1
|
Fu C, Klein SG, Breavington J, Lim KK, Steckbauer A, Duarte CM. Nonuniform organic carbon stock loss in soils across disturbed blue carbon ecosystems. Nat Commun 2025; 16:4370. [PMID: 40350444 PMCID: PMC12066739 DOI: 10.1038/s41467-025-59752-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 05/01/2025] [Indexed: 05/14/2025] Open
Abstract
Conserving blue carbon ecosystems (BCEs) has gained international attention in climate change mitigation, reflected in United Nations policies and voluntary carbon-offset projects. These efforts assume significant and uniform losses of soil organic carbon (Corg) throughout the top meter following disturbances, yet this assumption lacks robust empirical support. Here, we synthesized 239 paired observations of intact and disturbed BCEs globally. Soil Corg stock losses in the top meters vary widely: from -68.4% (agricultural conversion, ±13.4%, 95% confidence interval) to +0.8% (harvesting, ±46.2%) in mangroves, -25.9% (climate/hydrological change, ± 30.7%) to +48.6% (grazing, ±78.7%) in saltmarshes, and -34.2% (vegetation cover damage, ±22.4%) to -27.4% (dredging, ±33.6%) in seagrasses. Extensive disturbances deplete Corg down to 50-200 cm, while limited disturbances impact only the top 10-30 cm or resulted in negligible losses. This refinement contributes to improved global inventories of greenhouse gas emissions from BCEs, supporting abatement policy settings for nationally determined contributions commitments.
Collapse
Affiliation(s)
- Chuancheng Fu
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| | - Shannon G Klein
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Jessica Breavington
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Kah Kheng Lim
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Alexandra Steckbauer
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Carlos M Duarte
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Tuo H, Ghanizadeh H, Ji X, Yang M, Wang Z, Huang J, Wang Y, Tian H, Ye F, Li W. Moderate grazing enhances ecosystem multifunctionality through leaf traits and taxonomic diversity in long-term fenced grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177781. [PMID: 39615181 DOI: 10.1016/j.scitotenv.2024.177781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Grassland community diversity plays a vital role in maintaining the functionality of grassland ecosystems, influencing processes such as nutrient cycling and supporting ecosystem multifunctionality (EMF). Long-term fencing impacts biodiversity and nutrient dynamics, but its effects alongside grazing practices are not well understood. This study examined grazing intensity's effects on community structure, leaf traits, diversity, and ecosystem functions in a 38-year-fenced grassland, through a four-year grazing experiment. Kansu red deer (Cervus elaphus kansuensis) was chosen due to its diverse diet, tolerance to rough feeding, and high feed conversion efficiency. Results showed that grazing intensity significantly affected community structure. Moderate grazing promoted perennial grasses and legumes, boosting aboveground biomass, while heavy grazing encouraged poisonous forbs, potentially harming ecosystem health. Moderate grazing also enhanced diversity metrics such as the Shannon-Weiner index, species richness, functional richness, and functional diversity. Additionally, it improved leaf traits like community-weighted mean leaf nitrogen, phosphorus content, specific leaf area, and leaf dry matter content, all contributing to better EMF. Structural equation modeling revealed that EMF was directly influenced by grazing intensities and indirectly through changes in leaf traits and taxonomic diversity. These findings suggest that moderate grazing enhances EMF in long-term fenced grasslands by improving the distribution of functional groups, leaf traits, and community diversity. Thus, moderate grazing is an optimal strategy for maintaining community diversity and EMF, highlighting the importance of grazing management for sustainable land use and addressing ecological challenges in grassland ecosystems.
Collapse
Affiliation(s)
- Hanghang Tuo
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hossein Ghanizadeh
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Haerbin 150030, China
| | - Xiuyun Ji
- Administration Bureau of Yunwu Mountain National Nature Reserve, Guyuan, Ningxia 756000, China
| | - Mengru Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Zilin Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jiandi Huang
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, Ningxia Province 756000, China
| | - Yibo Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Huihui Tian
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Faming Ye
- Institute of Soil and Water Conservation, CAS&MWR, Yangling, Shaanxi Province 712100, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Wei Li
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Tijjani SB, Giri S, Lathrop R, Qi J, Karki R, Schäfer KVR, Kaplan MB, Oleghe EE, Dhakal S. Modeling carbon dynamics from a heterogeneous watershed in the mid-Atlantic USA: A distributed-calibration and independent verification (DCIV) approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177271. [PMID: 39489453 DOI: 10.1016/j.scitotenv.2024.177271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/19/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
The terrestrial ecosystem plays a vital role in regulating regional and global carbon budgets. Ecosystem models are extensively employed to estimate carbon fluxes across different spatial scales. However, there remains a need to reduce the uncertainties associated with model parameterization and input data. To address these limitations, we assessed a distributed-calibration and independent-verification (DCIV) approach that uses (1) remotely sensed net primary production (NPP) and evapotranspiration (ET) data from the Moderate Resolution Imaging Spectroradiometer (MODIS), (2) multi-site eddy covariance net ecosystem exchange (NEE) data; and (3) field sampling of soil organic carbon (SOC) and aboveground biomass (ABG) data to improve the overall predictability of carbon fluxes for the different land use and land cover (LULC) types at a watershed scale. The DCIV approach was applied to an advanced version of the Soil and Water Assessment Tool (SWAT)-Carbon (or SWAT-C), equipped with Century-based SOC algorithms to simulate carbon dynamics for watersheds with heterogeneous vegetation. The objective of the modeling effort was to assess carbon stocks and fluxes under different land management scenarios for a 3000-acre experimental farm and forest preserve in the northeastern United States. Our study showed that a large SOC stock of at least 100 tons ha-1 is stored under mixed forest, deciduous, shrubland, and floodplain (grass). Our study also showed that converting floodplain (grass) to deciduous forest has the potential to increase CO2 uptake (-NEE) by an order of three magnitude and ABG by 77 %, leading to an increased SOC stock of 23 % after twenty years. Similarly, we found that converting ungrazed grassland to grazed pasture leads to a non-statistically decreasing trend of SOC, especially in the 0-30 cm soil layer. Thus, the methodology used in this study can be applied to improve carbon dynamic prediction from a heterogeneous watershed at a regional scale.
Collapse
Affiliation(s)
- Sadiya B Tijjani
- Department of Geography, Rutgers, The State University of New Jersey, Lucy Stone Hall, 54 Joyce Kilmer Avenue, Piscataway, NJ 08854, USA.
| | - Subhasis Giri
- Department of Ecology, Evolution, and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Richard Lathrop
- Department of Ecology, Evolution, and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Junyu Qi
- Earth System Science Interdisciplinary Center, University of Maryland, 5825 University Research Ct, College Park, MD 20740, USA.
| | - Ritesh Karki
- Earth System Science Interdisciplinary Center, University of Maryland, 5825 University Research Ct, College Park, MD 20740, USA.
| | - Karina V R Schäfer
- Department of Earth & Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Marjorie B Kaplan
- Rutgers Climate and Energy Institute, Rutgers University, 14 College Farm Road, New Brunswick, NJ, USA.
| | - Ewan E Oleghe
- Department of Environmental Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 14 College Farm Rd., New Brunswick, NJ 08901-8551, USA.
| | - Suman Dhakal
- Department of Earth & Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
4
|
Wang M, Peñuelas J, Sardans J, Zeng Q, Song Z, Zhou J, Xu X, Zhou X, Fang Y, Vancov T, Wang W. Conversion of coastal marsh to aquaculture ponds decreased the potential of methane production by altering soil chemical properties and methanogenic archaea community structure. WATER RESEARCH 2024; 268:122608. [PMID: 39413712 DOI: 10.1016/j.watres.2024.122608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/22/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Coastal wetlands are among the most productive and dynamic ecosystems globally, contributing significantly to atmospheric methane (CH4) emissions. The widespread conversion of these wetlands into aquaculture ponds degrades these ecosystems, yet its effects on CH4 production and associated microbial mechanisms are not well understood. This study aimed to assess the impact of land conversion on CH4 production potential, total and active soil organic C (SOC) content, and microbial communities. We conducted a comparative study on three brackish marshes and adjacent aquaculture ponds in southeastern China. Compared to costal marshes, aquaculture ponds exhibited significantly (P < 0.05) lower CH4 production potential (0.05 vs. 0.02 μg kg-1 h-1), SOC (17.64 vs. 6.97 g kg-1), total nitrogen (TN) content (1.62 vs. 1.24 g kg-1) and carbon/nitrogen (C/N) ratio (10.85 vs. 5.66). CH4 production potential in aquaculture ponds was influenced by both microbial and abiotic factors. Specifically, the relative abundance of Methanosarcina slightly decreased in aquaculture ponds, while the potential for CH4 production declined with lower SOC contents and C/N ratio. Overall, our findings demonstrate that converting natural coastal marshes into aquaculture ponds reduces CH4 production by altering key soil properties and the structure and diversity of methanogenic archaea communities. These results provide empirical evidence to enhance global carbon models, improving predictions of carbon feedback from wetland land conversion in the context of climate change.
Collapse
Affiliation(s)
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Catalonia, Barcelona 08193, Spain; CREAF, Catalonia, Cerdanyola del Vallès 08193, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Catalonia, Barcelona 08193, Spain; CREAF, Catalonia, Cerdanyola del Vallès 08193, Spain
| | - Qingsong Zeng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Zhaoliang Song
- Institute of Surface‑Earth System Science, School of Earth System Science, Tianjin University, No. 92 Weijin Road Nankai District, Tianjin 300072, China
| | - Jingyun Zhou
- Institute of Surface‑Earth System Science, School of Earth System Science, Tianjin University, No. 92 Weijin Road Nankai District, Tianjin 300072, China
| | - Xuping Xu
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Xiaoqi Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Yunying Fang
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Tony Vancov
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Weiqi Wang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
5
|
Li C, Chen J, Liao X, Ramus AP, Angelini C, Liu L, Silliman BR, Bertness MD, He Q. Shorebirds-driven trophic cascade helps restore coastal wetland multifunctionality. Nat Commun 2023; 14:8076. [PMID: 38057308 PMCID: PMC10700615 DOI: 10.1038/s41467-023-43951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
Ecosystem restoration has traditionally focused on re-establishing vegetation and other foundation species at basal trophic levels, with mixed outcomes. Here, we show that threatened shorebirds could be important to restoring coastal wetland multifunctionality. We carried out surveys and manipulative field experiments in a region along the Yellow Sea affected by the invasive cordgrass Spartina alterniflora. We found that planting native plants alone failed to restore wetland multifunctionality in a field restoration experiment. Shorebird exclusion weakened wetland multifunctionality, whereas mimicking higher predation before shorebird population declines by excluding their key prey - crab grazers - enhanced wetland multifunctionality. The mechanism underlying these effects is a simple trophic cascade, whereby shorebirds control crab grazers that otherwise suppress native vegetation recovery and destabilize sediments (via bioturbation). Our findings suggest that harnessing the top-down effects of shorebirds - through habitat conservation, rewilding, or temporary simulation of consumptive or non-consumptive effects - should be explored as a nature-based solution to restoring the multifunctionality of degraded coastal wetlands.
Collapse
Affiliation(s)
- Chunming Li
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Jianshe Chen
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Xiaolin Liao
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Aaron P Ramus
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Christine Angelini
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Brian R Silliman
- Nicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC, 28516, USA
| | - Mark D Bertness
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI, 02912, USA
| | - Qiang He
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.
| |
Collapse
|
6
|
Chen C, Yin G, Hou L, Jiang Y, Sun D, Liang X, Han P, Zheng Y, Liu M. Reclamation of tidal flats to paddy soils reshuffles the soil microbiomes along a 53-year reclamation chronosequence: Evidence from assembly processes, co-occurrence patterns and multifunctionality. ENVIRONMENT INTERNATIONAL 2023; 179:108151. [PMID: 37603994 DOI: 10.1016/j.envint.2023.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023]
Abstract
Coastal soil microbiomes play a key role in coastal ecosystem functioning and are intensely threatened by land reclamation. However, the impacts of coastal reclamation on soil microbial communities, particularly on their assembly processes, co-occurrence patterns, and the multiple soil functions they support, remain poorly understood. This impedes our capability to comprehensively evaluate the impacts of coastal reclamation on soil microbiomes and to restore coastal ecosystem functions degraded by reclamation. Here, we investigated the temporal dynamics of bacterial and fungal communities, community assembly processes, co-occurrence patterns, and ecosystem multifunctionality along a 53-year chronosequence of paddy soil following reclamation from tidal flats. Reclamation of tidal flats to paddy soils resulted in decreased β-diversity, increased homogeneous selection, and decreased network complexity and robustness of both bacterial and fungal communities, but caused contrasting α-diversity response patterns of them. Reclamation of tidal flats to paddy soils also decreased the multifunctionality of coastal ecosystems, which was largely associated with the fungal network complexity and α-diversity. Collectively, this work demonstrates that coastal reclamation strongly reshaped the soil microbiomes at the level of assembly mechanisms, interaction patterns, and functionality level, and highlights that soil fungal community complexity should be considered as a key factor in restoring coastal ecosystem functions deteriorated by land reclamation.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yinghui Jiang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022 Jiangxi, China
| | - Dongyao Sun
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China.
| |
Collapse
|
7
|
Ding L, Tian L, Li J, Zhang Y, Wang M, Wang P. Grazing lowers soil multifunctionality but boosts soil microbial network complexity and stability in a subtropical grassland of China. Front Microbiol 2023; 13:1027097. [PMID: 36687566 PMCID: PMC9849757 DOI: 10.3389/fmicb.2022.1027097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/17/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Long-term grazing profoundly affects grassland ecosystems, whereas how the soil microbiome and multiple soil ecosystem functions alter in response to two-decades of grazing, especially how soil microbiome (diversity, composition, network complexity, and stability) forms soil multifunctionality is rarely addressed. Methods We used a long-term buffalo grazing grassland to measure the responses of soil physicochemical attributes, stoichiometry, enzyme activities, soil microbial niche width, structure, functions, and networks to grazing in a subtropical grassland of Guizhou Plateau, China. Results The evidence from this work suggested that grazing elevated the soil hardness, available calcium content, and available magnesium content by 6.5, 1.9, and 1.9 times (p = 0.00015-0.0160) and acid phosphatase activity, bulk density, pH by 59, 8, and 0.5 unit (p = 0.0014-0.0370), but decreased the soil water content, available phosphorus content, and multifunctionality by 47, 73, and 9-21% (p = 0.0250-0.0460), respectively. Grazing intensified the soil microbial carbon limitation (+78%, p = 0.0260) as indicated by the increased investment in the soil β-glucosidase activity (+90%, p = 0.0120). Grazing enhanced the complexity and stability of the bacterial and fungal networks but reduced the bacterial Simpson diversity (p < 0.05). The bacterial diversity, network complexity, and stability had positive effects, while bacterial and fungal compositions had negative effects on multifunctionality. Discussions This work is an original attempt to show that grazing lowered multifunctionality via the reduced bacterial diversity and shifted soil bacterial and fungal compositions rather than the enhanced bacterial and fungal network complexities and stability by grazing. Protecting the bacterial diversity from decreasing, optimizing the composition of bacteria and fungi, and enhancing the complexity and stability of bacterial network may be conducive to improving the soil multifunction of grazing grassland, on a subtropical grassland.
Collapse
Affiliation(s)
- Leilei Ding
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Lili Tian
- College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Jingyi Li
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Yujun Zhang
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Mengya Wang
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Puchang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| |
Collapse
|
8
|
Sheng Z, Du J, Li L, Li E, Sun B, Mao J, Zhang Y, Zhang J, Diao Z. Grazing alters ecosystem multifunctionality via changes in taxonomic diversity and functional identity in temperate grassland, China. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2022.e02323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|