1
|
Philson CS, Martin JGA, Blumstein DT. Multilevel selection on individual and group social behaviour in the wild. Proc Biol Sci 2025; 292:20243061. [PMID: 40101765 PMCID: PMC11919500 DOI: 10.1098/rspb.2024.3061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
How phenotypes are shaped by multilevel selection-the theoretical framework proposing natural selection occurs at more than one level of biological organization-is a classic debate in biology. Though social behaviours are a common theoretical example for multilevel selection, it is unknown if and how multilevel selection acts on sociality in the wild. We studied the relative strength of multilevel selection on both individual behaviour and group social structure, quantified with social networks and 19 years of data from a wild, free-living mammal, the yellow-bellied marmot (Marmota flaviventer). Contextual analysis (exploring the impact of individual and group social phenotypes on individual fitness, relative to each other) revealed multilevel selection gradients in specific fitness and life history contexts, with selection for group social structure being just as strong, if not stronger, than individual social behaviour. We also found antagonistic multilevel selection gradients within and between levels, potentially explaining why increased sociality is not as beneficial or heritable in this system compared with other social taxa. Thus, the evolutionary dynamics of hierarchical or nested biological traits should be assessed at multiple levels simultaneously to tell a more accurate and comprehensive story. Overall, we provide empirical evidence suggesting that multilevel selection acts on social relationships and structures in the wild and provide direct evidence for a classic, unanswered question in biology.
Collapse
Affiliation(s)
- Conner S Philson
- Department of Ecology & Evolutionary Biology, UCLA, Los Angeles, CA 90095, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Natural Reserve System, UCSB, Santa Barbara, CA 93106, USA
| | - Julien G A Martin
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 9A4, Canada
| | - Daniel T Blumstein
- Department of Ecology & Evolutionary Biology, UCLA, Los Angeles, CA 90095, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| |
Collapse
|
2
|
Cook PA, Costello RA, Brodie III ED, Formica V. Population age structure shapes selection on social behaviour in a long-lived insect. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230331. [PMID: 39463252 PMCID: PMC11513641 DOI: 10.1098/rstb.2023.0331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 10/29/2024] Open
Abstract
Social traits are expected to experience highly context-dependent selection, but we know little about the contextual factors that shape selection on social behaviours. We hypothesized that the fitness consequences of social interactions will depend on the age of social partners, and therefore that population age structure will shape evolutionary pressures on sociality. Here, we investigate the consequences of age variation at multiple levels of social organization for both individual fitness and sexual selection on social network traits. We experimentally manipulated the age composition of populations of the forked fungus beetle Bolitotherus cornutus, creating 12 replicate populations with either young or old age structures. We found that fitness is associated with variance in age at three different levels of organization: the individual, interacting social partners, and the population. Older individuals have higher reproductive success, males pay a fitness cost when they interact with old males and females achieve lower fitness in older populations. In addition to influencing fitness, population age structure also altered the selection acting on social network position in females. Female sociality is under positive selection only in old populations. Our results highlight age structure as an understudied demographic variable shaping the landscape of selection on social behaviour.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Phoebe A. Cook
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Mountain Lake Biological Station, University of Virginia, Pembroke, VA, USA
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Robin A. Costello
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Mountain Lake Biological Station, University of Virginia, Pembroke, VA, USA
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Edmund D. Brodie III
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Mountain Lake Biological Station, University of Virginia, Pembroke, VA, USA
| | - Vincent Formica
- Mountain Lake Biological Station, University of Virginia, Pembroke, VA, USA
- Biology Department, Swarthmore College, Swarthmore, PA, USA
| |
Collapse
|
3
|
Marina H, Ren K, Hansson I, Fikse F, Nielsen PP, Rönnegård L. New insight into social relationships in dairy cows and how time of birth, parity, and relatedness affect spatial interactions later in life. J Dairy Sci 2024; 107:1110-1123. [PMID: 37709047 DOI: 10.3168/jds.2023-23483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
Social interactions between cows play a fundamental role in the daily activities of dairy cattle. Real-time location systems provide on a continuous and automated basis information about the position of individual cows inside barns, offering a valuable opportunity to monitor dyadic social contacts. Understanding dyadic social interactions could be applied to enhance the stability of the social structure promoting animal welfare and to model disease transmission in dairy cattle. This study aimed to identify the effect of different cow characteristics on the likelihood of the formation and persistence of social contacts in dairy cattle. The individual position of the lactating cows was automatically collected once per second for 2 wk, using an ultra-wideband system on a Swedish commercial farm consisting of almost 200 dairy cows inside a freestall barn. Social networks were constructed using the position data of 149 cows with available information on all characteristics during the study period. Social contacts were considered as a binary variable indicating whether a cow pair was within 2.5 m of each other for at least 10 min per day. The role of cow characteristics in social networks was studied by applying separable temporal exponential random graph models. Our results revealed that cows of the same parity interacted more consistently, as well as those born within 7 d of each other or closely related by pedigree. The repeatability of the topological parameters indicated a consistent short-term stability of the individual animal roles within the social network structure. Additional research is required to elucidate the underlying mechanisms governing the long-term evolution of social contacts among dairy cattle and to investigate the relationship between these networks and the transmission of diseases in the dairy cattle population.
Collapse
Affiliation(s)
- H Marina
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, SE-750 07 Uppsala, Sweden.
| | - K Ren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, SE-750 07 Uppsala, Sweden
| | - I Hansson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, SE-750 07 Uppsala, Sweden
| | - F Fikse
- Växa, Swedish University of Agricultural Sciences, Ulls väg 26, SE-756 51 Uppsala, Sweden
| | - P P Nielsen
- RISE Research Institute of Sweden, Division of Bioeconomy and Health, Department of Agriculture and Food, RISE Ideon, SE-223 70 Lund, Sweden
| | - L Rönnegård
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, SE-750 07 Uppsala, Sweden; School of Technology and Business Studies, Dalarna University, SE-791 88 Falun, Sweden; The Beijer Laboratory for Animal Science, Swedish University of Agricultural Sciences, Box 7024, SE-750 07 Uppsala, Sweden
| |
Collapse
|
4
|
Cook PA, Costello RA, Formica VA, Brodie ED. Individual and Population Age Impact Social Behavior and Network Structure in a Long-Lived Insect. Am Nat 2023; 202:667-680. [PMID: 37963123 DOI: 10.1086/726063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
AbstractSocial behaviors vary among individuals, and social networks vary among groups. Understanding the causes of such variation is important for predicting or altering ecological processes such as infectious disease outbreaks. Here, we ask whether age contributes to variation in social behavior at multiple levels of organization: within individuals over time, among individuals of different ages, among local social environments, and among populations. We used experimental manipulations of captive populations and a longitudinal dataset to test whether social behavior is associated with age across these levels in a long-lived insect, the forked fungus beetle (Bolitotherus cornutus). In cross-sectional analyses, we found that older beetles were less connected in their social networks. Longitudinal data confirmed that this effect was due in part to changes in behavior over time; beetles became less social over 2 years, possibly because of increased social selectivity or reproductive investment. Beetles of different ages also occupied different local social neighborhoods. The effects of age on behavior scaled up: populations of older individuals had fewer interactions, fewer but more variable relationships, longer network path lengths, and lower clustering than populations of young individuals. Age therefore impacted not only individual sociality but also the network structures that mediate critical population processes.
Collapse
|
5
|
Dunning J, Burke T, Hoi Hang Chan A, Ying Janet Chik H, Evans T, Schroeder J. Opposite-sex associations are linked with annual fitness, but sociality is stable over lifetime. Behav Ecol 2023; 34:315-324. [PMID: 37192923 PMCID: PMC10183206 DOI: 10.1093/beheco/arac124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 03/11/2023] Open
Abstract
Animal sociality, an individual's propensity to associate with others, has fitness consequences through mate choice, for example, directly, by increasing the pool of prospective partners, and indirectly through increased survival, and individuals benefit from both. Annually, fitness consequences are realized through increased mating success and subsequent fecundity. However, it remains unknown whether these consequences translate to lifetime fitness. Here, we quantified social associations and their link to fitness annually and over lifetime, using a multi-generational, genetic pedigree. We used social network analysis to calculate variables representing different aspects of an individual's sociality. Sociality showed high within-individual repeatability. We found that birds with more opposite-sex associates had higher annual fitness than those with fewer, but this did not translate to lifetime fitness. Instead, for lifetime fitness, we found evidence for stabilizing selection on opposite-sex sociality, and sociality in general, suggesting that reported benefits are only short-lived in a wild population, and that selection favors an average sociality.
Collapse
Affiliation(s)
- Jamie Dunning
- Department of Life Sciences, Imperial College London, UK
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, UK
| | - Alex Hoi Hang Chan
- Department of Life Sciences, Imperial College London, UK
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Germany
- Max Plank Institute of Animal Behaviour, Germany
| | - Heung Ying Janet Chik
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Netherlands
- School of Natural Sciences, Macquarie University, Australia
| | - Tim Evans
- Center for Complexity Science, Imperial College London, UK
| | | |
Collapse
|
6
|
Webber QMR, Albery GF, Farine DR, Pinter-Wollman N, Sharma N, Spiegel O, Vander Wal E, Manlove K. Behavioural ecology at the spatial-social interface. Biol Rev Camb Philos Soc 2023; 98:868-886. [PMID: 36691262 DOI: 10.1111/brv.12934] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Spatial and social behaviour are fundamental aspects of an animal's biology, and their social and spatial environments are indelibly linked through mutual causes and shared consequences. We define the 'spatial-social interface' as intersection of social and spatial aspects of individuals' phenotypes and environments. Behavioural variation at the spatial-social interface has implications for ecological and evolutionary processes including pathogen transmission, population dynamics, and the evolution of social systems. We link spatial and social processes through a foundation of shared theory, vocabulary, and methods. We provide examples and future directions for the integration of spatial and social behaviour and environments. We introduce key concepts and approaches that either implicitly or explicitly integrate social and spatial processes, for example, graph theory, density-dependent habitat selection, and niche specialization. Finally, we discuss how movement ecology helps link the spatial-social interface. Our review integrates social and spatial behavioural ecology and identifies testable hypotheses at the spatial-social interface.
Collapse
Affiliation(s)
- Quinn M R Webber
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Gregory F Albery
- Department of Biology, Georgetown University, 37th and O Streets, Washington, DC, 20007, USA.,Wissenschaftskolleg zu Berlin, Wallotstraße 19, 14193, Berlin, Germany.,Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Damien R Farine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitatsstraße 10, 78464, Constance, Germany.,Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nitika Sharma
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eric Vander Wal
- Department of Biology, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, 5200 Old Main Hill, Logan, UT, 84322, USA
| |
Collapse
|
7
|
Fisher DN. Direct and indirect phenotypic effects on sociability indicate potential to evolve. J Evol Biol 2023; 36:209-220. [PMID: 36263954 PMCID: PMC10092521 DOI: 10.1111/jeb.14110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/19/2022] [Accepted: 09/02/2022] [Indexed: 01/11/2023]
Abstract
The decision to leave or join a group is important as group size influences many aspects of organisms' lives and their fitness. This tendency to socialise with others, sociability, should be influenced by genes carried by focal individuals (direct genetic effects) and by genes in partner individuals (indirect genetic effects), indicating the trait's evolution could be slower or faster than expected. However, estimating these genetic parameters is difficult. Here, in a laboratory population of the cockroach Blaptica dubia, I estimate phenotypic parameters for sociability: repeatability (R) and repeatable influence (RI), that indicate whether direct and indirect genetic effects respectively are likely. I also estimate the interaction coefficient (Ψ), which quantifies how strongly a partner's trait influences the phenotype of the focal individual and is key in models for the evolution of interacting phenotypes. Focal individuals were somewhat repeatable for sociability across a 3-week period (R = 0.080), and partners also had marginally consistent effects on focal sociability (RI = 0.053). The interaction coefficient was non-zero, although in opposite sign for the sexes; males preferred to associate with larger individuals (Ψmale = -0.129), while females preferred to associate with smaller individuals (Ψfemale = 0.071). Individual sociability was consistent between dyadic trials and in social networks of groups. These results provide phenotypic evidence that direct and indirect genetic effects have limited influence on sociability, with perhaps most evolutionary potential stemming from heritable effects of the body mass of partners. Sex-specific interaction coefficients may produce sexual conflict and the evolution of sexual dimorphism in social behaviour.
Collapse
Affiliation(s)
- David N Fisher
- School of Biological Sciences, King's College, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
8
|
Martin JS, Jaeggi AV, Koski SE. The social evolution of individual differences: Future directions for a comparative science of personality in social behavior. Neurosci Biobehav Rev 2023; 144:104980. [PMID: 36463970 DOI: 10.1016/j.neubiorev.2022.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Personality is essential for understanding the evolution of cooperation and conflict in behavior. However, personality science remains disconnected from the field of social evolution, limiting our ability to explain how personality and plasticity shape phenotypic adaptation in social behavior. Researchers also lack an integrative framework for comparing personality in the contextualized and multifaceted behaviors central to social interactions among humans and other animals. Here we address these challenges by developing a social evolutionary approach to personality, synthesizing theory, methods, and organizing questions in the study of individuality and sociality in behavior. We critically review current measurement practices and introduce social reaction norm models for comparative research on the evolution of personality in social environments. These models demonstrate that social plasticity affects the heritable variance of personality, and that individual differences in social plasticity can further modify the rate and direction of adaptive social evolution. Future empirical studies of frequency- and density-dependent social selection on personality are crucial for further developing this framework and testing adaptive theory of social niche specialization.
Collapse
Affiliation(s)
- Jordan S Martin
- Human Ecology Group, Institute of Evolutionary Medicine, University of Zurich, Switzerland.
| | - Adrian V Jaeggi
- Human Ecology Group, Institute of Evolutionary Medicine, University of Zurich, Switzerland.
| | - Sonja E Koski
- Organismal and Evolutionary Biology, University of Helsinki, Finland.
| |
Collapse
|
9
|
Cook PA, Baker OM, Costello RA, Formica VA, Brodie ED. Group composition of individual personalities alters social network structure in experimental populations of forked fungus beetles. Biol Lett 2022; 18:20210509. [PMID: 35291883 PMCID: PMC8923822 DOI: 10.1098/rsbl.2021.0509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/24/2022] [Indexed: 01/02/2023] Open
Abstract
Social network structure is a critical group character that mediates the flow of information, pathogens and resources among individuals in a population, yet little is known about what shapes social structures. In this study, we experimentally tested whether social network structure depends on the personalities of individual group members. Replicate groups of forked fungus beetles (Bolitotherus cornutus) were engineered to include only members previously assessed as either more social or less social. We found that individuals expressed consistent personalities across social contexts, exhibiting repeatable numbers of interactions and numbers of partners. Groups composed of more social individuals formed networks with higher interaction rates, higher tie density, higher global clustering and shorter average shortest paths than those composed of less social individuals. We highlight group composition of personalities as a source of variance in group traits and a potential mechanism by which networks could evolve.
Collapse
Affiliation(s)
- Phoebe A. Cook
- Department of Biology and Mountain Lake Biological Station, University of Virginia, Charlottesville, VA 22904, USA
| | - Olivia M. Baker
- Department of Biology and Mountain Lake Biological Station, University of Virginia, Charlottesville, VA 22904, USA
| | - Robin A. Costello
- Department of Biology and Mountain Lake Biological Station, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Edmund D. Brodie
- Department of Biology and Mountain Lake Biological Station, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
10
|
Costello RA, Cook PA, Formica VA, Brodie ED. Group and individual social network metrics are robust to changes in resource distribution in experimental populations of forked fungus beetles. J Anim Ecol 2022; 91:895-907. [PMID: 35220593 PMCID: PMC9313900 DOI: 10.1111/1365-2656.13684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 11/18/2022]
Abstract
Social interactions drive many important ecological and evolutionary processes. It is therefore essential to understand the intrinsic and extrinsic factors that underlie social patterns. A central tenet of the field of behavioural ecology is the expectation that the distribution of resources shapes patterns of social interactions. We combined experimental manipulations with social network analyses to ask how patterns of resource distribution influence complex social interactions. We experimentally manipulated the distribution of an essential food and reproductive resource in semi‐natural populations of forked fungus beetles Bolitotherus cornutus. We aggregated resources into discrete clumps in half of the populations and evenly dispersed resources in the other half. We then observed social interactions between individually marked beetles. Half‐way through the experiment, we reversed the resource distribution in each population, allowing us to control any demographic or behavioural differences between our experimental populations. At the end of the experiment, we compared individual and group social network characteristics between the two resource distribution treatments. We found a statistically significant but quantitatively small effect of resource distribution on individual social network position and detected no effect on group social network structure. Individual connectivity (individual strength) and individual cliquishness (local clustering coefficient) increased in environments with clumped resources, but this difference explained very little of the variance in individual social network position. Individual centrality (individual betweenness) and measures of overall social structure (network density, average shortest path length and global clustering coefficient) did not differ between environments with dramatically different distributions of resources. Our results illustrate that the resource environment, despite being fundamental to our understanding of social systems, does not always play a central role in shaping social interactions. Instead, our results suggest that sex differences and temporally fluctuating environmental conditions may be more important in determining patterns of social interactions.
Collapse
Affiliation(s)
| | - Phoebe A. Cook
- Department of Biology University of Virginia Charlottesville VA USA
| | | | - Edmund D. Brodie
- Department of Biology University of Virginia Charlottesville VA USA
| |
Collapse
|
11
|
|
12
|
Brodie ED, Cook PA, Costello RA, Formica VA. Phenotypic Assortment Changes the Landscape of Selection. J Hered 2021; 113:91-101. [PMID: 34878556 DOI: 10.1093/jhered/esab062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/05/2021] [Indexed: 11/14/2022] Open
Abstract
Social interactions with conspecifics can dramatically affect an individual's fitness. The positive or negative consequences of interacting with social partners typically depend on the value of traits that they express. These pathways of social selection connect the traits and genes expressed in some individuals to the fitness realized by others, thereby altering the total phenotypic selection on and evolutionary response of traits across the multivariate phenotype. The downstream effects of social selection are mediated by the patterns of phenotypic assortment between focal individuals and their social partners (the interactant covariance, Cij', or the multivariate form, CI). Depending on the sign and magnitude of the interactant covariance, the direction of social selection can be reinforced, reversed, or erased. We report estimates of Cij' from a variety of studies of forked fungus beetles to address the largely unexplored questions of consistency and plasticity of phenotypic assortment in natural populations. We found that phenotypic assortment of male beetles based on body size or horn length was highly variable among subpopulations, but that those differences also were broadly consistent from year to year. At the same time, the strength and direction of Cij' changed quickly in response to experimental changes in resource distribution and social properties of populations. Generally, interactant covariances were more negative in contexts in which the number of social interactions was greater in both field and experimental situations. These results suggest that patterns of phenotypic assortment could be important contributors to variability in multilevel selection through their mediation of social selection gradients.
Collapse
Affiliation(s)
- Edmund D Brodie
- Mountain Lake Biological Station and Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Phoebe A Cook
- Mountain Lake Biological Station and Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Robin A Costello
- Mountain Lake Biological Station and Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
13
|
McAdam AG, Webber QMR, Dantzer B, Lane JE, Boutin S. Social Effects on Annual Fitness in Red Squirrels. J Hered 2021; 113:69-78. [PMID: 34679173 DOI: 10.1093/jhered/esab051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/01/2021] [Indexed: 11/12/2022] Open
Abstract
When resources are limited, mean fitness is constrained and competition can cause genes and phenotypes to enhance an individual's own fitness while reducing the fitness of their competitors. Negative social effects on fitness have the potential to constrain adaptation, but the interplay between ecological opportunity and social constraints on adaptation remains poorly studied in nature. Here, we tested for evidence of phenotypic social effects on annual fitness (survival and reproductive success) in a long-term study of wild North American red squirrels (Tamiasciurus hudsonicus) under conditions of both resource limitation and super-abundant food resources. When resources were limited, populations remained stable or declined, and there were strong negative social effects on annual survival and reproductive success. That is, mean fitness was constrained and individuals had lower fitness when other nearby individuals had higher fitness. In contrast, when food resources were super-abundant, populations grew and social constraints on reproductive success were greatly reduced or eliminated. Unlike reproductive success, social constraints on survival were not significantly reduced when food resources were super-abundant. These findings suggest resource-dependent social constraints on a component of fitness, which have important potential implications for evolution and adaptation.
Collapse
Affiliation(s)
- Andrew G McAdam
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, Colorado, USA
| | - Quinn M R Webber
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, Colorado, USA
| | - Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Vander Wal E. Social environment: Trait, context and agent for selection in a meta-population. J Anim Ecol 2021; 90:4-7. [PMID: 33427327 DOI: 10.1111/1365-2656.13400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022]
Abstract
In Focus: Formica, V., Donald, H., Marti, H., Irgebay, Z., Brodie III, E. Social network position experiences more variable selection than weaponry in wild subpopulations of forked fungus beetles. Journal of Animal Ecology, 90, 168-182, https://doi.org/10.1111/1365-2656.13322. That social network traits can exhibit consistent-individual differences among individuals and confer a fitness benefit or cost is increasingly well-established. However, how selection-natural or sexual-affects those social traits and at what scale remains an open question. In this Special Feature, Formica and colleagues employ a meta-population of forked fungus beetles to test and contrast whether sexual selection on social network traits contrasted to morphological traits occurs at the local (soft) or global (hard) scales. The authors demonstrate that morphological traits are largely under hard directional positive selection, whereas social traits are under soft and variable selection. The findings are compelling and raise interesting discussion of multi-level selection and the evolution of social traits in a meta-population.
Collapse
Affiliation(s)
- Eric Vander Wal
- Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
15
|
Sosa S, Jacoby DMP, Lihoreau M, Sueur C. Animal social networks: Towards an integrative framework embedding social interactions, space and time. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Sosa
- IPHC UMR 7178 CNRS Université de Strasbourg Strasbourg France
| | | | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA) Center for Integrative Biology (CBI) CNRS University Paul Sabatier – Toulouse III Toulouse France
| | - Cédric Sueur
- IPHC UMR 7178 CNRS Université de Strasbourg Strasbourg France
- Institut Universitaire de France Paris France
| |
Collapse
|