1
|
Vermaak M, Jensen K, Janion-Scheepers C, Terblanche JS. Assessing the potential for predator-prey interactions in mesofaunal arthropod communities through temperature dependence of locomotion. J Therm Biol 2025; 128:104084. [PMID: 40020342 DOI: 10.1016/j.jtherbio.2025.104084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Thermal performance curves (TPCs) have become an important part of the thermal biologists' toolbox in understanding how organisms may respond to temperature variation. The aim of this study was to investigate how temperature affects the locomotion of soil arthropods (Collembola and Acari), and explore how these responses might influence the potential for predator-prey interactions under different environmental conditions. Locomotion-based thermal performance curves of four species of Acari and three species of Collembola were estimated across seven test temperatures through automated tracking of individuals. Acari (predators) generally exhibited broader thermal tolerances compared to Collembola (prey), with overlapping thermal optima observed for some species, such as Parasitus sp. and Ceratophysella cf. gibbosa. However, differences in maximum thermal limits could influence predator-prey dynamics under warmer conditions. There were no significant effects of temperature on distance traveled or maximum walking speed for most species (Folsomina sp. p = 0.21, Ceratophysella cf. gibbosa p = 0.55, Mucrosomia sp. p = 0.36), with subclass-level analyses also showing no significant effects for Acari (p = 0.6) or Collembola (p = 0.96). Among Acari, Linopodes sp. exhibited a clear TPC, peaking at 30 °C (175 mm/s), while Parasitus sp. and Ceratophysella cf. gibbosa displayed broad thermal tolerances, with the temperature at which performance is maximized (Rmax) near 20 °C and 30 °C, respectively. Among the Acari species tested, Linopodes sp. and Parasitus sp. did show typical TPCs. Among Collembola, Folsomina sp. and Ceratophysella cf. gibbosa showed typical TPCs. These sit-and-wait predators with jump escaping prey groups are likely to be poorly captured by a TPC approach, suggesting other functional traits such as feeding rates, handling times and/or digestion efficiency should be employed in the future to better characterize temperature-dependent interactions.
Collapse
Affiliation(s)
- Mia Vermaak
- Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa.
| | - Kim Jensen
- Department of Animal and Veterinary Sciences, Aarhus University, Denmark
| | | | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa
| |
Collapse
|
2
|
Wen X, Gao G. Effects of Temperature and Extraguild Prey Density on Intraguild Predation of Coccinella septempunctata and Harmonia axyridis. INSECTS 2025; 16:62. [PMID: 39859643 PMCID: PMC11766171 DOI: 10.3390/insects16010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
The ladybirds Coccinella septempunctata and Harmonia axyridis are important biocontrol agents for the small walnut aphid Chromaphis juglandicola, a key walnut pest. C. juglandicola outbreaks occur in walnut orchards, and walnut yields have declined. Intraguild predation (IGP) is prevalent among natural enemies that coexist in shared habitats and prey upon the same extraguild prey. We designed laboratory experiments to evaluate the potential for IGP between these two ladybirds at different temperatures and extraguild (EG) prey densities, and the ability of IGP to control EG prey under different conditions. We measured IGP rates in first instar larvae, female adults, and male adults (both starved for 24 h) in the vulnerable immature life stages of two ladybird eggs. Intraguild (IG) prey (H. axyridis eggs or C. septempunctata eggs) and EG prey (C. juglandicola) consumption were tallied after 24 h. Temperature and EG prey density influenced IGP rates, with temperature contributing the most to the variance. IGP increased with increasing temperature (15-35 °C), with both factors interactively influencing the EG prey consumption rate and exhibiting highly significant effects. EG prey consumption increased with temperature and density. This research provides theoretical support for the rational use of H. axyridis and C. septempunctata in the joint biological control of C. juglandicola.
Collapse
Affiliation(s)
| | - Guizhen Gao
- Research Centre for Green Prevention and Control Technology of Forestry Pest, College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China;
| |
Collapse
|
3
|
Affinito F, Kordas RL, Matias MG, Pawar S. Metabolic plasticity drives mismatches in physiological traits between prey and predator. Commun Biol 2024; 7:653. [PMID: 38806643 PMCID: PMC11133466 DOI: 10.1038/s42003-024-06350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Metabolic rate, the rate of energy use, underpins key ecological traits of organisms, from development and locomotion to interaction rates between individuals. In a warming world, the temperature-dependence of metabolic rate is anticipated to shift predator-prey dynamics. Yet, there is little real-world evidence on the effects of warming on trophic interactions. We measured the respiration rates of aquatic larvae of three insect species from populations experiencing a natural temperature gradient in a large-scale mesocosm experiment. Using a mechanistic model we predicted the effects of warming on these taxa's predator-prey interaction rates. We found that species-specific differences in metabolic plasticity lead to mismatches in the temperature-dependence of their relative velocities, resulting in altered predator-prey interaction rates. This study underscores the role of metabolic plasticity at the species level in modifying trophic interactions and proposes a mechanistic modelling approach that allows an efficient, high-throughput estimation of climate change threats across species pairs.
Collapse
Affiliation(s)
- Flavio Affinito
- Imperial College London Silwood Park, Buckhurst Road, Berks, SL5 7PY, UK.
- McGill University Department of Biology, 1205 Dr Penfield Ave, Montreal, QC, H3A 1B1, Canada.
- Québec Centre for Biodiversity Science, 1205 Dr Penfield Ave, Montreal, QC, H3A 1B1, Canada.
| | - Rebecca L Kordas
- Imperial College London Silwood Park, Buckhurst Road, Berks, SL5 7PY, UK
| | - Miguel G Matias
- Museo Nacional de Ciencias Naturales (CSIC), C. de José Gutiérrez Abascal, 2, Chamartín, 28006, Madrid, Spain
- Rui Nabeiro Biodiversity Chair, MED-Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Pólo da Mitra Apartado 94, 7006-554, Évora, Portugal
| | - Samraat Pawar
- Imperial College London Silwood Park, Buckhurst Road, Berks, SL5 7PY, UK
| |
Collapse
|
4
|
Miloch D, Cecchetto NR, Lescano JN, Leynaud GC, Perotti MG. Is thermal sensitivity affected by predation risk? A case study in tadpoles from ephemeral environments. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:400-409. [PMID: 38356256 DOI: 10.1002/jez.2793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Changes in environmental temperature may induce variations in thermal tolerance and sensitivity in ectotherm organisms. These variations generate plastic responses that can be analyzed by examining their Thermal Performance Curves (TPCs). Additionally, some performance traits, like locomotion, could be affected by other factors such as biological interactions (e.g., predator-prey interaction). Here, we evaluate if the risk of predation modifies TPCs in Mendoza four-eyed frog (Pleurodema nebulosum, Burmeister, 1861) and Guayapa's four-eyed frog (Pleurodema guayapae, Barrio, 1964), two amphibian species that occur in ephemeral ponds in arid environments. We measured thermal tolerances and maximum swimming velocity at six different temperatures in tadpoles under three situations: control, exposure to predator chemical cues, and exposure to conspecific alarm cues. TPCs were fitted using General Additive Mixed Models. We found that curves of tadpoles at risk of predation differed from those of control mainly in thermal sensitivity parameters. Our work confirms the importance of biotic interactions have in thermal physiology.
Collapse
Affiliation(s)
- Daniela Miloch
- Facultad de Ciencias Exactas, Físicas, y Naturales, Centro de Zoología Aplicada, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - Nicolas R Cecchetto
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente, Consejo Nacional de Investigaciones Científicas y Técnicas, Bariloche, Río Negro, Argentina
| | - Julián N Lescano
- Facultad de Ciencias Exactas, Físicas, y Naturales, Centro de Zoología Aplicada, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - Gerardo C Leynaud
- Facultad de Ciencias Exactas, Físicas, y Naturales, Centro de Zoología Aplicada, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - María Gabriela Perotti
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente, Consejo Nacional de Investigaciones Científicas y Técnicas, Bariloche, Río Negro, Argentina
| |
Collapse
|
5
|
Oborová V, Šugerková M, Gvoždík L. Sensitivity of amphibian embryos to timing and magnitude of present and future thermal extremes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:377-388. [PMID: 38327237 DOI: 10.1002/jez.2791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
Ongoing climate change is increasing the frequency and intensity of extreme temperature events. Unlike the gradual increase on average environmental temperatures, these short-term and unpredictable temperature extremes impact population dynamics of ectotherms through their effect on individual survival. While previous research has predominantly focused on the survival rate of terrestrial embryos under acute heat stress, less attention has been dedicated to the nonlethal effects of ecologically realistic timing and magnitude of temperature extremes on aquatic embryos. In this study, we investigated the influence of the timing and magnitude of current and projected temperature extremes on embryonic life history traits and hatchling behavior in the alpine newt, Ichthyosaura alpestris. Using a factorial experiment under controlled laboratory conditions, we exposed 3- or 10-day-old embryos to different regimes of extreme temperatures for 3 days. Our results show that exposure to different extreme temperature regimes led to a shortened embryonic development time and an increase in hatchling length, while not significantly affecting embryonic survival. The duration of development was sensitive to the timing of temperature extremes, as early exposure accelerated embryo development. Exposure to temperature extremes during embryonic development heightened the exploratory activity of hatched larvae. We conclude that the timing and magnitude of ecologically realistic temperature extremes during embryogenesis have nonlethal effects on life history and behavioral traits. This suggests that species' vulnerability to climate change might be determined by other ecophysiological traits beyond embryonic thermal tolerance in temperate pond-breeding amphibians.
Collapse
Affiliation(s)
- Valentína Oborová
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Monika Šugerková
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Lumír Gvoždík
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| |
Collapse
|
6
|
Hubáček J, Gvoždík L. Terrestrial amphibians respond to rapidly changing temperatures with individual plasticity of exploratory behaviour. J Therm Biol 2024; 119:103757. [PMID: 38043243 DOI: 10.1016/j.jtherbio.2023.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023]
Abstract
Terrestrial ectotherms react to acute changes in environmental temperatures by adjusting their behaviour. Evaluating the adaptive potential of these behavioural adjustments requires information on their repeatability and plasticity. We examined behavioural response (exploration) to acute temperature change in two amphibian taxa, alpine (Ichthyosaura alpestris) and smooth (Lissotriton vulgaris) newts. These responses were investigated at both population and individual levels under multiple thermal contexts (dimensions), represented by the direction and range of changing temperature and rearing thermal regimes. Population-level analyses showed species-specific, non-additive effects of direction and range of temperature change on acute thermal reaction norms for exploration, but explained only a low amount (7-23%) of total variation in exploration. In contrast, within- and among-individual variation in acute thermal reaction norm parameters explained 42-50% of total variation in the examined trait. Although immediate thermal responses varied among individuals (repeatability = 0.07 to 0.53), they were largely shaped by environmental contexts during repeated trials. We conclude that these amphibians respond to acute temperature change through individual plasticity of behavioural traits. A repeated-measures approach under multiple thermal contexts will be needed to identify the selective and plastic potential of behavioural responses used by juvenile newts and perhaps other ectotherm taxa to cope with rapidly changing environmental temperatures.
Collapse
Affiliation(s)
- Jiří Hubáček
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic; Department of Botany and Zoology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Lumír Gvoždík
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic.
| |
Collapse
|
7
|
He Y, Zhu K, Zhao K, He L, Candolin U, Xu J, Zhang H. Ineffective integration of multiple anti-predator defenses in a rotifer: a low-cost insurance? Behav Ecol 2022. [DOI: 10.1093/beheco/arac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Abstract
To maximize survival, prey often integrates multiple anti-predator defenses. How the defenses interact to reduce predation risk is, however, poorly known. We used the rotifer Brachionus calyciflorus to investigate how morphological (spines) and behavioral (floating) defenses are integrated against a common predatory rotifer, Asplanchna brightwellii, and if their combined use improves survival. To this end, we assessed the cost of the behavioral defense and the efficiency of both defenses, individually and combined, as well as their mutual dependency. The results show that the behavioral defense is costly in reducing foraging activity, and that the two defenses are used simultaneously, with the presence of the morphological defense enhancing the use of the behavioral defense, as does the pre-exposure to predator cues. However, while the morphological defense reduces predation risk, the behavioral defense does not, thus, adding the costly behavioral defense to the morphological defense does not improve survival. It is likely that the cost of the behavioral defense is low given its reversibility—compared to the cost of misidentifying the predator species—and that this has promoted the adoption of both defenses, as general low-cost insurance rather than as a tailored strategy toward specific predators. Thus, the optimal strategy in the rotifer appears to be to express both morphological and behavioral defenses when confronted with the cues of a potential predator.
Collapse
Affiliation(s)
- Yuhan He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072 , China
- Organismal and Evolutionary Biology, University of Helsinki , Helsinki, PO Box 65, 00014 , Finland
| | - Konghao Zhu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072 , China
- University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Kangshun Zhao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072 , China
- University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Liang He
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, Nanchang University , Nanchang 330031 , China
| | - Ulrika Candolin
- Organismal and Evolutionary Biology, University of Helsinki , Helsinki, PO Box 65, 00014 , Finland
| | - Jun Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072 , China
| | - Huan Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072 , China
| |
Collapse
|
8
|
Arfuso F, Zumbo A, Castronovo C, Giudice E, Piccione G, Monteverde V, Giannetto C. The housing system influences daily total locomotor activity (TLA) in dairy cows. BIOL RHYTHM RES 2022. [DOI: 10.1080/09291016.2022.2098447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, Messina, Italy
| | - Alessandro Zumbo
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, Messina, Italy
| | - Calogero Castronovo
- Experimental Zooprophylactic Institute of Sicily, “A. Mirri”, Palermo, Italy
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, Messina, Italy
| | - Vincenzo Monteverde
- Experimental Zooprophylactic Institute of Sicily, “A. Mirri”, Palermo, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, Messina, Italy
| |
Collapse
|
9
|
Oester R, Greenway R, Moosmann M, Sommaruga R, Tartarotti B, Brodersen J, Matthews B. The influence of predator community composition on photoprotective traits of copepods. Ecol Evol 2022; 12:e8862. [PMID: 35494499 PMCID: PMC9035585 DOI: 10.1002/ece3.8862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
Trait expression of natural populations often jointly depends on prevailing abiotic environmental conditions and predation risk. Copepods, for example, can vary their expression of compounds that confer protection against ultraviolet radiation (UVR), such as astaxanthin and mycosporine‐like amino acids (MAAs), in relation to predation risk. Despite ample evidence that copepods accumulate less astaxanthin in the presence of predators, little is known about how the community composition of planktivorous fish can affect the overall expression of photoprotective compounds. Here, we investigate how the (co‐)occurrence of Arctic charr (Salvelinus alpinus) and threespine stickleback (Gasterosteus aculeatus) affects the photoprotective phenotype of the copepod Leptodiaptomus minutus in lake ecosystems in southern Greenland. We found that average astaxanthin and MAA contents were lowest in lakes with stickleback, but we found no evidence that these photoprotective compounds were affected by the presence of charr. Furthermore, variance in astaxanthin among individual copepods was greatest in the presence of stickleback and the astaxanthin content of copepods was negatively correlated with increasing stickleback density. Overall, we show that the presence and density of stickleback jointly affect the content of photoprotective compounds by copepods, illustrating how the community composition of predators in an ecosystem can determine the expression of prey traits that are also influenced by abiotic stressors.
Collapse
Affiliation(s)
- Rebecca Oester
- ETH Zürich, D‐USYS Zürich Switzerland
- Department of Fish Ecology and Evolution Eawag Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry Kastanienbaum Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Institute of Applied Microbiology University of Applied Sciences and Arts of Southern Switzerland Mendrisio Switzerland
| | - Ryan Greenway
- Department of Fish Ecology and Evolution Eawag Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry Kastanienbaum Switzerland
| | - Marvin Moosmann
- Department of Fish Ecology and Evolution Eawag Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry Kastanienbaum Switzerland
- Division of Aquatic Ecology and Evolution Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Ruben Sommaruga
- Department of Ecology Lake and Glacier Ecology Research Group University of Innsbruck Innsbruck Austria
| | - Barbara Tartarotti
- Department of Ecology Lake and Glacier Ecology Research Group University of Innsbruck Innsbruck Austria
| | - Jakob Brodersen
- Department of Fish Ecology and Evolution Eawag Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry Kastanienbaum Switzerland
- Division of Aquatic Ecology and Evolution Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution Eawag Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry Kastanienbaum Switzerland
| |
Collapse
|
10
|
Baškiera S, Gvoždík L. Individual Variation in Thermal Reaction Norms Reveals Metabolic-Behavioral Relationships in an Ectotherm. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.850941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ectothermic organisms respond to rapid environmental change through a combination of behavioral and physiological adjustments. As behavioral and physiological traits are often functionally linked, an effective ectotherm response to environmental perturbation will depend on the direction and magnitude of their association. The role of various modifiers in behavioral-physiological relationships remains largely unexplored. We applied a repeated-measures approach to examine the influence of body temperature and individual variation on the link between resting metabolic rate (RMR) and exploratory locomotor activity (ELA) in juvenile Alpine newts, Ichthyosaura alpestris. We analyzed trait relationships at two body temperatures separately and as parameters, intercepts and slopes, of thermal reaction norms for both traits. Body temperature affected the level of detectable among-individual variation in two different directions. Among-individual variation in ELA was detected at 12°C, while RMR was repeatable at 22°C. We found no support for a link between RMR and ELA at either temperature. While analysis of intercepts revealed among-individual variation in both traits, among-individual variation in slopes was detected in RMR only. Intercepts were positively associated at the individual, but not the whole-phenotypic, level. For ELA, the target of selection should be individual trait values across temperatures, rather than their thermal sensitivities. The positive association between intercepts of thermal reaction norms for ELA and RMR suggests that phenotypic selection acts on both traits in a correlated fashion. Measurements at one body temperature and within-individual variation hide the metabolic-behavioral relations. We conclude that correlative studies on flexible behavioral and physiological traits in ectotherms require repeated measurement at two or more body temperatures in order to avoid misleading results. This approach is needed to fully understand ectotherm responses to environmental change and its impact on their population dynamics.
Collapse
|