1
|
Mahmoudi A, Butler AE, Orekhov AN, Jamialahmadi T, Sahebkar A. Statins as a Potential Treatment for Non-alcoholic Fatty Liver Disease: Target Deconvolution using Protein-protein Interaction Network Analysis. Curr Med Chem 2025; 32:1355-1377. [PMID: 37644746 DOI: 10.2174/0929867331666230829164832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The hallmark of non-alcoholic fatty liver disease (NAFLD) is aberrant buildup of triglycerides (TGs) in hepatocytes. Many genes promote NAFLD development. Using bioinformatics tools, we investigated the possible effect of statins on genes involved in NAFLD progression. METHODS Protein interactions of statins and NAFLD were searched in gene-drug and gene-disease databases. A Protein-Protein interaction (PPI) network was constructed to find hub genes and Molecular Complex Detection (MCODE) of NAFLD-related genes. Shared protein targets between protein targets of statins and NAFLD-associated genes were identified. Next, targets of each statin were assayed with all modular clusters in the MCODEs related to NAFLD. Biological process and pathway enrichment analysis for shared proteins was performed. RESULTS Screening protein targets for conventional statins and curated NAFLD-related genes identified 343 protein targets and 70 genes, respectively. A Venn diagram of NAFLD-related genes and protein targets of statins showed 24 shared proteins. The biological pathways on KEGG enrichment associated with the 24 shared protein sets were evaluated and included cytokine-cytokine receptor interaction, adipocytokine, PPAR, TNF and AMPK signaling pathways. Gene Ontology analysis showed major involvement in lipid metabolic process regulation and inflammatory response. PPI network analysis of 70 protein targets indicated 13 hub genes (PPARA, IL4, CAT, LEP, SREBF1, PRKCA, CYP2E1, NFE2L2, PTEN, NR1H4, ADIPOQ, GSTP1 and TGFB1). Comparing all seven statins with the three MCODE clusterings and 13 hub genes revealed that simvastatin as the most associated statin with NAFLD. CONCLUSION Simvastatin has the most impact on NAFLD-related genes versus other statins.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Department of Medical Sciences, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| | - Tannaz Jamialahmadi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Ke S, Hu Q, Zhu G, Li L, Sun X, Cheng H, Li L, Yao Y, Li H. Remodeling of white adipose tissue microenvironment against obesity by phytochemicals. Phytother Res 2024; 38:4904-4922. [PMID: 36786412 DOI: 10.1002/ptr.7758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Obesity is a kind of chronic disease due to a long-term imbalance between energy intake and expenditure. In recent years, the number of obese people around the world has soared, and obesity problem should not be underestimated. Obesity is characterized by changes in the adipose microenvironment, mainly manifested as hypertrophy, chronic inflammatory status, hypoxia, and fibrosis, thus contributing to the pathological changes of other tissues. A plethora of phytochemicals have been found to improve adipose microenvironment, thus prevent and resist obesity, providing a new research direction for the treatment of obesity and related diseases. This paper discusses remodeling of the adipose tissue microenvironment as a therapeutic avenue and reviews the progress of phytochemicals in fighting obesity by improving the adipose microenvironment.
Collapse
Affiliation(s)
- Shuwei Ke
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Qingyuan Hu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Guanyao Zhu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Linghuan Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xuechao Sun
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Hongbin Cheng
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Lingqiao Li
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Yuanfa Yao
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hanbing Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
3
|
Mahmoudi A, Butler AE, De Vincentis A, Jamialahmadi T, Sahebkar A. Microarray-based Detection of Critical Overexpressed Genes in the Progression of Hepatic Fibrosis in Non-alcoholic Fatty Liver Disease: A Protein-protein Interaction Network Analysis. Curr Med Chem 2024; 31:3631-3652. [PMID: 37194229 DOI: 10.2174/0929867330666230516123028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a prevalent cause of chronic liver disease and encompasses a broad spectrum of disorders, including simple steatosis, steatohepatitis, fibrosis, cirrhosis, and liver cancer. However, due to the global epidemic of NAFLD, where invasive liver biopsy is the gold standard for diagnosis, it is necessary to identify a more practical method for early NAFLD diagnosis with useful therapeutic targets; as such, molecular biomarkers could most readily serve these aims. To this end, we explored the hub genes and biological pathways in fibrosis progression in NAFLD patients. METHODS Raw data from microarray chips with GEO accession GSE49541 were downloaded from the Gene Expression Omnibus database, and the R package (Affy and Limma) was applied to investigate differentially expressed genes (DEGs) involved in the progress of low- (mild 0-1 fibrosis score) to high- (severe 3-4 fibrosis score) fibrosis stage NAFLD patients. Subsequently, significant DEGs with pathway enrichment were analyzed, including gene ontology (GO), KEGG and Wikipathway. In order to then explore critical genes, the protein-protein interaction network (PPI) was established and visualized using the STRING database, with further analysis undertaken using Cytoscape and Gephi software. Survival analysis was undertaken to determine the overall survival of the hub genes in the progression of NAFLD to hepatocellular carcinoma. RESULTS A total of 311 significant genes were identified, with an expression of 278 being upregulated and 33 downregulated in the high vs. low group. Gene functional enrichment analysis of these significant genes demonstrated major involvement in extracellular matrix (ECM)-receptor interaction, protein digestion and absorption, and the AGE-RAGE signaling pathway. The PPI network was constructed with 196 nodes and 572 edges with PPI enrichment using a p-value < 1.0 e-16. Based on this cut-off, we identified 12 genes with the highest score in four centralities: Degree, Betweenness, Closeness, and Eigenvector. Those twelve hub genes were CD34, THY1, CFTR, COL3A1, COL1A1, COL1A2, SPP1, THBS1, THBS2, LUM, VCAN, and VWF. Four of these hub genes, namely CD34, VWF, SPP1, and VCAN, showed significant association with the development of hepatocellular carcinoma. CONCLUSION This PPI network analysis of DEGs identified critical hub genes involved in the progression of fibrosis and the biological pathways through which they exert their effects in NAFLD patients. Those 12 genes offer an excellent opportunity for further focused research to determine potential targets for therapeutic applications.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Antonio De Vincentis
- Unit of Internal Medicine and Geriatrics, Università Campus Bio-Medico di Roma, Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, Rome 00128, Italy
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Abstract
Liver fibrosis has a high incidence worldwide and is the common pathological basis of many chronic liver diseases. Liver fibrosis is caused by the excessive deposition of extracellular matrix and concomitant collagen accumulation in livers and can lead to the development of liver cirrhosis and even liver cancer. A large number of studies have provided evidence that liver fibrosis can be blocked or even reversed by appropriate medical interventions. However, the antifibrosis drugs with ideal clinical efficacy are still insufficient. The edible plant-derived natural compounds have been reported to exert effective antifibrotic effects with few side-effects, representing a kind of promising source for the treatment of liver fibrosis. In this article, we reviewed the current progress of the natural compounds derived from dietary plants in the treatment of liver fibrosis, including phenolic compounds (capsaicin, chlorogenic acid, curcumin, ellagic acid, epigallocatechin-3-gallate, resveratrol, sinapic acid, syringic acid, vanillic acid and vitamin E), flavonoid compounds (genistein, hesperidin, hesperetin, naringenin, naringin and quercetin), sulfur-containing compounds (S-allylcysteine, ergothioneine, lipoic acid and sulforaphane) and other compounds (betaine, caffeine, cucurbitacin B, lycopene, α-mangostin, γ-mangostin, ursolic acid, vitamin C and yangonin). The pharmacological effects and related mechanisms of these compounds in in-vivo and in-vitro models of liver fibrosis are focused.
Collapse
|
5
|
He T, Lykov N, Luo X, Wang H, Du Z, Chen Z, Chen S, Zhu L, Zhao Y, Tzeng C. Protective Effects of Lactobacillus gasseri against High-Cholesterol Diet-Induced Fatty Liver and Regulation of Host Gene Expression Profiles. Int J Mol Sci 2023; 24:ijms24032053. [PMID: 36768377 PMCID: PMC9917166 DOI: 10.3390/ijms24032053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Fatty liver is one of the most pervasive liver diseases worldwide. Probiotics play an important role in the progression of liver disease, but their effects on host regulation are poorly understood. This study investigated the protective effects of lactobacillus gasseri (L. gasseri) against high-cholesterol diet (HCD)-induced fatty liver injury using a zebrafish larvae model. Liver pathology, lipid accumulation, oxidative stress and hepatic inflammation were evaluated to demonstrate the changes in a spectrum of hepatic injury. Moreover, multiple indexes on host gene expression profiles were comprehensively characterized by RNA screening. The results showed that treatment with L. gasseri ameliorated HCD-induced morphological and histological alterations, lipid regulations, oxidative stress and macrophage aggregation in the liver of zebrafish larvae. Furthermore, the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway revealed that the core pathways of L. gasseri regulation were interleukin-17 (IL-17) signaling, phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, the regulation of lipolysis and adipocytes and fatty acid elongation and estrogen signaling. The genes at key junction nodes, hsp90aa1.1, kyat3, hsd17b7, irs2a, myl9b, ptgs2b, cdk21 and papss2a were significantly regulated by L. gasseri administration. To conclude, the current research extends our understanding of the protective effects of L. gasseri against fatty liver and provides potential therapeutic options for fatty liver treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ye Zhao
- Correspondence: (Y.Z.); (C.T.)
| | | |
Collapse
|
6
|
Zheng J, Wu H, Zhang Z, Yao S. Dynamic co-expression modular network analysis in nonalcoholic fatty liver disease. Hereditas 2021; 158:31. [PMID: 34419146 PMCID: PMC8380347 DOI: 10.1186/s41065-021-00196-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease affecting people’s health worldwide. Exploring the potential biomarkers and dynamic networks during NAFLD progression is urgently important. Material and methods Differentially expressed genes (DEGs) in obesity, NAFL and NASH were screened from GSE126848 and GSE130970, respectively. Gene set enrichment analysis of DEGs was conducted to reveal the Gene Ontology (GO) biological process in each period. Dynamic molecular networks were constructed by DyNet to illustrate the common and distinct progression of health- or obesity-derived NAFLD. The dynamic co-expression modular analysis was carried out by CEMiTool to elucidate the key modulators, networks, and enriched pathways during NAFLD. Results A total of 453 DEGs were filtered from obesity, NAFL and NASH periods. Function annotation showed that health-NAFLD sequence was mainly associated with dysfunction of metabolic syndrome pathways, while obesity-NAFLD sequence exhibited dysregulation of Cell cycle and Cellular senescence pathways. Nine nodes including COL3A1, CXCL9, CYCS, CXCL10, THY1, COL1A2, SAA1, CDKN1A, and JUN in the dynamic networks were commonly identified in health- and obesity-derived NAFLD. Moreover, CYCS, whose role is unknown in NAFLD, possessed the highest correlation with NAFLD activity score, lobular inflammation grade, and the cytological ballooning grade. Dynamic co-expression modular analysis showed that module 4 was activated in NAFL and NASH, while module 3 was inhibited at NAFLD stages. Module 3 was negatively correlated with CXCL10, and module 4 was positively correlated with COL1A2 and THY1. Conclusion Dynamic network analysis and dynamic gene co-expression modular analysis identified a nine-gene signature as the potential key regulator in NAFLD progression, which provided comprehensive regulatory mechanisms underlying NAFLD progression. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00196-8.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Pharmacy, Zhejiang Medical & Health Group Hangzhou Hospital, No.1 Banshan Road, Kangjian nong, Hangzhou, 310022, China
| | - Huizhong Wu
- Department of Pharmacy, Zhejiang Quhua Hospital, Quzhou, 324002, China
| | - Zhiying Zhang
- Department of Pharmacy, Hangzhou Jianggan District People's Hospital, Hangzhou, 310016, China
| | - Songqiang Yao
- Department of Pharmacy, Zhejiang Medical & Health Group Hangzhou Hospital, No.1 Banshan Road, Kangjian nong, Hangzhou, 310022, China.
| |
Collapse
|
7
|
A Comprehensive Review of Natural Products against Liver Fibrosis: Flavonoids, Quinones, Lignans, Phenols, and Acids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7171498. [PMID: 33082829 PMCID: PMC7556091 DOI: 10.1155/2020/7171498] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Liver fibrosis resulting from continuous long-term hepatic damage represents a heavy burden worldwide. Liver fibrosis is recognized as a complicated pathogenic mechanism with extracellular matrix (ECM) accumulation and hepatic stellate cell (HSC) activation. A series of drugs demonstrate significant antifibrotic activity in vitro and in vivo. No specific agents with ideally clinical efficacy for liver fibrosis treatment have been developed. In this review, we summarized the antifibrotic effects and molecular mechanisms of 29 kinds of common natural products. The mechanism of these compounds is correlated with anti-inflammatory, antiapoptotic, and antifibrotic activities. Moreover, parenchymal hepatic cell survival, HSC deactivation, and ECM degradation by interfering with multiple targets and signaling pathways are also involved in the antifibrotic effects of these compounds. However, there remain two bottlenecks for clinical breakthroughs. The low bioavailability of natural products should be improved, and the combined application of two or more compounds should be investigated for more prominent pharmacological effects. In summary, exploration on natural products against liver fibrosis is becoming increasingly extensive. Therefore, natural products are potential resources for the development of agents to treat liver fibrosis.
Collapse
|
8
|
Green Tea Polyphenol EGCG Attenuates MDSCs-mediated Immunosuppression through Canonical and Non-Canonical Pathways in a 4T1 Murine Breast Cancer Model. Nutrients 2020; 12:nu12041042. [PMID: 32290071 PMCID: PMC7230934 DOI: 10.3390/nu12041042] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 01/12/2023] Open
Abstract
Several studies in the past decades have reported anti-tumor activity of the bioactive compounds extracted from tea leaves, with a focus on the compound epigallocatechin-3-gallate (EGCG). However, further investigations are required to unravel the underlying mechanisms behind the anti-tumor activity of EGCG. In this study, we demonstrate that EGCG significantly inhibits the growth of 4T1 breast cancer cells in vitro and in vivo. EGCG ameliorated immunosuppression by significantly decreasing the accumulation of myeloid-derived suppressor cells (MDSCs) and increasing the proportions of CD4+ and CD8+ T cells in spleen and tumor sites in 4T1 breast tumor-bearing mice. Surprisingly, a low dose of EGCG (0.5-5 μg/mL) effectively reduced the cell viability and increased the apoptosis rate of MDSCs in vitro. EGCG down-regulated the canonical pathways in MDSCs, mainly through the Arg-1/iNOS/Nox2/NF-κB/STAT3 signaling pathway. Moreover, transcriptomic analysis suggested that EGCG also affected the non-canonical pathways in MDSCs, such as ECM-receptor interaction and focal adhesion. qRT-PCR further validated that EGCG restored nine key genes in MDSCs, including Cxcl3, Vcan, Col4a1, Col8a1, Oasl2, Mmp12, Met, Itsnl and Acot1. Our results provide new insight into the mechanism of EGCG-associated key pathways/genes in MDSCs in the murine breast tumor model.
Collapse
|
9
|
Ahmad O, Wang B, Ma K, Deng Y, Li M, Yang L, Yang Y, Zhao J, Cheng L, Zhou Q, Shang J. Lipid Modulating Anti-oxidant Stress Activity of Gastrodin on Nonalcoholic Fatty Liver Disease Larval Zebrafish Model. Int J Mol Sci 2019; 20:E1984. [PMID: 31018538 PMCID: PMC6515101 DOI: 10.3390/ijms20081984] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/13/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) is the most common chronic liver disease in the world. However, there are still no drugs for NAFLD/NASH in the market. Gastrodin (GAS) is a bioactive compound that is extracted from Gastrodia elata, which is used as an active compound on nervous system diseases. Recent reports showed that GAS and Gastrodia elata possess anti-oxidant activity and lipid regulating effects, which makes us curious to reveal the anti-NAFLD effect of GAS. A high cholesterol diet (HCD) was used to induce a NAFLD larval zebrafish model, and the lipid regulation and anti-oxidant effects were tested on the model. Furthermore, qRT-PCR studied the underlying mechanism of GAS. To conclude, this study revealed a lipid regulation and anti-oxidant insights of GAS on NAFLD larval zebrafish model and provided a potential therapeutic compound for NAFLD treatment.
Collapse
Affiliation(s)
- Owais Ahmad
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing 211198, China.
| | - Bing Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Kejian Ma
- The Institution of Yunnan Traditional Chinese Medicine and Materia Medical, Kunming 650223, China.
| | - Yang Deng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Maoru Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Liping Yang
- The Institution of Yunnan Traditional Chinese Medicine and Materia Medical, Kunming 650223, China.
| | - Yuqi Yang
- The Institution of Yunnan Traditional Chinese Medicine and Materia Medical, Kunming 650223, China.
| | - Jingyun Zhao
- The Institution of Yunnan Traditional Chinese Medicine and Materia Medical, Kunming 650223, China.
| | - Lijun Cheng
- Zhao Tong University, Zhaotong 657000, China.
| | - Qinyang Zhou
- College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Jing Shang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing 211198, China.
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
10
|
Hou W, Syn WK. Role of Metabolism in Hepatic Stellate Cell Activation and Fibrogenesis. Front Cell Dev Biol 2018; 6:150. [PMID: 30483502 PMCID: PMC6240744 DOI: 10.3389/fcell.2018.00150] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Activation of hepatic stellate cell (HSC) involves the transition from a quiescent to a proliferative, migratory, and fibrogenic phenotype (i.e., myofibroblast), which is characteristic of liver fibrogenesis. Multiple cellular and molecular signals which contribute to HSC activation have been identified. This review specially focuses on the metabolic changes which impact on HSC activation and fibrogenesis.
Collapse
Affiliation(s)
- Wei Hou
- Tianjin Second People's Hospital and Tianjin Institute of Hepatology, Tianjin, China.,Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.,Section of Gastroenterology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States
| |
Collapse
|
11
|
Ibrahim MA, Abdel-Aziz A, El-Sheikh A, Kamel M, Khalil AZ, Abdelhaleem H. Hepatic effect of sofosbuvir and daclatasvir in thioacetamide-induced liver injury in rats. Clin Exp Hepatol 2018; 4:175-181. [PMID: 30324142 PMCID: PMC6185925 DOI: 10.5114/ceh.2018.78121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/07/2018] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The study aimed at investigating the hepatic effect of direct acting anti-hepatitis C virus drugs (DAAs), sofosbuvir (Sof) and daclatasvir (Dac), in thioacetamide (TAA)-induced liver injury in rats. MATERIAL AND METHODS Animals were allocated to 7 groups: a normal control group, a TAA group (receiving TAA 50 mg/kg, i.p. twice weekly), two TAA groups receiving either a low or a high dose of Sof (Sof-L and Sof-H; 41.1 mg/kg and 82.2 mg/kg, respectively), two TAA groups receiving either a low or a high dose of Dac (Dac-L and Dac-H; 6.2 mg/kg and 12.4 mg/kg, respectively), and a TAA group receiving both Sof-L and Dac-L. RESULTS After 6 weeks, TAA significantly elevated the serum activities of liver enzymes, along with histopathological evidence of liver injury. These findings were associated with a significant increase in a fibrotic marker (tissue inhibitor metalloproteinase-1 - TIMP-1), proinflammatory cytokine (tumor necrosis factor alpha - TNF-α), and oxidative stress parameters (malondialdehyde [MDA] content, and superoxide dismutase [SOD] and catalase activities) in hepatic tissue. TAA rats treated with Sof-L, Dac-L, Dac-H and a combination of Sof-L plus Dac-L showed significant amelioration of TAA-induced liver injury. Their effects were accompanied by a significant reduction in TIMP-1, TNF-α and oxidative stress parameters in hepatic tissue. Interestingly, Sof-H caused no improvement in TAA-induced hepatic injury. CONCLUSIONS The hepatic effects of Sof and Dac in TAA-induced liver injury appeared to be mediated by anti-oxidant effects, and inhibition of TNF-α and TIMP-1.
Collapse
Affiliation(s)
| | | | | | - Maha Kamel
- Faculty of Medicine, Minia University, Egypt
| | | | | |
Collapse
|
12
|
Shrishrimal S, Kosmacek EA, Chatterjee A, Tyson MJ, Oberley-Deegan RE. The SOD Mimic, MnTE-2-PyP, Protects from Chronic Fibrosis and Inflammation in Irradiated Normal Pelvic Tissues. Antioxidants (Basel) 2017; 6:antiox6040087. [PMID: 29113120 PMCID: PMC5745497 DOI: 10.3390/antiox6040087] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023] Open
Abstract
Pelvic radiation for cancer therapy can damage a variety of normal tissues. In this study, we demonstrate that radiation causes acute changes to pelvic fibroblasts such as the transformation to myofibroblasts and the induction of senescence, which persist months after radiation. The addition of the manganese porphyrin, MnTE-2-PyP, resulted in protection of these acute changes in fibroblasts and this protection persisted months following radiation exposure. Specifically, at two months post-radiation, MnTE-2-PyP inhibited the number of α-smooth muscle actin positive fibroblasts induced by radiation and at six months post-radiation, MnTE-2-PyP significantly reduced collagen deposition (fibrosis) in the skin and bladder tissues of irradiated mice. Radiation also resulted in changes to T cells. At two months post-radiation, there was a reduction of Th1-producing splenocytes, which resulted in reduced Th1:Th2 ratios. MnTE-2-PyP maintained Th1:Th2 ratios similar to unirradiated mice. At six months post-radiation, increased T cells were observed in the adipose tissues. MnTE-2-PyP treatment inhibited this increase. Thus, MnTE-2-PyP treatment maintains normal fibroblast function and T cell immunity months after radiation exposure. We believe that one of the reasons MnTE-2-PyP is a potent radioprotector is due to its protection of multiple cell types from radiation damage.
Collapse
Affiliation(s)
- Shashank Shrishrimal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Elizabeth A Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Arpita Chatterjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - McDonald J Tyson
- Department of Physics & Cancer Research Center, Hampton University, Hampton, VA 23668, USA.
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|