses of a mesic grassland to an extreme gradient of precipitation. Oecologia 2018; 189:565-576. [PMID: 30411149 DOI: 10.1007/s00442-018-4284-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/21/2018] [Indexed: 11/24/2022]
Abstract
Growing evidence indicates that ecosystem processes may be differentially sensitive to dry versus wet years, and that current understanding of how precipitation affects ecosystem processes may not be predictive of responses to extremes. In an experiment within a mesic grassland, we addressed this uncertainty by assessing responses of two key carbon exchange processes-aboveground net primary production (ANPP) and soil respiration (Rs)-to an extensive gradient of growing season precipitation. This gradient comprised 11 levels that specifically included extreme values in precipitation; defined as the 1st, 5th, 95th, and 99th percentiles of the 112-year climate record. Across treatments, our experimental precipitation gradient linearly increased soil moisture availability in the rooting zone (upper 20 cm). Relative to ANPP under nominal precipitation amounts (defined as between the 15th and 85th percentiles), the magnitude of ANPP responses were greatest to extreme increases in precipitation, with an underlying linear response to both precipitation and soil moisture gradients. By contrast, Rs exhibited marginally greater responses to dry versus wet extremes, with a saturating relationship best explaining responses of Rs to both precipitation and soil moisture. Our findings indicate a linear relationship between ANPP and precipitation after incorporating responses to precipitation extremes in the ANPP-precipitation relationship, yet in contrast saturating responses of Rs. As a result, current linear ANPP-precipitation relationships (up to ~ 1000 mm) within mesic grasslands appear to hold as appropriate benchmarks for ecosystems models, yet such models should incorporate nonlinearities in responses of Rs amid increased frequencies and magnitudes of precipitation extremes.
Collapse
Affiliation(s)
- Andrew J Felton
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, 251 Pitkin Street, Fort Collins, CO, 80523, USA.
| | - Alan K Knapp
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, 251 Pitkin Street, Fort Collins, CO, 80523, USA
| | - Melinda D Smith
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, 251 Pitkin Street, Fort Collins, CO, 80523, USA
| |
Collapse
|
38
|
Luo W, Zuo X, Ma W, Xu C, Li A, Yu Q, Knapp AK, Tognetti R, Dijkstra FA, Li MH, Han G, Wang Z, Han X. Differential responses of canopy nutrients to experimental drought along a natural aridity gradient. Ecology 2018; 99:2230-2239. [PMID: 30157292 DOI: 10.1002/ecy.2444] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/05/2018] [Accepted: 06/18/2018] [Indexed: 01/31/2023]
Abstract
The allocation and stoichiometry of plant nutrients in leaves reflect fundamental ecosystem processes, biotic interactions, and environmental drivers such as water availability. Climate change will lead to increases in drought severity and frequency, but how canopy nutrients will respond to drought, and how these responses may vary with community composition along aridity gradients is poorly understood. We experimentally addressed this issue by reducing precipitation amounts by 66% during two consecutive growing seasons at three sites located along a natural aridity gradient. This allowed us to assess drought effects on canopy nitrogen (N) and phosphorus (P) concentrations in arid and semiarid grasslands of northern China. Along the aridity gradient, canopy nutrient concentrations were positively related to aridity, with this pattern was driven primarily by species turnover (i.e., an increase in the relative biomass of N- and P-rich species with increasing aridity). In contrast, drought imposed experimentally increased N but decreased P concentrations in plant canopies. These changes were driven by the combined effects of species turnover and intraspecific variation in leaf nutrient concentrations. In addition, the sensitivity of canopy N and P concentrations to drought varied across the three sites. Canopy nutrient concentrations were less affected by drought at drier than wetter sites, because of the opposing effects of species turnover and intraspecific variation, as well as greater drought tolerance for nutrient-rich species. These contrasting effects of long-term aridity vs. short-term drought on canopy nutrient concentrations, as well as differing sensitivities among sites in the same grassland biome, highlight the challenge of predicting ecosystem responses to future climate change.
Collapse
Affiliation(s)
- Wentao Luo
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Xiaoan Zuo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
| | - Wang Ma
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Chong Xu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 10008, China
| | - Ang Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qiang Yu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 10008, China
| | - Alan K Knapp
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Roberto Tognetti
- Dipartimento di Agraria, Ambiente e Alimenti, Università del Molise, Campobasso, 86090, Italy.,European Forest Institute (EFI) Project Centre on Mountain Forests (MOUNTFOR), San Michele all'Adige, 38010, Italy
| | - Feike A Dijkstra
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Mai-He Li
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China.,Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Guodong Han
- College of Ecology and Environmental Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zhengwen Wang
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Xingguo Han
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China.,State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|