1
|
Piross IS, Lecheval V, Powell S, Donaldson-Matasci MC, Robinson EJH. Strong and weak environmental perturbations cause contrasting restructure of ant transportation networks. Proc Biol Sci 2025; 292:20242342. [PMID: 40199354 PMCID: PMC11978439 DOI: 10.1098/rspb.2024.2342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 02/28/2025] [Indexed: 04/10/2025] Open
Abstract
Dynamic transportation networks are embedded in all levels of biological organization. Ever-growing anthropogenic disturbances and an increasingly variable climate highlight the importance of understanding how these networks restructure under environmental perturbations. Polydomous wood ants provide a convenient model system to study the resilience of self-organizing multi-source, multi-sink transportation networks. We used 10 years of longitudinal empirical data on both unperturbed and experimentally manipulated colony networks to develop and validate a comprehensive dynamic simulation model to study network restructuring after resource removal. We performed simulation experiments to study the effects of excluding food sources with varying importance, either temporarily or permanently, imitating pulse and press perturbations of the networks. We found that removing heavily used resources, corresponding to a strong targeted perturbation, persistently decreased network efficiency, unlike random or weak perturbations. We also found that strong perturbations had excessively adverse effects on robustness and function, reducing the networks' ability to withstand potential future perturbations. When transportation networks develop around the efficient use of a few key resources, they may be unable to quickly recover from the loss of these through self-organized restructuring. Our findings highlight the importance of considering the interaction of perturbation strength and network structure in studying transportation network dynamics.
Collapse
Affiliation(s)
- Imre Sándor Piross
- Department of Biology, University of York, York, UK
- HUN-REN Centre for Ecological Research, Institute of Ecology and Botany, Budapest, Hungary
| | - Valentin Lecheval
- Department of Biology, Faculty of Life Sciences, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Scott Powell
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | | | | |
Collapse
|
2
|
Gandra LC, Turchen LM, Amaral KD, Guedes RNC, Della Lucia TMC. Harmony under threat: does resource-mediated stress affect the (caste-based) social network of leaf-cutting ant colonies? PEST MANAGEMENT SCIENCE 2024; 80:6159-6166. [PMID: 39082239 DOI: 10.1002/ps.8343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 11/09/2024]
Abstract
BACKGROUND Managing pest species of eusocial insects, such as leaf-cutting ants, poses significant challenges. Controlling them requires understanding of how toxic plant substrates and ant baits are recognized by foragers, transported to the nest, shared among workers and managed by gardeners cultivating the symbiont fungus garden. Despite this, little is known about how unsuitable resources might impact social interactions within ant colonies. This study aims to investigate whether the provision of a suitable substrate (copperleaf) and a toxic substrate (nasturtium leaves) affects the social network dynamics within colonies of two leaf-cutting ant species: Acromyrmex molestans and Acromyrmex subterraneus. The interactions between castes were recorded and subjected to social network analyses. RESULTS Initial foraging duration increased for A. subterraneus provided with copperleaf, although no difference was observed for the other species and resource combinations. The social network structure was similar for both species when copperleaf leaves were provided as a substrate. However, notable alterations occurred with nasturtium leaf provision, leading to higher integration of gardeners in interactions and noticeable changes in the generalist worker network centrality, particularly in A. subterraneus. DISCUSSION The observed changes in social interactions, particularly in A. subterraneus, suggest that increasing gardener interactions with other castes expedites the movement of the substrate within the colony. This maximizes the potential toxic effect on the colony. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lailla C Gandra
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Leonardo M Turchen
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
- Department of Biology, Calerton University, Ottawa, Canada
| | - Karina D Amaral
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | |
Collapse
|
3
|
Hartman S, Ryan SD, Karamched BR. Walk this way: modeling foraging ant dynamics in multiple food source environments. J Math Biol 2024; 89:41. [PMID: 39266783 PMCID: PMC11392994 DOI: 10.1007/s00285-024-02136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/14/2024] [Accepted: 08/08/2024] [Indexed: 09/14/2024]
Abstract
Foraging for resources is an essential process for the daily life of an ant colony. What makes this process so fascinating is the self-organization of ants into trails using chemical pheromone in the absence of direct communication. Here we present a stochastic lattice model that captures essential features of foraging ant dynamics inspired by recent agent-based models while forgoing more detailed interactions that may not be essential to trail formation. Nevertheless, our model's results coincide with those presented in more sophisticated theoretical models and experiments. Furthermore, it captures the phenomenon of multiple trail formation in environments with multiple food sources. This latter phenomenon is not described well by other more detailed models. We complement the stochastic lattice model by describing a macroscopic PDE which captures the basic structure of lattice model. The PDE provides a continuum framework for the first-principle interactions described in the stochastic lattice model and is amenable to analysis. Linear stability analysis of this PDE facilitates a computational study of the impact various parameters impart on trail formation. We also highlight universal features of the modeling framework that may allow this simple formation to be used to study complex systems beyond ants.
Collapse
Affiliation(s)
- Sean Hartman
- College of Music, Florida State University, Tallahassee, FL, 32306, USA
- Department of Mathematics, Florida State University, Tallahassee, FL, 32306, USA
| | - Shawn D Ryan
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH, 44115, USA.
- Center for Applied Data Analysis and Modeling, Cleveland State University, Cleveland, 44115, OH, USA.
| | - Bhargav R Karamched
- Department of Mathematics, Florida State University, Tallahassee, FL, 32306, USA.
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA.
- Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
4
|
Rodrigues AMM, Barker JL, Robinson EJH. The evolution of intergroup cooperation. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220074. [PMID: 36802776 PMCID: PMC9939261 DOI: 10.1098/rstb.2022.0074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
Sociality is widespread among animals, and involves complex relationships within and between social groups. While intragroup interactions are often cooperative, intergroup interactions typically involve conflict, or at best tolerance. Active cooperation between members of distinct, separate groups occurs very rarely, predominantly in some primate and ant species. Here, we ask why intergroup cooperation is so rare, and what conditions favour its evolution. We present a model incorporating intra- and intergroup relationships and local and long-distance dispersal. We show that dispersal modes play a pivotal role in the evolution of intergroup interactions. Both long-distance and local dispersal processes drive population social structure, and the costs and benefits of intergroup conflict, tolerance and cooperation. Overall, the evolution of multi-group interaction patterns, including both intergroup aggression and intergroup tolerance, or even altruism, is more likely with mostly localized dispersal. However, the evolution of these intergroup relationships may have significant ecological impacts, and this feedback may alter the ecological conditions that favour its own evolution. These results show that the evolution of intergroup cooperation is favoured by a specific set of conditions, and may not be evolutionarily stable. We discuss how our results relate to empirical evidence of intergroup cooperation in ants and primates. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- António M. M. Rodrigues
- School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK,Schools of Medicine and Engineering, Stanford University, Stanford, CA 94305, USA,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Jessica L. Barker
- Surgo Ventures, Washington, DC 20036, USA,Interacting Minds Centre, Aarhus University, 8000 Aarhus, Denmark,Division of Population Health Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | | |
Collapse
|
5
|
Gibb H, Bishop TR, Leahy L, Parr CL, Lessard J, Sanders NJ, Shik JZ, Ibarra‐Isassi J, Narendra A, Dunn RR, Wright IJ. Ecological strategies of (pl)ants: Towards a world-wide worker economic spectrum for ants. Funct Ecol 2023; 37:13-25. [PMID: 37056633 PMCID: PMC10084388 DOI: 10.1111/1365-2435.14135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
Current global challenges call for a rigorously predictive ecology. Our understanding of ecological strategies, imputed through suites of measurable functional traits, comes from decades of work that largely focussed on plants. However, a key question is whether plant ecological strategies resemble those of other organisms.Among animals, ants have long been recognised to possess similarities with plants: as (largely) central place foragers. For example, individual ant workers play similar foraging roles to plant leaves and roots and are similarly expendable. Frameworks that aim to understand plant ecological strategies through key functional traits, such as the 'leaf economics spectrum', offer the potential for significant parallels with ant ecological strategies.Here, we explore these parallels across several proposed ecological strategy dimensions, including an 'economic spectrum', propagule size-number trade-offs, apparency-defence trade-offs, resource acquisition trade-offs and stress-tolerance trade-offs. We also highlight where ecological strategies may differ between plants and ants. Furthermore, we consider how these strategies play out among the different modules of eusocial organisms, where selective forces act on the worker and reproductive castes, as well as the colony.Finally, we suggest future directions for ecological strategy research, including highlighting the availability of data and traits that may be more difficult to measure, but should receive more attention in future to better understand the ecological strategies of ants. The unique biology of eusocial organisms provides an unrivalled opportunity to bridge the gap in our understanding of ecological strategies in plants and animals and we hope that this perspective will ignite further interest. Read the free Plain Language Summary for this article on the Journal blog.
Collapse
Affiliation(s)
- Heloise Gibb
- Department of Environment and Genetics and Centre for Future LandscapesLa Trobe UniversityBundooraVic.Australia
| | - Tom R. Bishop
- School of BiosciencesCardiff UniversityCardiffUK
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
| | - Lily Leahy
- Department of Environment and Genetics and Centre for Future LandscapesLa Trobe UniversityBundooraVic.Australia
| | - Catherine L. Parr
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
- Department of Earth, Ocean and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| | | | - Nathan J. Sanders
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMIUSA
| | - Jonathan Z. Shik
- Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | | | - Ajay Narendra
- Department of Biological SciencesMacquarie UniversityNSWAustralia
| | - Robert R. Dunn
- Department of Applied EcologyNorth Carolina State UniversityRaleighNCUSA
| | - Ian J. Wright
- Department of Biological SciencesMacquarie UniversityNSWAustralia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| |
Collapse
|
6
|
Rodrigues AMM, Barker JL, Robinson EJH. From inter-group conflict to inter-group cooperation: insights from social insects. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210466. [PMID: 35369743 PMCID: PMC8977659 DOI: 10.1098/rstb.2021.0466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/22/2022] [Indexed: 01/18/2023] Open
Abstract
The conflict between social groups is widespread, often imposing significant costs across multiple groups. The social insects make an ideal system for investigating inter-group relationships, because their interaction types span the full harming-helping continuum, from aggressive conflict, to mutual tolerance, to cooperation between spatially separate groups. Here we review inter-group conflict in the social insects and the various means by which they reduce the costs of conflict, including individual or colony-level avoidance, ritualistic behaviours and even group fusion. At the opposite extreme of the harming-helping continuum, social insect groups may peacefully exchange resources and thus cooperate between groups in a manner rare outside human societies. We discuss the role of population viscosity in favouring inter-group cooperation. We present a model encompassing intra- and inter-group interactions, and local and long-distance dispersal. We show that in this multi-level population structure, the increased likelihood of cooperative partners being kin is balanced by increased kin competition, such that neither cooperation (helping) nor conflict (harming) is favoured. This model provides a baseline context in which other intra- and inter-group processes act, tipping the balance toward or away from conflict. We discuss future directions for research into the ecological factors shaping the evolution of inter-group interactions. This article is part of the theme issue 'Intergroup conflict across taxa'.
Collapse
Affiliation(s)
| | - Jessica L. Barker
- Interacting Minds Centre, Aarhus University, Aarhus, 8000 Aarhus, Denmark
- Department of Population Health Sciences, University of Alaska, Anchorage, AK 99503, USA
| | | |
Collapse
|
7
|
Costello RA, Cook PA, Formica VA, Brodie ED. Group and individual social network metrics are robust to changes in resource distribution in experimental populations of forked fungus beetles. J Anim Ecol 2022; 91:895-907. [PMID: 35220593 PMCID: PMC9313900 DOI: 10.1111/1365-2656.13684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 11/18/2022]
Abstract
Social interactions drive many important ecological and evolutionary processes. It is therefore essential to understand the intrinsic and extrinsic factors that underlie social patterns. A central tenet of the field of behavioural ecology is the expectation that the distribution of resources shapes patterns of social interactions. We combined experimental manipulations with social network analyses to ask how patterns of resource distribution influence complex social interactions. We experimentally manipulated the distribution of an essential food and reproductive resource in semi‐natural populations of forked fungus beetles Bolitotherus cornutus. We aggregated resources into discrete clumps in half of the populations and evenly dispersed resources in the other half. We then observed social interactions between individually marked beetles. Half‐way through the experiment, we reversed the resource distribution in each population, allowing us to control any demographic or behavioural differences between our experimental populations. At the end of the experiment, we compared individual and group social network characteristics between the two resource distribution treatments. We found a statistically significant but quantitatively small effect of resource distribution on individual social network position and detected no effect on group social network structure. Individual connectivity (individual strength) and individual cliquishness (local clustering coefficient) increased in environments with clumped resources, but this difference explained very little of the variance in individual social network position. Individual centrality (individual betweenness) and measures of overall social structure (network density, average shortest path length and global clustering coefficient) did not differ between environments with dramatically different distributions of resources. Our results illustrate that the resource environment, despite being fundamental to our understanding of social systems, does not always play a central role in shaping social interactions. Instead, our results suggest that sex differences and temporally fluctuating environmental conditions may be more important in determining patterns of social interactions.
Collapse
Affiliation(s)
| | - Phoebe A. Cook
- Department of Biology University of Virginia Charlottesville VA USA
| | | | - Edmund D. Brodie
- Department of Biology University of Virginia Charlottesville VA USA
| |
Collapse
|
8
|
Intraspecific Relationships and Nest Mound Shape Are Affected by Habitat Features in Introduced Populations of the Red Wood Ant Formica paralugubris. INSECTS 2022; 13:insects13020198. [PMID: 35206771 PMCID: PMC8875456 DOI: 10.3390/insects13020198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023]
Abstract
Simple Summary Red wood ants (Formica rufa goup) are dominant ant species widespread in the Eurasian continent. These species have a strong ecological impact on the habitats they dwell in, being top-ranked predators. One of the most striking features of these ants is represented by the large nest mounds they build. In this study, we investigated how nest mound shape and colony organization of imported populations of Formica paralugubris varied in three different habitat types. We found that nest mounds differed in size, number and shape in the three habitats. In all the three sites, nests were connected by trails of workers, but the size of these nest-networks differed. We also investigated the pattern of intraspecific aggression among ants from different nests, and we showed that aggressiveness was higher within each population than between separate populations, a finding in line with a ‘nasty neighbor’ behavior. Abstract Ants belonging to the Formica rufa group build large nest mounds, which aid their survival during severe winters. We investigated whether different environmental features of the habitats affected the nest mound shape and the population structure. We assessed the shape of all the nest mounds and mapped inter-nest trails connecting mounds for three imported populations of Formica paralugubris in three forest habitats: fir-dominated, beech-dominated, and a mixture of fir and beech. Single-nest mounds were averagely smaller and flatter in the beech-dominated forest, probably because of lighter building materials. Nonetheless, by summing the volumes of all interconnected nests, the size was similar among all three sites. In fir- and beech-dominated forests, large nests were also central in the networks, suggesting a central place foraging model with these nests as reference. We finally performed aggression tests, and found that aggressiveness was significantly higher among nests belonging to the same population than between populations. The results highlight the plasticity of the species to adapt nest and colony structure to different environments. Additionally, it appears that none of these populations is unicolonial, as observed in various alpine sites, there and the observed patterns of aggression are coherent with the ‘nasty neighbor’ effect.
Collapse
|
9
|
Padje AV', van de Peppel LJJ, Aanen DK. Evolution: Ant trail pheromones promote ant-aphid mutualisms. Curr Biol 2021; 31:R1437-R1439. [PMID: 34752771 DOI: 10.1016/j.cub.2021.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A new study shows that trail pheromones produced by an invasive ant species suppress the dispersal and stimulate the reproduction of cotton aphids that the ants can 'milk' for honeydew. Aphids use these pheromones as a signal of ant presence and respond adaptively, analogous to early stages of animal husbandry where animals were attracted to human settlements.
Collapse
Affiliation(s)
- Anouk van 't Padje
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands.
| | - Lennart J J van de Peppel
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Duur K Aanen
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
10
|
No coordination required for resources allocation during colony fission in a social insect? An individual-based model reproduces empirical patterns. Anim Cogn 2021; 25:463-472. [PMID: 34664156 DOI: 10.1007/s10071-021-01561-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Social insects are classic examples of cooperation and coordination. For instance, laboratory studies of colony relocation, or house-hunting, have investigated how workers coordinate their efforts to swiftly move the colony to the best nesting site available while preserving colony integrity, i.e. avoiding a split. However, several studies have shown that, in some other contexts, individuals may use private rather than social information and may act solitarily rather than in a coordinated way. Here, we study resource allocation by a mature ant colony when it reproduces by fissioning into several colonies. This is a very different task than house hunting in that colony fission seeks the split of the colony. We develop a simple individual-based model to test if colony fission and resource allocation may be carried out by workers acting solitarily with no coordination. Our model reproduces well the pattern of allocation observed in nature (number and size of new colonies). This does not show that workers do not communicate nor coordinate. Rather, it suggests that independent decision making may be an important component of the process of resource allocation.
Collapse
|
11
|
Parmentier T, Claus R, De Laender F, Bonte D. Moving apart together: co-movement of a symbiont community and their ant host, and its importance for community assembly. MOVEMENT ECOLOGY 2021; 9:25. [PMID: 34020716 PMCID: PMC8140472 DOI: 10.1186/s40462-021-00259-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Species interactions may affect spatial dynamics when the movement of one species is determined by the presence of another one. The most direct species-dependence of dispersal is vectored, usually cross-kingdom, movement of immobile parasites, diseases or seeds by mobile animals. Joint movements of species should, however, not be vectored by definition, as even mobile species are predicted to move together when they are tightly connected in symbiont communities. METHODS We studied concerted movements in a diverse and heterogeneous community of arthropods (myrmecophiles) associated with red wood ants. We questioned whether joint-movement strategies eventually determine and speed-up community succession. RESULTS We recorded an astonishingly high number of obligate myrmecophiles outside red wood ant nests. They preferentially co-moved with the host ants as the highest densities were found in locations with the highest density of foraging red wood ants, such as along the network of ant trails. These observations suggest that myrmecophiles resort to the host to move away from the nest, and this to a much higher extent than hitherto anticipated. Interestingly, functional groups of symbionts displayed different dispersal kernels, with predatory myrmecophiles moving more frequently and further from the nest than detritivorous myrmecophiles. We discovered that myrmecophile diversity was lower in newly founded nests than in mature red wood ant nests. Most myrmecophiles, however, were able to colonize new nests fast suggesting that the heterogeneity in mobility does not affect community assembly. CONCLUSIONS We show that co-movement is not restricted to tight parasitic, or cross-kingdom interactions. Movement in social insect symbiont communities may be heterogeneous and functional group-dependent, but clearly affected by host movement. Ultimately, this co-movement leads to directional movement and allows a fast colonisation of new patches, but not in a predictable way. This study highlights the importance of spatial dynamics of local and regional networks in symbiont metacommunities, of which those of symbionts of social insects are prime examples.
Collapse
Affiliation(s)
- T Parmentier
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium.
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| | - R Claus
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - F De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - D Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| |
Collapse
|
12
|
Chang J, Powell S, Robinson EJH, Donaldson-Matasci MC. Nest choice in arboreal ants is an emergent consequence of network creation under spatial constraints. SWARM INTELLIGENCE 2021. [DOI: 10.1007/s11721-021-00187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractBiological transportation networks must balance competing functional priorities. The self-organizing mechanisms used to generate such networks have inspired scalable algorithms to construct and maintain low-cost and efficient human-designed transport networks. The pheromone-based trail networks of ants have been especially valuable in this regard. Here, we use turtle ants as our focal system: In contrast to the ant species usually used as models for self-organized networks, these ants live in a spatially constrained arboreal environment where both nesting options and connecting pathways are limited. Thus, they must solve a distinct set of challenges which resemble those faced by human transport engineers constrained by existing infrastructure. Here, we ask how a turtle ant colony’s choice of which nests to include in a network may be influenced by their potential to create connections to other nests. In laboratory experiments with Cephalotes varians and Cephalotes texanus, we show that nest choice is influenced by spatial constraints, but in unexpected ways. Under one spatial configuration, colonies preferentially occupied more connected nest sites; however, under another spatial configuration, this preference disappeared. Comparing the results of these experiments to an agent-based model, we demonstrate that this apparently idiosyncratic relationship between nest connectivity and nest choice can emerge without nest preferences via a combination of self-reinforcing random movement along constrained pathways and density-dependent aggregation at nests. While this mechanism does not consistently lead to the de-novo construction of low-cost, efficient transport networks, it may be an effective way to expand a network, when coupled with processes of pruning and restructuring.
Collapse
|
13
|
Sosa S, Jacoby DMP, Lihoreau M, Sueur C. Animal social networks: Towards an integrative framework embedding social interactions, space and time. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Sosa
- IPHC UMR 7178 CNRS Université de Strasbourg Strasbourg France
| | | | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA) Center for Integrative Biology (CBI) CNRS University Paul Sabatier – Toulouse III Toulouse France
| | - Cédric Sueur
- IPHC UMR 7178 CNRS Université de Strasbourg Strasbourg France
- Institut Universitaire de France Paris France
| |
Collapse
|