1
|
Malone SC, Thompson RA, Chow PS, de Oliveira CR, Landhäusser SM, Six DL, McCulloh KA, Adams HD, Trowbridge AM. Water, not carbon, drives drought-constraints on stem terpene defense against simulated bark beetle attack in Pinus edulis. THE NEW PHYTOLOGIST 2025; 245:318-331. [PMID: 39462783 PMCID: PMC11617656 DOI: 10.1111/nph.20218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
Drought predisposes forest trees to bark beetle-induced mortality, but the physiological mechanisms remain unclear. While drought-induced water and carbon limitations have been implicated in defensive failure and tree susceptibility, evidence demonstrating how these factors interact is scarce. We withheld water from mature, potted Pinus edulis and subsequently applied a double-stem girdle to inhibit carbohydrate transport from the crown and roots. Within this isolated segment we then elicited a defense response by inoculating trees with a bark beetle-fungal symbiont (Ophiostoma sp.). We quantified local mono- and sesquiterpenes (MST), nonstructural carbohydrates (NSC), and pressure potential of the inner bark. Both drought-stressed and watered trees had similar NSC concentrations just before inoculation and depleted NSC similarly following inoculation, yet MST induction (i.e. increased concentration and altered composition) was constrained only in drought-stressed trees. Thus, NSC consumption was largely unrelated to de novo MST synthesis. Instead, stoichiometric calculations show that induction originated largely from stored resin. Watered trees experiencing higher pressure potentials consistently induced higher MST concentrations. We demonstrate the importance of preformed resin toward an induced MST response in a semi-arid conifer where drought-constraints on defense occurred through biophysical limitations (i.e. reduced turgor hindering resin transport) rather than through substrate limitation.
Collapse
Affiliation(s)
- Shealyn C. Malone
- Department of Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - R. Alex Thompson
- Department of Life and Environmental SciencesUniversity of California‐MercedMercedCA95343USA
| | - Pak S. Chow
- Department of Renewable ResourcesUniversity of AlbertaEdmontonABT6G 2E3Canada
| | - Celso R. de Oliveira
- Department of Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | | | - Diana L. Six
- Department of Ecosystem and Conservation SciencesUniversity of MontanaMissoulaMT59812USA
| | | | - Henry D. Adams
- School of the EnvironmentWashington State UniversityPullmanWA99164USA
| | - Amy M. Trowbridge
- Department of Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| |
Collapse
|
2
|
Lim-Hing S, Gandhi KJK, Villari C. The role of Manganese in tree defenses against pests and pathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108641. [PMID: 38663267 DOI: 10.1016/j.plaphy.2024.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Manganese (Mn) deficiency is a widespread occurrence across different landscapes, including agricultural systems and managed forests, and causes interruptions in the normal metabolic functioning of plants. The microelement is well-characterized for its role in the oxygen-evolving complex in photosystem II and maintenance of photosynthetic structures. Mn is also required for a variety of enzymatic reactions in secondary metabolism, which play a crucial role in defense strategies for trees. Despite the strong relationship between Mn availability and the biosynthesis of defense-related compounds, there are few studies addressing how Mn deficiency can impact tree defense mechanisms and the ensuing ecological patterns and processes. Understanding this relationship and highlighting the potentially deleterious effects of Mn deficiency in trees can also inform silvicultural and management decisions to build more robust forests. In this review, we address this relationship, focusing on forest trees. We describe Mn availability in forest soils, characterize the known impacts of Mn deficiency in plant susceptibility, and discuss the relationship between Mn and defense-related compounds by secondary metabolite class. In our review, we find several lines of evidence that low Mn availability is linked with lowered or altered secondary metabolite activity. Additionally, we compile documented instances where Mn limitation has altered the defense capabilities of the host plant and propose potential ecological repercussions when studies are not available. Ultimately, this review aims to highlight the importance of untangling the effects of Mn limitation on the ecophysiology of plants, with a focus on forest trees in both managed and natural stands.
Collapse
Affiliation(s)
- Simone Lim-Hing
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, 30602, Georgia, USA; Department of Plant Biology, University of Georgia, 120 Carlton Street, Athens, 30602, Georgia, USA.
| | - Kamal J K Gandhi
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, 30602, Georgia, USA
| | - Caterina Villari
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, 30602, Georgia, USA.
| |
Collapse
|
3
|
Skovmand L, O'Dea RE, Greig KA, Amato KR, Hendry AP. Effects of leaf herbivory and autumn seasonality on plant secondary metabolites: A meta-analysis. Ecol Evol 2024; 14:e10912. [PMID: 38357594 PMCID: PMC10864732 DOI: 10.1002/ece3.10912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Plant secondary metabolites (PSMs) are produced by plants to overcome environmental challenges, both biotic and abiotic. We were interested in characterizing how autumn seasonality in temperate and subtropical climates affects overall PSM production in comparison to herbivory. Herbivory is commonly measured between spring to summer when plants have high resource availability and prioritize growth and reproduction. However, autumn seasonality also challenges plants as they cope with limited resources and prepare survival for winter. This suggests a potential gap in our understanding of how herbivory affects PSM production in autumn compared to spring/summer. Using meta-analysis, we recorded overall production of 22 different PSM subgroups from 58 published papers to calculate effect sizes from herbivory studies (absence to presence) and temperate to subtropical seasonal studies (summer to autumn), while considering other variables (e.g., plant type, increase in time since herbivory, temperature, and precipitation). We also compared production of five phenolic PSM subgroups - hydroxybenzoic acids, flavan-3-ols, flavonols, hydrolysable tannins, and condensed tannins. We wanted to detect a shared response across all PSMs and found that herbivory increased overall PSM production in herbaceous plants. Herbivory was also found to have a positive effect on individual PSM subgroups, such as flavonol production, while autumn seasonality was found to have a positive effect on flavan-3-ol and condensed tannin production. We discuss how these responses might stem from plants producing some PSMs constitutively, whereas others are induced only after herbivory, and how plants produce metabolites with higher costs only during seasons when other resources for growth and reproduction are less available, while other phenolic PSM subgroups serve more than one function for plants and such functions can be season dependent. The outcome of our meta-analysis is that autumn seasonality changes some PSM production differently from herbivory, and we see value in further investigating seasonality-herbivory interactions with plant chemical defense.
Collapse
Affiliation(s)
- Lota Skovmand
- Redpath Museum & Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Rose E. O'Dea
- School of Agriculture, Food, and Ecosystem SciencesUniversity of MelbourneMelbourneVictoriaAustralia
| | - Keri A. Greig
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexasUSA
| | | | - Andrew P. Hendry
- Redpath Museum & Department of BiologyMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
4
|
Wilson SK, Pretorius T, Naidoo S. Mechanisms of systemic resistance to pathogen infection in plants and their potential application in forestry. BMC PLANT BIOLOGY 2023; 23:404. [PMID: 37620815 PMCID: PMC10463331 DOI: 10.1186/s12870-023-04391-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND The complex systemic responses of tree species to fight pathogen infection necessitate attention due to the potential for yield protection in forestry. RESULTS In this paper, both the localized and systemic responses of model plants, such as Arabidopsis and tobacco, are reviewed. These responses were compared to information available that investigates similar responses in woody plant species and their key differences were highlighted. In addition, tree-specific responses that have been documented were summarised, with the critical responses still relying on certain systemic acquired resistance pathways. Importantly, coniferous species have been shown to utilise phenolic compounds in their immune responses. Here we also highlight the lack of focus on systemic induced susceptibility in trees, which can be important to forest health. CONCLUSIONS This review highlights the possible mechanisms of systemic response to infection in woody plant species, their potential applications, and where research may be best focused in future.
Collapse
Affiliation(s)
- S K Wilson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - T Pretorius
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - S Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa.
| |
Collapse
|
5
|
Abiotic and Herbivory Combined Stress in Tomato: Additive, Synergic and Antagonistic Effects and Within-Plant Phenotypic Plasticity. Life (Basel) 2022; 12:life12111804. [DOI: 10.3390/life12111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Background: Drought, N deficiency and herbivory are considered the most important stressors caused by climate change in the agro- and eco-systems and varied in space and time shaping highly dynamic and heterogeneous stressful environments. This study aims to evaluate the tomato morpho-physiological and metabolic responses to combined abiotic and herbivory at different within-plant spatial levels and temporal scales. Methods: Leaf-level morphological, gas exchange traits and volatile organic compounds (VOCs) profiles were measured in tomato plants exposed to N deficiency and drought, Tuta absoluta larvae and their combination. Additive, synergistic or antagonistic effects of the single stress when combined were also evaluated. Morpho-physiological traits and VOCs profile were also measured on leaves located at three different positions along the shoot axes. Results: The combination of the abiotic and biotic stress has been more harmful than single stress with antagonistic and synergistic but non-additive effects for the morpho-physiological and VOCs tomato responses, respectively. Combined stress also determined a high within-plant phenotypic plasticity of the morpho-physiological responses. Conclusions: These results suggested that the combined stress in tomato determined a “new stress state” and a higher within-plant phenotypic plasticity which could permit an efficient use of the growth and defense resources in the heterogeneous and multiple stressful environmental conditions.
Collapse
|
6
|
ZHANG YF, ZHOU HY, TANG YL, LUO YM, ZHANG ZY. Hydrogen peroxide regulated salicylic acid– and jasmonic acid–dependent systemic defenses in tomato seedlings. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.54920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Ott DS, Davis TS, Mercado JE. Interspecific variation in spruce constitutive and induced defenses in response to a bark beetle-fungal symbiont provides insight into traits associated with resistance. TREE PHYSIOLOGY 2021; 41:1109-1121. [PMID: 33450761 DOI: 10.1093/treephys/tpaa170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Differences in defensive traits of tree species may predict why some conifers are susceptible to bark beetle-fungal complexes and others are not. A symbiotic fungus (Leptographium abietinum (Peck) M.J. Wingf.) associated with the tree-killing bark beetle (Dendroctonus rufipennis Kirby) is phytopathogenic to host trees and may hasten tree decline during colonization by beetles, but defense responses of mature trees to the fungus have not been experimentally examined. To test the hypothesis that interspecific variation in spruce resistance is explained by defense traits we compared constitutive (bark thickness and constitutive resin ducts) and induced defenses (resin flow, monoterpene composition, concentration, phloem lesion formation and traumatic resin ducts) between two sympatric spruces: Engelmann spruce (Picea engelmannii Parry ex Engelm.-a susceptible host) and blue spruce (Picea pungens Engelm.-a resistant host) in response to fungal inoculation. Four central findings emerged: (i) blue spruce has thicker outer bark and thinner phloem than Engelmann spruce, which may restrict fungal access to phloem and result in less beetle-available resource overall; (ii) both spruce species induce monoterpenes in response to inoculation but blue spruce has higher constitutive monoterpene levels, induces monoterpenes more rapidly, and induces higher concentrations over a period of time consistent with spruce beetle attack duration; (iii) Engelmann and blue spruce differed in the monoterpenes they upregulated in response to fungal inoculation: blue spruce upregulated α-pinene, terpinolene and γ-terpinene, but Engelmann spruce upregulated 3-carene and linalool; and (iv) blue spruce has a higher frequency of constitutive resin ducts and produces more traumatic resin ducts in annual growth increments than Engelmann spruce, though Engelmann spruce produces more resin following aseptic wounding or fungal inoculation. These findings suggest that higher constitutive resin duct densities and monoterpene concentrations, as well as the ability to rapidly induce specific monoterpenes in response to L. abietinum inoculation, are phenotypic traits associated with hosts resistant to spruce beetle colonization.
Collapse
Affiliation(s)
- Daniel S Ott
- USDA-Forest Service, Forest Health Protection, Ogden Field Office, Ogden, UT 84403, USA
| | - Thomas Seth Davis
- Forest & Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO 80523-1472, USA
| | - Javier E Mercado
- USDA-Forest Service, Rocky Mountain Research Station, Fort Collins, CO 80526-2098, USA
| |
Collapse
|
8
|
Niinemets Ü, Gershenzon J. Vulnerability and responses to bark beetle and associated fungal symbiont attacks in conifers. TREE PHYSIOLOGY 2021; 41:1103-1108. [PMID: 33949675 DOI: 10.1093/treephys/tpab064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/19/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
9
|
Modesto I, Sterck L, Arbona V, Gómez-Cadenas A, Carrasquinho I, Van de Peer Y, Miguel CM. Insights Into the Mechanisms Implicated in Pinus pinaster Resistance to Pinewood Nematode. FRONTIERS IN PLANT SCIENCE 2021; 12:690857. [PMID: 34178007 PMCID: PMC8222992 DOI: 10.3389/fpls.2021.690857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/17/2021] [Indexed: 05/27/2023]
Abstract
Pine wilt disease (PWD), caused by the plant-parasitic nematode Bursaphelenchus xylophilus, has become a severe environmental problem in the Iberian Peninsula with devastating effects in Pinus pinaster forests. Despite the high levels of this species' susceptibility, previous studies reported heritable resistance in P. pinaster trees. Understanding the basis of this resistance can be of extreme relevance for future programs aiming at reducing the disease impact on P. pinaster forests. In this study, we highlighted the mechanisms possibly involved in P. pinaster resistance to PWD, by comparing the transcriptional changes between resistant and susceptible plants after infection. Our analysis revealed a higher number of differentially expressed genes (DEGs) in resistant plants (1,916) when compared with susceptible plants (1,226). Resistance to PWN is mediated by the induction of the jasmonic acid (JA) defense pathway, secondary metabolism pathways, lignin synthesis, oxidative stress response genes, and resistance genes. Quantification of the acetyl bromide-soluble lignin confirmed a significant increase of cell wall lignification of stem tissues around the inoculation zone in resistant plants. In addition to less lignified cell walls, susceptibility to the pine wood nematode seems associated with the activation of the salicylic acid (SA) defense pathway at 72 hpi, as revealed by the higher SA levels in the tissues of susceptible plants. Cell wall reinforcement and hormone signaling mechanisms seem therefore essential for a resistance response.
Collapse
Affiliation(s)
- Inês Modesto
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia e Tecnologia Experimental, Oeiras, Portugal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, Spain
| | - Isabel Carrasquinho
- Instituto Nacional Investigaciao Agraria e Veterinaria, Oeiras, Portugal
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Célia M. Miguel
- Instituto de Biologia e Tecnologia Experimental, Oeiras, Portugal
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Senthil-Nathan S. Effects of elevated CO 2 on resistant and susceptible rice cultivar and its primary host, brown planthopper (BPH), Nilaparvata lugens (Stål). Sci Rep 2021; 11:8905. [PMID: 33903626 PMCID: PMC8076292 DOI: 10.1038/s41598-021-87992-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/07/2021] [Indexed: 11/10/2022] Open
Abstract
The elevated CO2 (eCO2) has positive response on plant growth and negative response on insect pests. As a contemplation, the feeding pattern of the brown plant hopper, Nilaparvata lugens Stål on susceptible and resistant rice cultivars and their growth rates exposed to eCO2 conditions were analyzed. The eCO2 treatment showed significant differences in percentage of emergence and rice biomass that were consistent across the rice cultivars, when compared to the ambient conditions. Similarly, increase in carbon and decrese in nitrogen ratio of leaves and alterations in defensive peroxidase enzyme levels were observed, but was non-linear among the cultivars tested. Lower survivorship and nutritional indices of N. lugens were observed in conditions of eCO2 levels over ambient conditions. Results were nonlinear in manner. We conclude that the plant carbon accumulation increased due to eCO2, causing physiological changes that decreased nitrogen content. Similarly, eCO2 increased insect feeding, and did alter other variables such as their biology or reproduction.
Collapse
Affiliation(s)
- Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tenkasi, Tamil Nadu, 627 412, India.
| |
Collapse
|
11
|
Volf M, Weinhold A, Seifert CL, Holicová T, Uthe H, Alander E, Richter R, Salminen JP, Wirth C, van Dam NM. Branch-Localized Induction Promotes Efficacy of Volatile Defences and Herbivore Predation in Trees. J Chem Ecol 2020; 47:99-111. [PMID: 33180276 DOI: 10.1007/s10886-020-01232-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 10/23/2022]
Abstract
Induction of plant defences can show various levels of localization, which can optimize their efficiency. Locally induced responses may be particularly important in large plants, such as trees, that show high variability in traits and herbivory rates across their canopies. We studied the branch-localized induction of polyphenols, volatiles (VOCs), and changes in leaf protein content in Carpinus betulus L., Quercus robur L., and Tilia cordata L. in a common garden experiment. To induce the trees, we treated ten individuals per species on one branch with methyl jasmonate. Five other individuals per species served as controls. We measured the traits in the treated branches, in control branches on treated trees, and in control trees. Additionally, we ran predation assays and caterpillar food-choice trials to assess the effects of our treatment on other trophic levels. Induced VOCs included mainly mono- and sesquiterpenes. Their production was strongly localized to the treated branches in all three tree species studied. Treated trees showed more predation events than control trees. The polyphenol levels and total protein content showed a limited response to the treatment. Yet, winter moth caterpillars preferred leaves from control branches over leaves from treated branches within C. betulus individuals and leaves from control Q. robur individuals over leaves from treated Q. robur individuals. Our results suggest that there is a significant level of localization in induction of VOCs and probably also in unknown traits with direct effects on herbivores. Such localization allows trees to upregulate defences wherever and whenever they are needed.
Collapse
Affiliation(s)
- Martin Volf
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany. .,Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.,Institute of Biodiversity, University of Jena, Dornburger Str. 159, 07743, Jena, Germany
| | - Carlo L Seifert
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Tereza Holicová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Henriette Uthe
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.,Institute of Biodiversity, University of Jena, Dornburger Str. 159, 07743, Jena, Germany
| | - Erika Alander
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20500, Turku, Finland
| | - Ronny Richter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.,Institute for Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany.,Geoinformatics and Remote Sensing, Institute for Geography, Leipzig University, Johannisallee 19a, 04103, Leipzig, Germany
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20500, Turku, Finland
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.,Institute for Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany.,Max-Planck Institute for Biogeochemistry, 07745, Jena, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.,Institute of Biodiversity, University of Jena, Dornburger Str. 159, 07743, Jena, Germany
| |
Collapse
|
12
|
Rigsby CM, Kinahan IG, May A, Kostka A, Houseman N, Savage SK, Whitney ER, Preisser EL. Impact of Hemlock Woolly Adelgid (Hemiptera: Adelgidae) Infestation on the Jasmonic Acid-Elicited Defenses of Tsuga canadensis (Pinales: Pinaceae). ENVIRONMENTAL ENTOMOLOGY 2020; 49:1226-1231. [PMID: 33068115 DOI: 10.1093/ee/nvaa104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Hemlock woolly adelgid is an invasive piercing-sucking insect in eastern North America, which upon infestation of its main host, eastern hemlock ('hemlock'), improves attraction and performance of folivorous insects on hemlock. This increased performance may be mediated by hemlock woolly adelgid feeding causing antagonism between the the jasmonic acid and other hormone pathways. In a common garden experiments using hemlock woolly adelgid infestation and induction with methyl jasmonate (MeJA) and measures of secondary metabolite contents and defense-associated enzyme activities, we explored the impact of hemlock woolly adelgid feeding on the local and systemic induction of jasmonic acid (JA)-elicited defenses. We found that in local tissue hemlock woolly adelgid or MeJA exposure resulted in unique induced phenotypes, whereas the combined treatment resulted in an induced phenotype that was a mixture of the two individual treatments. We also found that if the plant was infested with hemlock woolly adelgid, the systemic response of the plant was dominated by hemlock woolly adelgid, regardless of whether MeJA was applied. Interestingly, in the absence of hemlock woolly adelgid, hemlock plants had a very weak systemic response to MeJA. We conclude that hemlock woolly adelgid infestation prevents systemic induction of JA-elicited defenses. Taken together, compromised local JA-elicited defenses combined with weak systemic induction could be major contributors to increased folivore performance on hemlock woolly adelgid-infested hemlock.
Collapse
Affiliation(s)
- Chad M Rigsby
- Department of Biological Sciences, The University of Rhode Island, Kingston, RI
| | - Ian G Kinahan
- Department of Biological Sciences, The University of Rhode Island, Kingston, RI
| | - Amelia May
- Department of Biological Sciences, The University of Rhode Island, Kingston, RI
| | - Amy Kostka
- Department of Biological Sciences, The University of Rhode Island, Kingston, RI
| | - Nick Houseman
- Department of Biological Sciences, The University of Rhode Island, Kingston, RI
| | - Suzanne K Savage
- Department of Biological Sciences, The University of Rhode Island, Kingston, RI
| | - Elizabeth R Whitney
- Department of Biological Sciences, The University of Rhode Island, Kingston, RI
| | - Evan L Preisser
- Department of Biological Sciences, The University of Rhode Island, Kingston, RI
| |
Collapse
|
13
|
Calf OW, Lortzing T, Weinhold A, Poeschl Y, Peters JL, Huber H, Steppuhn A, van Dam NM. Slug Feeding Triggers Dynamic Metabolomic and Transcriptomic Responses Leading to Induced Resistance in Solanum dulcamara. FRONTIERS IN PLANT SCIENCE 2020; 11:803. [PMID: 32625224 PMCID: PMC7314995 DOI: 10.3389/fpls.2020.00803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/19/2020] [Indexed: 05/22/2023]
Abstract
Induced plant responses to insect herbivores are well studied, but we know very little about responses to gastropod feeding. We aim to identify the temporal dynamics of signaling- and defense-related plant responses after slug feeding in relation to induced resistance. We exposed Solanum dulcamara plants to feeding by the gray field slug (GFS; Deroceras reticulatum) for different periods and tested disks of local and systemic leaves in preference assays. Induced responses were analyzed using metabolomics and transcriptomics. GFS feeding induced local and systemic responses. Slug feeding for 72 h more strongly affected the plant metabolome than 24 h feeding. It increased the levels of a glycoalkaloid (solasonine), phenolamides, anthocyanins, and trypsin protease inhibitors as well as polyphenol oxidase activity. Phytohormone and transcriptome analyses revealed that jasmonic acid, abscisic acid and salicylic acid signaling were activated. GFS feeding upregulated more genes than that it downregulated. The response directly after feeding was more than five times higher than after an additional 24 h without feeding. Our research showed that GFS, like most chewing insects, triggers anti-herbivore defenses by activating defense signaling pathways, resulting in increased resistance to further slug feeding. Slug herbivory may therefore impact other herbivores in the community.
Collapse
Affiliation(s)
- Onno W. Calf
- Department of Molecular Interaction Ecology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Tobias Lortzing
- Department of Molecular Ecology, Institute of Biology, Free University of Berlin, Berlin, Germany
- Department of Molecular Botany, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller University of Jena, Jena, Germany
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Janny L. Peters
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Heidrun Huber
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Anke Steppuhn
- Department of Molecular Ecology, Institute of Biology, Free University of Berlin, Berlin, Germany
- Department of Molecular Botany, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Nicole M. van Dam
- Department of Molecular Interaction Ecology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller University of Jena, Jena, Germany
| |
Collapse
|
14
|
Howe M, Mason CJ, Gratton C, Keefover‐Ring K, Wallin K, Yanchuk A, Zhu J, Raffa KF. Relationships between conifer constitutive and inducible defenses against bark beetles change across levels of biological and ecological scale. OIKOS 2020. [DOI: 10.1111/oik.07242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Michael Howe
- Dept of Entomology, Univ. of Wisconsin‐Madison Madison WI 53706 USA
| | - Charles J. Mason
- Dept of Entomology, Pennsylvania State Univ., University Park PA USA
| | - Claudio Gratton
- Dept of Entomology, Univ. of Wisconsin‐Madison Madison WI 53706 USA
| | - Ken Keefover‐Ring
- Depts of Botany and Geography, Univ. of Wisconsin‐Madison Madison WI USA
| | - Kimberly Wallin
- College of Science and Mathematics, North Dakota State Univ. Fargo ND USA
| | - Alvin Yanchuk
- Ministry of Forests, Lands, Natural Resource Operations & Rural Development, Government of British Columbia Victoria BC Canada
| | - Jun Zhu
- Dept of Statistics, Univ. of Wisconsin‐Madison Madison WI USA
| | - Kenneth F. Raffa
- Dept of Entomology, Univ. of Wisconsin‐Madison Madison WI 53706 USA
| |
Collapse
|
15
|
López-Goldar X, Lundborg L, Borg-Karlson AK, Zas R, Sampedro L. Resin acids as inducible chemical defences of pine seedlings against chewing insects. PLoS One 2020; 15:e0232692. [PMID: 32357193 PMCID: PMC7194405 DOI: 10.1371/journal.pone.0232692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/19/2020] [Indexed: 11/23/2022] Open
Abstract
Inducibility of defences in response to biotic stimuli is considered an important trait in plant resistance. In conifers, previous research has mostly focused on the inducibility of the volatile fraction of the oleoresin (mono- and sesquiterpenes), leaving the inducibility of the non-volatile resin acids largely unexplored, particularly in response to real herbivory. Here we investigated the differences in the inducibility of resin acids in two pine species, one native from Europe (Pinus pinaster Ait.) and another from North America (Pinus radiata D. Don), in response to wounding by two European insects: a bark chewer, the pine weevil (Hylobius abietis L.), and a defoliator, the pine processionary caterpillar (Thaumetopoea pityocampa Schiff.). We quantified the constitutive (control) and induced concentrations of resin acids in the stem and needles of both pine species by gas chromatography techniques. Both pine species strongly increased the concentration of resin acids in the stem after pine weevil feeding, although the response was greater in P. pinaster than in P. radiata. However, systemic defensive responses in the needles were negligible in both pine species after pine weevil feeding in the stem. On the other hand, P. radiata locally reduced the resin acid concentration in the needles after pine caterpillar feeding, whereas in P. pinaster resin acid concentration was apparently unaffected. Nevertheless, systemic induction of resin acids was only observed in the stem of P. pinaster in response to pine caterpillar feeding. In summary, pine induced responses were found highly compartmentalized, and specific to herbivore identity. Particularly, plant defence suppression mechanisms by the pine caterpillar, and ontogenetic factors might be potentially affecting the induced response of resin acids in both pine species.
Collapse
Affiliation(s)
- Xosé López-Goldar
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - Lina Lundborg
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Anna Karin Borg-Karlson
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Rafael Zas
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - Luis Sampedro
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| |
Collapse
|
16
|
Mason CJ, Keefover-Ring K, Villari C, Klutsch JG, Cook S, Bonello P, Erbilgin N, Raffa KF, Townsend PA. Anatomical defences against bark beetles relate to degree of historical exposure between species and are allocated independently of chemical defences within trees. PLANT, CELL & ENVIRONMENT 2019; 42:633-646. [PMID: 30474119 DOI: 10.1111/pce.13449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 06/09/2023]
Abstract
Conifers possess chemical and anatomical defences against tree-killing bark beetles that feed in their phloem. Resins accumulating at attack sites can delay and entomb beetles while toxins reach lethal levels. Trees with high concentrations of metabolites active against bark beetle-microbial complexes, and more extensive resin ducts, achieve greater survival. It is unknown if and how conifers integrate chemical and anatomical components of defence or how these capabilities vary with historical exposure. We compared linkages between phloem chemistry and tree ring anatomy of two mountain pine beetle hosts. Lodgepole pine, a mid-elevation species, has had extensive, continual contact with this herbivore, whereas high-elevation whitebark pines have historically had intermittent exposure that is increasing with warming climate. Lodgepole pine had more and larger resin ducts. In both species, anatomical defences were positively related to tree growth and nutrients. Within-tree constitutive and induced concentrations of compounds bioactive against bark beetles and symbionts were largely unrelated to resin duct abundance and size. Fewer anatomical defences in the semi-naïve compared with the continually exposed host concurs with directional differences in chemical defences. Partially uncoupling chemical and morphological antiherbivore traits may enable trees to confront beetles with more diverse defence permutations that interact to resist attack.
Collapse
Affiliation(s)
- Charles J Mason
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, Madison, Wisconsin
| | - Caterina Villari
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio
| | - Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen Cook
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Kenneth F Raffa
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Philip A Townsend
- Departments of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
17
|
Eudesmane-type sesquiterpene diols directly synthesized by a sesquiterpene cyclase in Tripterygium wilfordii. Biochem J 2018; 475:2713-2725. [DOI: 10.1042/bcj20180353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022]
Abstract
Cryptomeridiol, a typical eudesmane diol, is the active principle component of the antispasmodic Proximol. Although it has been used for many years, the biosynthesis pathway of cryptomeridiol has remained blur. Among terpenoid natural products, terpenoid cyclases are responsible for cyclization and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (E,E)-farnesyl pyrophosphate (FPP) to unexpected eudesmane diols, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae. The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane diols from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol showed a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol was reconstructed in S. cerevisiae. Optimized assays including modular pathway engineering and the CRISPR–cas9 system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae. The best engineered strain TE9 (BY4741 erg9::Δ-200-176 rox1::mut/pYX212-IDI + TwCS/p424-tHMG1) ultimately produced 19.73 mg/l cryptomeridiol in a shake flask culture.
Collapse
|
18
|
Howe M, Keefover-Ring K, Raffa KF. Pine Engravers Carry Bacterial Communities Whose Members Reduce Concentrations of Host Monoterpenes With Variable Degrees of Redundancy, Specificity, and Capability. ENVIRONMENTAL ENTOMOLOGY 2018; 47:638-645. [PMID: 29566143 DOI: 10.1093/ee/nvy032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bark beetles are eruptive forest insects that have the potential to cause landscape level mortality to conifer forests. The pine engraver, Ips pini (Say) (Coleoptera: Curculionidae), is the predominant pest of mature red pine (Pinus resinosa Aiton) plantations throughout the Great Lakes region of North America. Pine engraver attack elicits a localized response by host trees in which concentrations of terpenes rapidly exceed the tolerance levels of beetles and their fungal associates. We considered how bacterial associates degrade these toxins from the perspective of the symbiont communities of individual beetles. We demonstrate that 1) most pine engravers harbor bacterial communities that reduce monoterpene concentrations in vivo; 2) several individual bacterial isolates can reduce monoterpenes even at high concentrations; and 3) bacteria isolated from pine engravers are similar to those found in other bark beetles. Bacteria isolated from pine engravers decreased concentrations of (-)-α-pinene, myrcene, and 3-carene. Most beetles carried at least one bacterial isolate that reduced concentrations of at least one monoterpene. Different bacteria vary in the uppermost concentrations at which they can degrade monoterpenes. The community of bacteria associated with an individual beetle appears to have some manner of functional redundancy that could collectively increase the likelihood of successful host colonization.
Collapse
Affiliation(s)
- Michael Howe
- Department of Entomology, University of Wisconsin-Madison, Madison, WI
| | - Ken Keefover-Ring
- Department of Botany, University of Wisconsin-Madison, Madison, WI
- Department of Geography, University of Wisconsin-Madison, Madison, WI
| | - Kenneth F Raffa
- Department of Entomology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|