1
|
Pan LP, Zhu L, Wang BX, Li YQ, Gao L, Zhao HH. Exploring natural therapy for chronic heart failure: experience in traditional Chinese medicine treatment before 2022. Front Med (Lausanne) 2025; 12:1522163. [PMID: 40265178 PMCID: PMC12013336 DOI: 10.3389/fmed.2025.1522163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/10/2025] [Indexed: 04/24/2025] Open
Abstract
Background Traditional Chinese medicine has great advantages in improving symptoms of CHF such as chest tightness, shortness of breath, and fatigue. In addition, some traditional Chinese medicines can be used as both medicine and food, which have good effects on the prevention and treatment of CHF patients at home. Method A comprehensive search across China National Knowledge Infrastructure (CNKI), Wanfang, and Wei Pu (VIP) databases was conducted to retrieve pre-2022 literature related to CHF. After standardization, frequency analysis and Apriori algorithm were used to analyze these data. Result Among 626 effective medical records, Fuling, Huangqi, and Danshen are the most commonly used herbs; The medication for chest tightness is closely related to Tinglizi; The medication for palpitations is closely related to Guizhi, Fuzi, Zhigancao, and Wuweizi; The medication of fatigue and poor appetite is closely related to Huangqi and Baizhu; The medication for lower limb edema is closely related to Fuling and Tinglizi; The medication for coughing is closely related to the use of Tinglizi, Wuweizi, Kuxingren, and Sangbaipi; Insomnia is closely related to Suanzaoren and Dazao. Conclusion The components in traditional Chinese medicine that have anti heart failure effects and reliable evidence can be potential candidates for drug discovery, while dietary therapeutic herbs such as Fuling, Huangqi, Danshen, and Zhigancao can be developed as health products.
Collapse
Affiliation(s)
- Li-Ping Pan
- Institute of Ethnic Medicine and Pharmacy, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lanxin Zhu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bing-Xue Wang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yi-Qi Li
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Li Gao
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Hui Hui Zhao
- Institute of Ethnic Medicine and Pharmacy, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Zhao F, Piao J, Song J, Geng Z, Chen H, Cheng Z, Cui R, Li B. Traditional Chinese herbal formula, Fuzi-Lizhong pill, produces antidepressant-like effects in chronic restraint stress mice through systemic pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119011. [PMID: 39486672 DOI: 10.1016/j.jep.2024.119011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzi-Lizhong pill (FLP) is a well-validated traditional Chinese medicine (TCM) formula that has long been used in China for gastrointestinal disease and adjunctive therapy for depression. In our previous study, we reported that the principal herb of FLP, Aconitum carmichaelii Debx. (Fuzi), exhibits antidepressant-like effects. However, there have been no reports on whether FLP produces antidepressant-like effects and its potential molecular mechanisms. AIM OF THE STUDY We aim to demonstrate the antidepressant-like effects of FLP in chronic restraint stress (CRS) mice and to explore the associated molecular mechanisms. MATERIALS AND METHODS The active components and probable molecular targets of FLP, as well as the targets related to depression, were identified through network pharmacology. A protein-protein interaction (PPI) network was generated using the overlapping targets, followed by the visualization as well as identification of the core targets associated with the antidepressant-like action of FLP. Subsequently, KEGG and GO enrichment analyses were conducted. UHPLC-MS/MS was employed to further detect the active compounds in FLP. Molecular docking was applied to assess the connections between the active components as well as the core targets. The efficacy of FLP in treating depression and its molecular mechanisms were examined using western blotting, ELISA, 16S rRNA sequencing, HE staining, Nissl staining, and Golgi-Cox staining in a CRS-induced mouse model. RESULTS Network pharmacology and UHPLC-MS/MS analyses indicated that the active compounds of FLP comprised taraxerol, songorine, neokadsuranic acid B, ginkgetin, hispaglabridin B, quercetin, benzoylmesaconine and liquiritin. KEGG pathway analysis implicated that the PI3K/Akt/mTOR as well as MAPK signaling pathways are closely related to the therapeutic effects of FLP on depression. Molecular docking analysis demonstrated that the main components of FLP bind to PI3K, AKT, mTOR, BDNF and MAPK. FLP significantly decreased immobility in mice that were elevated by CRS in the FST and the TST. FLP also significantly increased sucrose preference in mice after CRS in the SPT. FLP upregulated proteins associated with BDNF-TrkB and PI3K/Akt/mTOR signaling and downregulated proteins associated with MAPK signaling. Serum levels of CORT, IL-6, IL-1β, and TNF-α in CRS mice were significantly decreased following treatment with FLP. In addition, FLP ameliorated CRS-induced gut microbiota dysbiosis as demonstrated by 16S rRNA sequencing analysis. FLP ameliorated CRS-induced intestinal inflammation and neuronal damage. Finally, antidepressant-like effects and concomitant increases in dendritic spine density induced by FLP administration were also reduced after rapamycin treatment. CONCLUSION These results demonstrate that FLP has antidepressant-like effects in mice exposed to CRS that involve activation of the PI3K/Akt/mTOR signaling pathway, increase in spinogenesis, inhibition of the MAPK signaling pathway, decrease in inflammation, and amelioration of gut microbiota dysbiosis. These findings provide novel evidence for the clinical application of FLP on depression.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, PR China; Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China; Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-depressive Effect, Changchun, 130041, PR China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, PR China; Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China; Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-depressive Effect, Changchun, 130041, PR China
| | - Jinfang Song
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, PR China; Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China; Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-depressive Effect, Changchun, 130041, PR China
| | - Zihui Geng
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, PR China; Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China; Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-depressive Effect, Changchun, 130041, PR China
| | - Hongyu Chen
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, PR China; Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China; Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-depressive Effect, Changchun, 130041, PR China
| | - Ziqian Cheng
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, PR China; Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China; Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-depressive Effect, Changchun, 130041, PR China
| | - Ranji Cui
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, PR China; Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China; Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-depressive Effect, Changchun, 130041, PR China.
| | - Bingjin Li
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, PR China; Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China; Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-depressive Effect, Changchun, 130041, PR China.
| |
Collapse
|
3
|
Tian CY, Yang QR, Fan LX, Yang YM, Gao BW, Yang JB. Online identification of chemical constituents in Mongolian medicine Zhachong-13 pills by UHPLC-Q-exactive Orbitrap MS. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:47-61. [PMID: 39037411 DOI: 10.1080/10286020.2024.2379981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Zhachong-13 pills (ZC-13), as a traditional prescription of Mongolian medicine, are often used in the clinical practice of Mongolian hospitals for the treatment of stroke and rheumatic arthritis. In this experiment, UHPLC-Q-Exactive Orbitrap MS was used to explore the chemical composition of ZC-13. The results showed that 315 compounds were identified or inferred, including 56 alkaloids, 77 2-(2-phenylethyl)chromones, 61 flavonoids, 31 tannins, 8 coumarins, 16 lignans, 21 terpenoids, 5 amino acids, 19 organic acids, and 21 other components. In addition, the pharmacological activities related to anti-cerebral ischemia of these components were summarized. This result laid a foundation for further study on the pharmacodynamic material basis of ZC-13 and provided a scientific basis for the formulation of ZC-13 quality specifications.
Collapse
Affiliation(s)
- Cai-Yun Tian
- School of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou 014040, China
| | - Qing-Rui Yang
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Ling-Xuan Fan
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Yu-Mei Yang
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Bo-Wen Gao
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Jian-Bo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
4
|
Liu X, Song X, Zhang K, Wang P, Wang Y, Han G, Du Y, Pang M, Ming D. Insights on neuropharmacological benefits and risks: Aconitum carmichaelii Debx. Biomed Pharmacother 2024; 181:117669. [PMID: 39527885 DOI: 10.1016/j.biopha.2024.117669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Aconitum carmichaelii Debx., a traditional herb known for its potent bioactivities, has been widely used in Traditional Chinese Medicine, particularly in the forms of Chuanwu and Fuzi. Despite the therapeutic benefits of this plant, concerns have been raised regarding its neuropharmacological actions and potential neurotoxicity. This paper provides an in-depth analysis of the neuropharmacological effects, neurotoxicological mechanisms, and toxicity biomarkers of Aconitum roots. The neuropharmacological properties are linked to alterations in neurotransmitter synthesis and ion transport modulation, while the neurotoxic effects are primarily attributed to oxidative stress responses and the induction of mitochondrial apoptosis pathways. Through metabolomic profiling, we have identified several metabolic pathways affected by Aconitum roots, with a significant impact on tryptophan metabolism, which in turn influences cardiovascular and nervous system functions, liver detoxification, and energy metabolism. Furthermore, we discuss the modulation of ion channel protein activity, which is evidenced by recent studies, suggesting a critical role in the neurotoxic effects of Aconitum. An early detection strategy for toxicity biomarkers using metabonomics is proposed, emphasizing its crucial role in enhancing the diagnosis and treatment of Aconitum poisoning. It is recommended that regular monitoring of individuals at risk of Aconitum toxicity, including habitual consumers of TCM and accidental ingestion of the plant, be conducted in order to prevent toxic outcomes. This review emphasizes the importance of understanding the dual nature of Aconitum as both a therapeutic agent and a potential neurotoxin, aiming to optimize its clinical use and ensure patient safety.
Collapse
Affiliation(s)
- Xiuyun Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China; School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Song
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Kuo Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Peng Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Guoxin Han
- The Emergency Department of the Ninth Medical Center of PLA General Hospital, Anxiang Beili, Chaoyang District, Beijing 100020, China
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Meijun Pang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Dong Ming
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
5
|
Chai Y, He S, Liang D, Gu C, Gong Q, Long L, Chen P, Wang L. Mahuang Fuzi Xixin decoction: A potent analgesic for neuropathic pain targeting the NMDAR2B/CaMKIIα/ERK/CREB pathway. Heliyon 2024; 10:e35970. [PMID: 39211918 PMCID: PMC11357756 DOI: 10.1016/j.heliyon.2024.e35970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Neuropathic pain (NeP) is a condition charactesized by nervous system injury or dysfunction that affects a significant portion of the population. Current treatments are ineffective, highlighting the need for novel therapeutic approaches. Mahuang Fuzi Xixin decoction (MFXD) has shown promise for treating pain conditions in clinical practice; however, its potential against NeP and the underlying mechanisms remain unclear. This study identified 35 compounds in MFXD using ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS). The analgesic effects of MFXD on chronic constriction injury (CCI) rats were evaluated through the detection of mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). The analgesic effects of MFXD in rats with chronic constriction injury (CCI) were evaluated by measuring the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). Low-dose MFXD (L-MFXD) group (4.8 g/kg) and high-dose MFXD (H-MFXD) group (9.6 g/kg) exhibited significantly higher MWT and TWL values than the CCI group on days 11 and 15 post-CCI surgery, substantiating the remarkable analgesic efficacy of MFXD. Network pharmacology analysis identified 58 key targets enriched in pathways such as long-term potentiation (LTP) and glutamatergic synapse. The MCODE algorithm further identified core targets with significant enrichment in LTP. Molecular docking revealed that mesaconitine, rosmarinic acid, and delgrandine from MFXD exhibited high binding affinity with NMDAR2B (-11 kcal/mol), CaMKIIα (-14.3 kcal/mol), and ERK (-10.8 kcal/mol). Western blot and immunofluorescence confirmed that H-MFXD significantly suppressed the phosphorylation levels of NMDAR2B, CaMKIIα, ERK, and CREB in the spinal cord tissue of CCI rats. In conclusion, this study demonstrates that MFXD possesses potent analgesic effects on NeP by suppressing the NMDAR2B/CaMKIIα/ERK/CREB signalling pathway. This study unlocks a path toward potentially revolutionising NeP treatment with MFXD, encouraging further research and clinical development.
Collapse
Affiliation(s)
- Yihui Chai
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Siyu He
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Dayi Liang
- Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Haerbin, 150000, China
| | - Chunsong Gu
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Qian Gong
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Ling Long
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
6
|
Jiang H, Li X, Fan Y, Wang J, Xie Y, Yu P. The acute toxic effect of Chinese medicine Fuzi is exacerbated in kidney yang deficiency mice due to metabolic difference. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118036. [PMID: 38460575 DOI: 10.1016/j.jep.2024.118036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The proper application of toxic medicines is one of the characteristics of traditional Chinese medicines, and the use of traditional Chinese medicines follows the principle of dialectical treatment. It is necessary to combine different "syndrome" or "disease" states with the toxicity of traditional Chinese medicines to form a reliable toxicity evaluation system. Fuzi, the lateral root of Aconitum carmichaelii Debx, is recognized as a panacea for kidney yang deficiency syndrome, however, its toxic effects significantly limit its clinical application. AIM OF THE STUDY Herein, our research aimed to explore the toxic effects of Fuzi on syndrome models, and tried to reveal the underlying mechanisms. MATERIALS AND METHODS Firstly, the mouse model of kidney yang deficiency syndrome was established through intramuscular injection of 25 mg/kg hydrocortisone per day for 10 consecutive days. Then, the acute toxicity of Fuzi in normal mice and kidney yang deficiency model mice was explored. Finally, the plasma metabolite concentrations and liver CYP3A4 enzyme activity were analyzed to reveal the possible mechanisms of the different pharmacological and toxicological effects of Fuzi in individuals with different physical constitutions. RESULTS It was found that the treatment with Fuzi (138 g/kg) had serious toxic effects on kidney yang deficiency mice, leading to the death of 80% of the mice, whereas it showed no lethal toxicity in normal mice. This indicates that Fuzi induced greater toxicity in kidney yang deficiency mice than in normal ones. The liver CYP3A4 enzyme activity in kidney yang deficiency mice was decreased by 20% compared to the controls, resulting in slower metabolism of the toxic diester diterpenoid alkaloids in Fuzi. CONCLUSION In conclusion, our study showed that changes of the metabolic enzyme activity in individuals with different syndromes led to different toxic effects of Chinese medicines, emphasizing the crucial importance of considering individual physical syndromes in the clinical application of traditional Chinese medicine, and the significance of conducting safety evaluations and dose predictions on animal models with specific syndromes for traditional Chinese medicines.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Toxicology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xiaoyu Li
- Department of Toxicology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yang Fan
- Department of Toxicology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Junjie Wang
- Department of Toxicology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yiyi Xie
- Department of Toxicology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Peilin Yu
- Department of Toxicology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| |
Collapse
|
7
|
Lin X, Zhang J, Wu Z, Shi Y, Chen M, Li M, Hu H, Tian K, Lv X, Li C, Liu Y, Gao X, Yang Q, Chen K, Zhu A. Involvement of autophagy in mesaconitine-induced neurotoxicity in HT22 cells revealed through integrated transcriptomic, proteomic, and m6A epitranscriptomic profiling. Front Pharmacol 2024; 15:1393717. [PMID: 38939838 PMCID: PMC11208636 DOI: 10.3389/fphar.2024.1393717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Background: Mesaconitine (MA), a diester-diterpenoid alkaloid extracted from the medicinal herb Aconitum carmichaelii, is commonly used to treat various diseases. Previous studies have indicated the potent toxicity of aconitum despite its pharmacological activities, with limited understanding of its effects on the nervous system and the underlying mechanisms. Methods: HT22 cells and zebrafish were used to investigate the neurotoxic effects of MA both in vitro and in vivo, employing multi-omics techniques to explore the potential mechanisms of toxicity. Results: Our results demonstrated that treatment with MA induces neurotoxicity in zebrafish and HT22 cells. Subsequent analysis revealed that MA induced oxidative stress, as well as structural and functional damage to mitochondria in HT22 cells, accompanied by an upregulation of mRNA and protein expression related to autophagic and lysosomal pathways. Furthermore, methylated RNA immunoprecipitation sequencing (MeRIP-seq) showed a correlation between the expression of autophagy-related genes and N6-methyladenosine (m6A) modification following MA treatment. In addition, we identified METTL14 as a potential regulator of m6A methylation in HT22 cells after exposure to MA. Conclusion: Our study has contributed to a thorough mechanistic elucidation of the neurotoxic effects caused by MA, and has provided valuable insights for optimizing the rational utilization of traditional Chinese medicine formulations containing aconitum in clinical practice.
Collapse
Affiliation(s)
- Xiaohuang Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jian Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zekai Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuan Shi
- State Key Laboratory of Mariculture Breeding, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengting Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Maodong Li
- Shenzhen Bay Laboratory, Institute of Systems and Physical Biology, Shenzhen, China
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Kun Tian
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaoqi Lv
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Chutao Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yang Liu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xinyue Gao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qiaomei Yang
- Department of Gynecology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, China
| | - Kunqi Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Chen L, Hu Y, Huang L, Chen L, Duan X, Wang G, Ou H. Comparative transcriptome revealed the molecular responses of Aconitum carmichaelii Debx. to downy mildew at different stages of disease development. BMC PLANT BIOLOGY 2024; 24:332. [PMID: 38664645 PMCID: PMC11044490 DOI: 10.1186/s12870-024-05048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Aconitum carmichaelii Debx. has been widely used as a traditional medicinal herb for a long history in China. It is highly susceptible to various dangerous diseases during the cultivation process. Downy mildew is the most serious leaf disease of A. carmichaelii, affecting plant growth and ultimately leading to a reduction in yield. To better understand the response mechanism of A. carmichaelii leaves subjected to downy mildew, the contents of endogenous plant hormones as well as transcriptome sequencing were analyzed at five different infected stages. RESULTS The content of 3-indoleacetic acid, abscisic acid, salicylic acid and jasmonic acid has changed significantly in A. carmichaelii leaves with the development of downy mildew, and related synthetic genes such as 9-cis-epoxycarotenoid dioxygenase and phenylalanine ammonia lyase were also significant for disease responses. The transcriptomic data indicated that the differentially expressed genes were primarily associated with plant hormone signal transduction, plant-pathogen interaction, the mitogen-activated protein kinase signaling pathway in plants, and phenylpropanoid biosynthesis. Many of these genes also showed potential functions for resisting downy mildew. Through weighted gene co-expression network analysis, the hub genes and genes that have high connectivity to them were identified, which could participate in plant immune responses. CONCLUSIONS In this study, we elucidated the response and potential genes of A. carmichaelii to downy mildew, and observed the changes of endogenous hormones content at different infection stages, so as to contribute to the further screening and identification of genes involved in the defense of downy mildew.
Collapse
Affiliation(s)
- Lijuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiwen Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Long Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianglei Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guangzhi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Hong Ou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
9
|
Xiang G, Guo S, Qin J, Gao H, Zhang Y, Wang S. Comprehensive insight into the pharmacology, pharmacokinetics, toxicity, detoxification and extraction of hypaconitine from Aconitum plants. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117505. [PMID: 38016573 DOI: 10.1016/j.jep.2023.117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypaconitine (HA), a diterpenoid alkaloid, mainly derived from Aconitum plants such as Acoitum carmichaeli Debx. And Aconitum nagarum Stapf., has recently piqued significant interest among the scientific community given its multifaceted attributes including anti-inflammatory, anticancer, analgesic, and cardio-protective properties. AIM OF THE STUDY This review presents a comprehensive exploration of the research advancements regarding the traditional uses, pharmacology, pharmacokinetics, toxicity, and toxicity reduction of HA. It aims to provide a thorough understanding of HA's multifaceted properties and its potential applications in various fields. MATERIALS AND METHODS A systematic literature search was conducted using several prominent databases including PubMed, Web of Science, NCBI, and CNKI. The search was performed using specific keywords such as "hypaconitine," "heart failure," "anti-inflammatory," "aconite decoction," "pharmacological," "pharmacokinetics," "toxicity," "detoxification or toxicity reduction," and "extraction and isolation." The inclusion of these keywords ensured a comprehensive exploration of relevant studies and enabled the retrieval of valuable information pertaining to the various aspects of HA. RESULTS Existing research has firmly established that HA possesses a range of pharmacological effects, encompassing anti-cardiac failure, anti-inflammatory, analgesic, and anti-tumor properties. The therapeutic potential of HA is promising, with potential applications in heart failure, ulcerative colitis, cancer, and other diseases. Pharmacokinetic studies suggest that HA exhibits high absorption rates, broad distribution, and rapid metabolism. However, toxic effects of HA on the nerves, heart, and embryos have also been observed. To mitigate these risks, HA needs attenuation before use, with the most common detoxification methods being processing and combined use with other drugs. Extraction methods for HA most commonly include cold maceration, soxhlet reflux extraction, and ultrasonic-assisted extraction. Despite the potential therapeutic benefits of HA, further research is warranted to elucidate its anti-heart failure effects, particularly in vivo, exploring aspects such as in vivo metabolism, distribution, and metabolites. Additionally, the therapeutic effects of HA monomers on inflammation-induced diseases and tumors should be validated in a more diverse range of experimental models, while the mechanisms underlying the therapeutic effects of HA should be investigated in greater detail. CONCLUSION This review serves to emphasize the therapeutic potential of HA and highlights the crucial need to address its toxicity concerns before considering clinical application. Further research is required to comprehensively investigate the pharmacological properties of HA, with particular emphasis on its anti-cardiac failure and anti-inflammatory activities. Such research endeavors have the potential to unveil novel treatment avenues for a broad spectrum of diseases.
Collapse
Affiliation(s)
- Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jing Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Huimin Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| |
Collapse
|
10
|
Zyuz'kov GN, Losev EA, Suslov NI, Miroshnichenko LA, Polyakova TY, Simanina EV, Stavrova LA, Agafonov VI, Danilets MG, Zhdanov VV. Features of Intracellular Signal Transduction in Neural Stem Cells under the Influence of Alkaloid Songorine, an Agonist of Fibroblast Growth Factor Receptors. Bull Exp Biol Med 2024; 176:576-580. [PMID: 38724808 DOI: 10.1007/s10517-024-06070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 05/18/2024]
Abstract
We performed a comparative in vitro study of the involvement of NF-κB, PI3K, cAMP, ERK1/2, p38, JAKs, STAT3, JNK, and p53-dependent intracellular signaling in the functioning of neural stem cells (NSC) under the influence of basic fibroblast growth factor (FGF) and FGF receptor agonist, diterpene alkaloid songorine. The significant differences in FGFR-mediated intracellular signaling in NSC were revealed for these ligands. In both cases, stimulation of progenitor cell proliferation occurs with the participation of NF-κB, PI3K, ERK1/2, JAKs, and STAT3, while JNK and p53, on the contrary, inhibit cell cycle progression. However, under the influence of songorin, cAMP- and p38-mediated cascades are additionally involved in the transmission of the NSC division-activating signal. In addition, unlike FGF, the alkaloid stimulates progenitor cell differentiation by activating ERK1/2, p38, JNK, p53, and STAT3.
Collapse
Affiliation(s)
- G N Zyuz'kov
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - E A Losev
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - N I Suslov
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - L A Miroshnichenko
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - T Yu Polyakova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - E V Simanina
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - L A Stavrova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - V I Agafonov
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - M G Danilets
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - V V Zhdanov
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
11
|
Uddin MJ, Niloy SI, Aktaruzzaman M, Talukder MEK, Rahman MM, Imon RR, Uddin AFMS, Amin MZ. Neuropharmacological assessment and identification of possible lead compound (apomorphine) from Hygrophila spinosa through in-vivo and in-silico approaches. J Biomol Struct Dyn 2024:1-16. [PMID: 38385482 DOI: 10.1080/07391102.2024.2317974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The aim of this research is to examine possible neurological activity of methanol, ethyl acetate, and aqueous extracts of Hygrophila spinosa and identify possible lead compounds through in silico analysis. In vivo, neuropharmacological activity was evaluated by using four distinct neuropharmacological assessment assays. Previously reported GC-MS data and earlier literature were utilized to identify the phytochemicals present in Hygrophila spinosa. Computational studies notably molecular docking and molecular dynamic simulations were conducted with responsible receptors to assess the stability of the best interacting compound. Pharmacokinetics properties like absorption, distribution, metabolism, excretion, and toxicity were considered to evaluate the drug likeliness properties of the identified compounds. All the in vivo results support the notion that different extracts (methanol, ethyl acetate, and aqueous) of Hygrophila spinosa have significant (*p = 0.05) sedative-hypnotic, anxiolytic, and anti-depressant activity. Among all the extracts, specifically methanol extracts of Hygrophila spinosa (MHS 400 mg/kg.b.w.) showed better sedative, anxiolytic and antidepressant activity than aqueous and ethyl acetate extracts. In silico molecular docking analysis revealed that among 53 compounds 7 compounds showed good binding affinities and one compound, namely apomorphine (CID: 6005), surprisingly showed promising binding affinity to all the receptors . An analysis of molecular dynamics simulations confirmed that apomorphine (CID: 6005) had a high level of stability at the protein binding site. Evidence suggests that Hygrophila spinosa has significant sedative, anxiolytic, and antidepressant activity. In silico analysis revealed that a particular compound (apomorphine) is responsible for this action. Further research is required in order to establish apomorphine as a drug for anxiety, depression, and sleep disorders.
Collapse
Affiliation(s)
- Mohammad Jashim Uddin
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Clinical Pharmacy and Pharmacology. Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
| | | | - Md Aktaruzzaman
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Clinical Pharmacy and Pharmacology. Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Enamul Kabir Talukder
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Mashiar Rahman
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Raihan Rahman Imon
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - A F M Shahab Uddin
- Department of Computer Science and Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Ziaul Amin
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
12
|
Mares C, Udrea AM, Buiu C, Staicu A, Avram S. Therapeutic Potentials of Aconite-like Alkaloids: Bioinformatics and Experimental Approaches. Mini Rev Med Chem 2024; 24:159-175. [PMID: 36994982 DOI: 10.2174/1389557523666230328153417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 03/31/2023]
Abstract
Compounds from plants that are used in traditional medicine may have medicinal properties. It is well known that plants belonging to the genus Aconitum are highly poisonous. Utilizing substances derived from Aconitum sp. has been linked to negative effects. In addition to their toxicity, the natural substances derived from Aconitum species may have a range of biological effects on humans, such as analgesic, anti-inflammatory, and anti-cancer characteristics. Multiple in silico, in vitro, and in vivo studies have demonstrated the effectiveness of their therapeutic effects. In this review, the clinical effects of natural compounds extracted from Aconitum sp., focusing on aconitelike alkaloids, are investigated particularly by bioinformatics tools, such as the quantitative structure- activity relationship method, molecular docking, and predicted pharmacokinetic and pharmacodynamic profiles. The experimental and bioinformatics aspects of aconitine's pharmacogenomic profile are discussed. Our review could help shed light on the molecular mechanisms of Aconitum sp. compounds. The effects of several aconite-like alkaloids, such as aconitine, methyllycacintine, or hypaconitine, on specific molecular targets, including voltage-gated sodium channels, CAMK2A and CAMK2G during anesthesia, or BCL2, BCL-XP, and PARP-1 receptors during cancer therapy, are evaluated. According to the reviewed literature, aconite and aconite derivatives have a high affinity for the PARP-1 receptor. The toxicity estimations for aconitine indicate hepatotoxicity and hERG II inhibitor activity; however, this compound is not predicted to be AMES toxic or an hERG I inhibitor. The efficacy of aconitine and its derivatives in treating many illnesses has been proven experimentally. Toxicity occurs as a result of the high ingested dose; however, the usage of this drug in future research is based on the small quantity of an active compound that fulfills a therapeutic role.
Collapse
Affiliation(s)
- Catalina Mares
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| | - Ana-Maria Udrea
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, Magurele, 077125, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, 50567, Romania
| | - Catalin Buiu
- Department of Automatic Control and Systems Engineering, Politehnica University of Bucharest, Bucharest, 060042, Romania
| | - Angela Staicu
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, Magurele, 077125, Romania
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| |
Collapse
|
13
|
Chen Q, Deng X, Zhang K, Kang Y, Jiao M, Zhang J, Wang C, Li F. Changes to PUFA-PPAR pathway during mesaconitine induced myocardial coagulative necrosis. Food Chem Toxicol 2023; 177:113831. [PMID: 37182599 DOI: 10.1016/j.fct.2023.113831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Coagulation necrosis is characterized by the denaturation of structural proteins and lysosomal enzymes; its occurrence in myocardium can lead to heart failure. Current studies on myocardial injury primarily focus on inflammation, hypertrophy, and hemorrhage, while those on myocardial coagulation necrosis are still limited. Mesaconitine (MA), a C19 diester diterpenoid alkaloid derived from Aconitum carmichaelii Debx, has strong cardiotoxicity. During this study, the myocardial cells of SD rats showed significant coagulative necrosis after 6 days of oral administration of MA at a dose of 1.2 mg/kg/day. Investigations of its biological mechanism showed abnormal levels of polyunsaturated fatty acids (PUFAs) and Peroxisome proliferator activated receptors Alpha (PPARα) pathway related protein. Moreover, MA affected the PPARα signaling pathway through interactions with proteins such as POR, TFAM and GPD1, indirectly indicating that these above proteins are important targets for blocking myocardial coagulative necrosis. This study thus discusses the effects of the use of cardiotoxic compound, MA, to initiate myocardial coagulative necrosis and its associated toxic mechanisms.
Collapse
Affiliation(s)
- Qian Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China.
| | - Xinqi Deng
- School of Life Sciences, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China.
| | - Kai Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China.
| | - Yingquan Kang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China.
| | - Mingjie Jiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China.
| | - Jia Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China.
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China.
| | - Fei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China.
| |
Collapse
|
14
|
Li X, Hou W, Lin T, Ni J, Qiu H, Fu Y, Zhao Z, Yang C, Li N, Zhou H, Zhang R, Liu Z, Fu L, Zhu L. Neoline, fuziline, songorine and 10-OH mesaconitine are potential quality markers of Fuzi: In vitro and in vivo explorations as well as pharmacokinetics, efficacy and toxicity evaluations. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115879. [PMID: 36370966 DOI: 10.1016/j.jep.2022.115879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzi, the lateral roots of Aconitum carmichaelii Debx, plays an irreplaceable role in treating Yang deficiency and cold coagulation syndromes. However, Fuzi has a narrow margin of safety since its pharmacological constituents, Aconitum alkaloids, have potential cardiotoxicity and neurotoxicity. The current quality markers (Q-markers) for the control of Fuzi's efficacy and toxicity are 3 monoester-diterpenoid alkaloids, namely, benzoylaconine (BAC), benzoylhypaconine and benzoylmesaconine (BMA) and 3 diester-diterpenoid alkaloids, namely, aconitine (AC), hypaconitine and mesaconitine (MA). However, mounting evidence indicates that the current 6 Q-markers may not be efficacy- or toxicity-specific enough for Fuzi. AIM OF THE STUDY The aim of this study was to explore and evaluate efficacy- or toxicity-specific potential quality markers (PQ-markers) of Fuzi. MATERIALS AND METHODS PQ-markers were explored by analyzing 30 medicinal samples and alkaloids exposed in mouse. Pharmacokinetics of PQ-markers on C57BL/6J mice were determined. Anti-inflammatory effects of PQ-markers were evaluated by λ-carrageenan-induced paw edema model and lipopolysaccharide-induced RAW264.7 cell inflammatory model, while analgesic effects were assessed by acetic acid-induced pain model and Hargreaves test. Cardiotoxicity and neurotoxicity of PQ-markers were assessed by histological and biochemical analyses, while acute toxicity was evaluated by modified Kirschner method. RESULTS After in vitro and in vivo explorations, 7 PQ-markers, namely, neoline (NE), fuziline (FE), songorine (SE), 10-OH mesaconitine (10-OH MA), talatizamine, isotalatizidine and 16β-OH cardiopetalline, were found. In the herbal medicines, NE, FE, SE and 10-OH MA were found in greater abundance than many other alkaloids. Specifically, the amounts of NE, FE and SE in the Fuzi samples were all far higher than that of BAC, and the contents of 10-OH MA in 56.67% of the samples were higher than that of AC. In mouse plasma and tissues, NE, FE, SE, talatizamine, isotalatizidine and 16β-OH cardiopetalline had higher contents than the other alkaloids, including the 6 current Q-markers. The pharmacokinetics, efficacy and toxicity of NE, FE, SE and 10-OH MA were further evaluated. The average oral bioavailabilities of NE (63.82%), FE (18.14%) and SE (49.51%) were higher than that of BMA (3.05%). Additionally, NE, FE and SE produced dose-dependent anti-inflammatory and analgesic effects, and their actions were greater than those of BMA. Concurrently, the toxicities of NE, FE and SE were lower than those of BMA, since no cardiotoxicity or neurotoxicity was found in mice after NE, FE and SE treatment, while BMA treatment notably increased the creatine kinase activity and matrix metalloproteinase 9 level in mice. The average oral bioavailability of 10-OH MA (7.02%) was higher than that of MA (1.88%). The median lethal dose (LD50) of 10-OH MA in mice (0.11 mg/kg) after intravenous injection was close to that of MA (0.13 mg/kg). Moreover, 10-OH MA produced significant cardiotoxicity and neurotoxicity, and notable anti-inflammatory and analgesic effects that were comparable to those of MA. CONCLUSIONS Seven PQ-markers of Fuzi were found after in vitro and in vivo explorations. Among them, NE, FE and SE were found to be more efficacy-specific than BMA, and 10-OH MA was as toxicity-specific as MA.
Collapse
Affiliation(s)
- Xiaocui Li
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Weiqing Hou
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tingting Lin
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiadong Ni
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huawei Qiu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu Fu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongxiang Zhao
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Caihua Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Hua Zhou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Rong Zhang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongqiu Liu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ling Fu
- Huizhou Hosptial of Guangzhou University of Chinese Medicine, Huizhou, 516000, China.
| | - Lijun Zhu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Li B, Tao X, Sheng L, Li Y, Zheng N, Li H. Divergent impacts on the gut microbiome and host metabolism induced by traditional Chinese Medicine with Cold or Hot properties in mice. Chin Med 2022; 17:144. [PMID: 36572936 PMCID: PMC9793677 DOI: 10.1186/s13020-022-00697-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/06/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Traditional Chinese Medicine (TCM) has been practiced and developed in China over thousands of years under the guidance of a series of complicated traditional theories. Herbs within TCM usually are classified according to their different properties ranging from cold, cool, warm to hot, which are simplified as Cold and Hot properties. TCM with either Cold or Hot properties are used in various formulae designed for the purpose of restoring the balance of patients. Emerging evidence has highlighted that an altered gut microbiota or host metabolism are critically involved in affecting the healing properties of TCM. However, at present the exact influences and crosstalk on the gut microbiota and host metabolism remain poorly understood. METHODS In the present study, the divergent impacts of six TCMs with either Cold or Hot properties on gut microbiome and host metabolism during short- or long-term intervention in mice were investigated. Six typical TCMs with Hot or Cold properties including Cinnamomi Cortex (rougui, RG), Zingiberis Rhizoma (ganjiang, GJ), Aconiti Lateralis Radix Praeparata (fuzi, FZ), Rhei Radix et Rhizoma (dahuang, DH), Scutellariae Radix (huangqin, HQ), and Copitdis Rhizoma (huanglian, HL) were selected and orally administered to male C57BL/6J mice for a short- or a long-term (7 or 35 days). At the end of experiments, serum and cecal contents were collected for metabolomic and gut microbiome analyses using gas chromatography-tandem mass spectrometry (GC-MS) or 16S ribosomal deoxyribonucleic acid (16S rDNA) sequencing. RESULTS The results revealed that the gut microbiome underwent divergent changes both in its composition and functions after short-term intervention with TCM possessing either Cold or Hot properties. Interestingly, the number of changed genus and bacteria pathways was reduced in Hot_LT, but was increased in Cold_LT, especially in the HL group. Increased α diversity and a reduced F/B ratio revealed the changes in Hot_ST, but a reduced Shannon index and increased altered bacteria function was evident in Cold_LT. The serum metabolic profile showed that the influence of TCM on host metabolism was gradually reduced over time. Glycolipid metabolism related pathways were specifically regulated by Hot_ST, but also surprisingly by Cold_LT. Reduced lactic acid in Cold_ST, increased tryptophan concentrations and decreased proline and threonine concentrations in Cold_LT perhaps highlighting the difference between the two natures influence on serum metabolism. These metabolites were closely correlated with altered gut microbiota shown by further correlation analyses. CONCLUSION The results indicated that TCM properties could be, at least partially characterized by an alteration in the gut microbiota and metabolic profile, implying that the divergent responses of gut microbiome and host metabolism are involved in different responses to TCM.
Collapse
Affiliation(s)
- Bingbing Li
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China ,grid.494629.40000 0004 8008 9315School of Life Science, Westlake University, Hangzhou, 310000 China
| | - Xin Tao
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Lili Sheng
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Yan Li
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Ningning Zheng
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Houkai Li
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
16
|
Wu Y, Liu Y, Zhang L, Wen L, Xie Y. Aconiti lateralis radix praeparata total alkaloids exert anti-RA effects by regulating NF-κB and JAK/STAT signaling pathways and promoting apoptosis. Front Pharmacol 2022; 13:980229. [PMID: 36120302 PMCID: PMC9478898 DOI: 10.3389/fphar.2022.980229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 11/14/2022] Open
Abstract
Aconiti Lateralis Radix Praeparata (“Fuzi” in Chinese) is one of the traditional herbs widely used to intervene rheumatoid arthritis (RA), while Fuzi total alkaloids (FTAs) are the main bioactive components. However, the treatment targets and specific mechanisms of FTAs against RA have not been fully elucidated. The purpose of the present study was to confirm the anti-rheumatism effects of FTAs and reveal its potential molecular mechanisms. In TNF-α-induced MH7A cells model, we found that FTAs showed inhibitory effects on proliferation. While, FTAs significantly decreased the expression levels of IL-1β, IL-6, MMP-1, MMP-3, PGE2, TGF-β, and VEGF. FTAs also enhanced the progress of apoptosis and arrested the cell cycle at G0/G1 phase to prevent excessive cell proliferation. In addition, FTAs inhibited the hyperactivity of NF-κB and JAK/STAT signaling pathways, and regulated the cascade reaction of mitochondrial apoptosis signaling pathway. The results suggested that FTAs exerted anti-inflammatory effects by inhibiting NF-κB and JAK/STAT signaling pathways, promoted apoptosis by stimulating mitochondrial apoptosis signaling pathway, and inhibited cell proliferation by modulating cell cycle progression.
Collapse
Affiliation(s)
- Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi Liu
- Department of Pharmacy, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Lele Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu, Sichuan, China
| | - Lan Wen
- Department of Digestion and Endocrinology, Sichuan Provincial People’s Hospital Jinniu Hospital, Chengdu, Sichuan, China
| | - Yunfei Xie
- Department of Nuclear Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- *Correspondence: Yunfei Xie,
| |
Collapse
|
17
|
An J, Fan H, Han M, Peng C, Xie J, Peng F. Exploring the mechanisms of neurotoxicity caused by fuzi using network pharmacology and molecular docking. Front Pharmacol 2022; 13:961012. [PMID: 36110545 PMCID: PMC9468872 DOI: 10.3389/fphar.2022.961012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Safety has always been an important issue affecting the development of traditional Chinese medicine industry, especially for toxic medicinal materials, the establishment of risk prevention and control measures for toxic herbs is of great significance to improving the use of traditional Chinese medicine in clinical. Fuzi is a kind of traditional Chinese medicine and its toxicity has become the most important obstacle of limit in clinical using. In this paper, network pharmacology and molecular docking technology were used to analyze the main toxic components of Fuzi, the key targets and the mechanism of neurotoxicity. We carried out CCK-8 and WB assays, and detected LDH release and SDH activity. It was verified that aconitine caused neurotoxicity through a variety of pathways, including MAPK signaling pathway, pathways related to Akt protein, destruction of cell membrane integrity, damage of mitochondrial function affecting energy metabolism and apoptosis. What’s more, this study confirmed that aconitine could produce neurotoxicity by promoting apoptosis of hippocampus neuron and decreasing its quantity through Nissl Staining and TUNEL assay. This paper found and confirmed multiple targets and various pathways causing neurotoxicity of Fuzi, in order to provide reference for clinical application and related research.
Collapse
Affiliation(s)
- Junsha An
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Huali Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Mingyu Han
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng, ; Jie Xie,
| | - Jie Xie
- College of Life Science, Sichuan Normal University, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng, ; Jie Xie,
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng, ; Jie Xie,
| |
Collapse
|
18
|
Chen J, Cong L, Zhou R, Li Z, Piao J, Hao N. Identification and Characterization of Sclerotium delphinii Causing Southern Blight on Aconitum kusnezoffii in Northeast China. PLANT DISEASE 2022; 106:2031-2038. [PMID: 35124993 DOI: 10.1094/pdis-10-21-2281-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aconitum kusnezoffii is a perennial medicinal plant that belongs to the Ranunculaceae family and is distributed mainly in Northeast and North China. In July 2018, a typical southern blight disease of A. kusnezoffii was observed in commercial fields of Qingyuan County, Fushun City, Liaoning Province, China. The fungus mainly infected stem base and tuberous roots of the plant by wrapping the hyphae and absorbing nutrition, resulting in tuberous root wilted or whole plant death. Morphological characteristics of colony and sclerotia of three representative strains isolated from the diseased plants differed from those of Sclerotium rolfsii isolated from A. carmichaelii. Sclerotia were large (0.8 to 5.1 mm), reddish-brown, and irregular and had pitted surfaces, and the hyphae were white, compact, or fluffy, with a growth rate ranging from 8.0 to 10.1 mm/day. Phylogenetic analysis of the internal transcribed spacer and the large subunit sequences of Akln6, Akln9, and Akln15 showed that three strains isolated from A. kusnezoffii formed a unique and well-supported clade that groups with the reference isolates of S. delphinii. Based on phylogenetic analysis and cultural and morphological characteristics, the three isolates of A. kusnezoffii were identified as S. delphinii. The optimum temperature for mycelial growth of the three tested isolates was 30°C, and sclerotia formed and matured more easily at 20°C. Light promoted the growth of mycelial, whereas dark was beneficial to the formation and maturation of sclerotia. The pathogenicity of S. delphinii showed stronger than S. rolfsii at low temperature (20°C). This is the first report of S. delphinii causing southern blight on A. kusnezoffii in China, and this finding provides a basis for disease-accurate diagnosis and the development of effective management strategies.
Collapse
Affiliation(s)
- Jipeng Chen
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Liyuan Cong
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Rujun Zhou
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zibo Li
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jingzi Piao
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ning Hao
- Department of Cultivation and Identification of Medicinal Herbs, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
19
|
Study on the Mechanism of Mesaconitine-Induced Hepatotoxicity in Rats Based on Metabonomics and Toxicology Network. Toxins (Basel) 2022; 14:toxins14070486. [PMID: 35878224 PMCID: PMC9322933 DOI: 10.3390/toxins14070486] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Mesaconitine (MA), one of the main diterpenoid alkaloids in Aconitum, has a variety of pharmacological effects, such as analgesia, anti-inflammation and relaxation of rat aorta. However, MA is a highly toxic ingredient. At present, studies on its toxicity are mainly focused on the heart and central nervous system, and there are few reports on the hepatotoxic mechanism of MA. Therefore, we evaluated the effects of MA administration on liver. SD rats were randomly divided into a normal saline (NS) group, a low-dose MA group (0.8 mg/kg/day) and a high-dose MA group (1.2 mg/kg/day). After 6 days of administration, the toxicity of MA on the liver was observed. Metabolomic and network toxicology methods were combined to explore the effect of MA on the liver of SD rats and the mechanism of hepatotoxicity in this study. Through metabonomics study, the differential metabolites of MA, such as L-phenylalanine, retinyl ester, L-proline and 5-hydroxyindole acetaldehyde, were obtained, which involved amino acid metabolism, vitamin metabolism, glucose metabolism and lipid metabolism. Based on network toxicological analysis, MA can affect HIF-1 signal pathway, MAPK signal pathway, PI3K-Akt signal pathway and FoxO signal pathway by regulating ALB, AKT1, CASP3, IL2 and other targets. Western blot results showed that protein expression of HMOX1, IL2 and caspase-3 in liver significantly increased after MA administration (p < 0.05). Combined with the results of metabonomics and network toxicology, it is suggested that MA may induce hepatotoxicity by activating oxidative stress, initiating inflammatory reaction and inducing apoptosis.
Collapse
|
20
|
A New C19-Diterpenoid Alkaloid from Salted Aconiti Lateralis Radix Praeparata. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Fu YP, Zou YF, Lei FY, Wangensteen H, Inngjerdingen KT. Aconitum carmichaelii Debeaux: A systematic review on traditional use, and the chemical structures and pharmacological properties of polysaccharides and phenolic compounds in the roots. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115148. [PMID: 35240238 DOI: 10.1016/j.jep.2022.115148] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconitum carmichaelii, belonging to the Ranunculaceae family, is a widely used traditional herbal plant in Asian countries, especially in China. The lateral ("Fuzi") and mother ("Chuanwu") roots are the two main plant parts used in Traditional Chinese Medicine (TCM), where they are used in the treatment of acute myocardial infarction, heart failure, rheumatoid arthritis, and as analgesics. AIM OF THE STUDY In order to further guide the research direction and application of A. carmichaelii, this study aims to give a systematic and in-depth overview on the phytochemical and pharmacological studies of non-alkaloid natural products with focus on polysaccharides and phenolic compounds. MATERIALS AND METHODS A comprehensive search in the literature was conducted based on the databases Google Scholar, SciFinder (American Chemical Society), Springer Link, PubMed Science, Science Direct and China National Knowledge Internet, Wanfang Data, in addition to books, doctoral and master's dissertations, and official website. The main keywords were: "Aconitum carmichaelii", "Aconiti Lateralis Radix Praeparata", "Fuzi", "Chuanwu", "Aconiti Radix", "monkshood" and "Bushi". RESULTS A. carmichaelii is known for the use of its different root parts, including "Fuzi" and "Chuanwu". Different types of polysaccharides, both neutral and acidic, and 39 phenolic compounds like flavonoids, phenylpropanoids, lignans, neolignans, and benzoic acid derivatives have been isolated and identified from the roots. Pharmacological studies of the isolated polysaccharides have demonstrated various biological effects such as hypoglycemic, hypolipidemic, cardiovascular, immunomodulatory, anti-tumor, and neuropharmacological activities. Studies on pharmacological effects of the phenolic compounds isolated from the roots are however limited. CONCLUSIONS This review shows that polysaccharides could be one of the active components in the roots of A. carmichaelii, and they are promising for future applications due to their pharmacological properties. In addition, polysaccharides are generally non-toxic, biocompatible, and biodegradable. This review also sheds light on new research directions for A. carmichaelii. A more detailed structural characterization of polysaccharides from different root parts of A. carmichaelii, and their structure-activity relationships are required. Additionally, their pharmacological properties as immunomodulators in the intestinal system should be investigated. Further, more knowledge about the pharmacological effects and molecular mechanisms of the phenolic compounds that have been identified are needed.
Collapse
Affiliation(s)
- Yu-Ping Fu
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316, Oslo, Norway.
| | - Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Wenjiang, PR China
| | - Fei-Yi Lei
- Department of Systematic and Evolutionary Botany, University of Zurich, 8008, Zürich, Switzerland
| | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316, Oslo, Norway
| | - Kari Tvete Inngjerdingen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316, Oslo, Norway
| |
Collapse
|
22
|
Lu H, Mei L, Guo Z, Wu K, Zhang Y, Tang S, Zhu Y, Zhao B. Hematological and Histopathological Effects of Subacute Aconitine Poisoning in Mouse. Front Vet Sci 2022; 9:874660. [PMID: 35464374 PMCID: PMC9020262 DOI: 10.3389/fvets.2022.874660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Aconitine is the principal toxic ingredient of Aconitum, which can cause systemic poisoning involving multiple organs and systems after animal ingestion. The purpose of this study was to investigate the effects of aconitine on hematological indices and histological changes in mice. One hundred twenty mice were divided into a control group (normal saline), low-dose group (0.14 μmol/L), middle-dose group (0.28 μmol/L) and high-dose group (0.56 μmol/L), which were continuously lavaged for 30 days. The blood of 10 mice were collected randomly and analyzed by group at the 10th, 20th, and 30th days, and some tissues were collected and stained with hematoxylin-eosin to observe histological changes at the 30th day. Compared with the control group, the organ coefficient (%) of liver, spleen, lungs, and brain of the high-dose group were significantly increased (p < 0.05 or p < 0.01). WBC and Gran initially decreased and then increased in each poisoning group, with significant differences in the high-dose group (p < 0.05 or p < 0.01). RBC, HGB, HCT, and PLT decreased continuously in all groups except the low-dose group at the 20th and 30th days (p < 0.05 or p < 0.01). Moreover, BUN, ALT and AST increased in each poisoning group, in comparison with the control group, with significant differences except for the low-dose group (p < 0.05 or p < 0.01). CRE initially increased and then decreased, the TP and ALB decreased, with significant differences observed in the high-dose and middle-dose groups (p < 0.05). All the mice in the poison-treated groups showed varying degrees of histopathological changes such as degeneration and necrosis of tissues, especially heart and cerebellum. Our data suggest that different doses of aconitine have remarkable effects on hematological and histopathological changes in mice, in a significant time and dose-effect relationship.
Collapse
Affiliation(s)
- Hao Lu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Li Mei
- College of Landscape and Architecture and Art, Northwest A&F University, Xianyang, China
| | - Ziyu Guo
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Kexin Wu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yunhao Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Shiyu Tang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yiru Zhu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
23
|
Han NR, Kim KC, Kim JS, Park HJ, Ko SG, Moon PD. SBT (Composed of Panax ginseng and Aconitum carmichaeli) and Stigmasterol Enhances Nitric Oxide Production and Exerts Curative Properties as a Potential Anti-Oxidant and Immunity-Enhancing Agent. Antioxidants (Basel) 2022; 11:199. [PMID: 35204082 PMCID: PMC8868359 DOI: 10.3390/antiox11020199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
Immune dysregulation is a risk factor for several diseases, including infectious diseases. Immunostimulatory agents have been used for the treatment of immune dysregulation, but deleterious adverse effects have been reported. The present study aims to establish the anti-oxidant and immunity-enhancing effects of Sambu-Tang (SBT), composed of Panax ginseng and Aconitum carmichaeli, and stigmasterol (Stig), an active compound of SBT. Immune-related factors were analyzed in RAW264.7 macrophage cells, mouse primary splenocytes, and the serum and spleen of cyclophosphamide-induced immunosuppressed mice. Results showed that the production levels of nitric oxide (NO) and expression levels of inducible NO synthase and heme oxygenase-1 were increased following SBT or Stig treatment in RAW264.7 cells. SBT or Stig increased the production levels of G-CSF, IFN-γ, IL-12, IL-2, IL-6, and TNF-α and induced the activation of NF-κB in RAW264.7 cells. SBT or Stig promoted splenic lymphocyte proliferation and increased splenic NK cell cytotoxic activity. In addition, SBT or Stig enhanced the levels of IFN-γ, IL-12, IL-2, IL-6, or TNF-α in the serum and spleen of the immunosuppressed mice. SBT or Stig increased the superoxide dismutase activity in the spleen. Collectively, SBT and Stig possess anti-oxidant and immunomodulatory activities, so they may be considered effective natural compounds for the treatment of various symptoms caused by immune dysregulation.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Kyeoung-Cheol Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea; (K.-C.K.); (J.-S.K.)
| | - Ju-Sung Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea; (K.-C.K.); (J.-S.K.)
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
24
|
Wang H, Liu Y, Guo Z, Wu K, Zhang Y, Tian Y, Zhao B, Lu H. Aconitine induces cell apoptosis via mitochondria and death receptor signaling pathways in hippocampus cell line. Res Vet Sci 2022; 143:124-133. [PMID: 35026629 DOI: 10.1016/j.rvsc.2022.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 01/10/2023]
Abstract
Aconitine is a plant toxin derived from aconitum genus and well known for its neurological and vascular toxicity. However, the mechanism of toxicity on the growth and apoptosis of the neurological cells has not been well investigated. In this study, we used HT22 cell lines derived from hippocampus to explore the mechanism. We began with examination of the viability and DA (dopamine) contents of cells treated with different dose of aconitine. In this study, we investigated the role of apoptosis in AC-induced HT22 cells. Our results showed that aconitine inhibited HT22 cells growth and increased DA contents in a dose dependent manner. Aconitine treatment induced apoptosis in HT22 cells and we found aconitine induced apoptosis by upregulating the expression of Bax, Cyto c, Apaf-1, Caspase9, Fas, Fas-L, Fadd, Caspase8, Caspase3 with concomitant decreasing of Bcl-2 and Bid expression. Collectively, results suggest that aconitine induce apoptosis through mitochondrial-mediated and death receptor signaling pathways in HT22 cells.
Collapse
Affiliation(s)
- Hui Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanbing Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziyu Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kexin Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunhao Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
25
|
Feng J, Zhou Y, Liao L, Yu L, Yuan P, Zhang J. Network Pharmacology and Transcriptomics Reveal the Mechanism of GuaLouQuMaiWan in Treatment of Type 2 Diabetes and Its Active Small Molecular Compound. J Diabetes Res 2022; 2022:2736504. [PMID: 36248223 PMCID: PMC9560855 DOI: 10.1155/2022/2736504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/18/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The main pathophysiological abnormalities in type 2 diabetes (T2D) include pancreatic β-cell dysfunction and insulin resistance. Due to hyperglycemia, patients receive long-term treatment. However, side effects and drug tolerance usually lead to treatment failure. GuaLouQuMaiWan (GLQMW), a common traditional Chinese medicine (TCM) prescription, has positive effects on controlling blood sugar and improving quality of life, but the mechanism is still unclear. To decipher their molecular mechanisms, we used a novel computational systems pharmacology-based approach consisting of bioinformatics analysis, network pharmacology, and drug similarity comparison. We divided the participants into nondisease (ND), impaired glucose tolerance (IGT), and type 2 diabetes groups according to the WHO's recommendations for diabetes. By analyzing the gene expression profile of the ND-IGT-T2D (ND to IGT to T2D) process, we found that the function of downregulated genes in the whole process was mainly related to insulin secretion, while the upregulated genes were related to inflammation. Furthermore, other genes in the ND-IGT (ND to IGT) process are mainly related to inflammation and lipid metabolic disorders. We speculate that 17 genes with a consistent trend may play a key role in the process of ND-IGT-T2D. We further performed target prediction for 50 compounds in GLQMW that met the screening criteria and intersected the differentially expressed genes of the T2D process with the compounds of GLQMW; a total of 18 proteins proved potential targets for GLQMW. Among these, RBP4 is considerably related to insulin resistance. GO/KEGG enrichment analyses of the target genes of GLQMW showed enrichment in inflammation- and T2D therapy-related pathways. Based on the RDKit tool and the DrugBank database, we speculate that (-)-taxifolin, dialoside A_qt, spinasterol, isofucosterol, and 11,14-eicosadienoic acid can be used as potential drugs for T2D via molecular docking and drug similarity comparison.
Collapse
Affiliation(s)
- Jiahao Feng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China 518000
| | - Yuheng Zhou
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China 510632
| | - Li Liao
- Chongqing Jiangjin District Hospital of Chinese Medicine, Chongqing, China 404100
| | - Liping Yu
- Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, China 518000
| | - Ping Yuan
- Tongren Hospital Shanghai Jiao Tong University, Shanghai, China 200000
| | - Jun Zhang
- School of Traditional Medicine, Jinan University, Guangzhou, China 510632
| |
Collapse
|
26
|
Ma Q, Chen L, Wei R. Isolation and characterization of neuroprotective lignans from salted Aconiti lateralis Radix Praeparata. Biosci Biotechnol Biochem 2021; 85:1448-1451. [PMID: 33864454 DOI: 10.1093/bbb/zbab067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/09/2021] [Indexed: 11/14/2022]
Abstract
Six lignans (1-6) were isolated from salted Aconiti lateralis Radix Praeparata for the first time. These isolates were elucidated as hedyotisol-A (1), (7″R,8″R)-8″-syringaresinol-4″-hydroxy-3″,5″-dimethoxyphenyl-7″,9″-propanediol (2), lariciresinol-4-O-β-d-glucopyranoside (3),(7S,8S)-4-hydroxy-3-methoxy-7,8-(2',1'-O-β-d-glucopyranosyl)phenyl-propanetriol (4), (+)-isolariciresinol (5), and (+)-lyoniresinol (6) by analyzing extensive and comprehensive spectral data and compared with the data described in the literature, respectively. Compounds (1-6) were evaluated for their neuroprotective activities against corticosterone-induced cell death in PC12 cells with desipramine as the positive control drug. Among them, compounds 1 and 2 showed moderate neuroprotective activities, which increased the survival rates of PC12 cells from 45.50 ± 2.23% to 65.98 ± 1.29%, 58.19 ± 2.94% at 10 µm, respectively.
Collapse
Affiliation(s)
- Qinge Ma
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education and Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Lihua Chen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education and Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Rongrui Wei
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education and Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
27
|
Moragrega I, Ríos JL. Medicinal Plants in the Treatment of Depression: Evidence from Preclinical Studies. PLANTA MEDICA 2021; 87:656-685. [PMID: 33434941 DOI: 10.1055/a-1338-1011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Medicinal plants and their extracts are natural remedies with enormous potential for treating various diseases, including depression and anxiety. In the case of depression, hundreds of plants have traditionally been used in folk medicine for generations. Different plant extracts and natural products have been analyzed as potential antidepressant agents with validated models to test for antidepressant-like effects in animals, although other complementary studies have also been employed. Most of these studies focus on the possible mediators implicated in these potential effects, with dopamine, serotonin, and noradrenaline being the principal neurotransmitters implicated, both through interference with receptors and with their metabolism by monoamino oxidases, as well as through neuro-endocrine and neuroprotective effects. There are approximately 650 reports of antidepressant-like medicinal plants in PubMed; 155 of them have been compiled in this review, with a relevant group yielding positive results. Saffron and turmeric are the most relevant species studied in both preclinical and clinical studies; St. John's wort or kava have also been tested extensively. To the best of our knowledge, no review to date has provided a comprehensive understanding of the biomolecular mechanisms of action of these herbs or of whether their potential effects could have real benefits. The purpose of this narrative review is to provide an update regarding medicinal plants from the year 2000 to the present to examine the therapeutic potential of these antidepressant-like plants in order to contribute to the development of new therapeutic methods to alleviate the tremendous burden that depression causes worldwide.
Collapse
Affiliation(s)
- Inés Moragrega
- Departament de Psicobiologia, Facultat de Psicologia, Universitat de València
| | - José Luis Ríos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València
| |
Collapse
|
28
|
Zhang K, Liu Y, Lin X, Yang J, Wu C. Assessment of reproductive toxicity and genotoxicity of Aconiti Lateralis Radix Praeparata and its processed products in male mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114102. [PMID: 33831471 DOI: 10.1016/j.jep.2021.114102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/02/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconiti Lateralis Radix Praeparata (Chinese name: Fuzi), the root of Aconitum carmichaelii Debx., is a representative medicine for restoring yang and rescuing patient from collapse. However, less studies had been reported on the reproductive toxicity and genotoxicity of Fuzi. According to the principle of reducing toxicity and preserving efficiency, only processed products of Fuzi are commonly applied in clinic, including Baifupian, Heishunpian and Danfupian. However, whether processing could alleviate the reproductive toxicity and genotoxicity of Fuzi had not been revealed. AIM OF THE STUDY To assess the effect and possible mechanism of Fuzi and its processed products on reproductive toxicity and genotoxicity in male mice. MATERIALS AND METHODS Aqueous extracts of Fuzi and its processed products (Baifupian, Heishunpian and Danfupian, 5.85 g/kg) were administrated by gavage once daily for fourteen consecutive days. The reproductive toxicity was evaluated by testis weight, testis ratio, testis histopathology, sperm count, sperm viability rate and sperm deformity rate. The genotoxicity was evaluated by comet assay and micronucleus test in sperm, peripheral blood cell and bone marrow cell. Possible mechanisms of attenuating toxicity by processing were analyzed by detecting the level of testosterone, superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA) and catalase (CAT). RESULTS Fuzi significantly caused different degrees of reproductive toxicity and genotoxicity, specifically reducing the weight and testicular coefficient of testis, causing obvious pathological changes in testicular tissue, reducing sperm count and sperm viability rate, increasing sperm deformity rate and DNA damage in sperm/peripheral blood cells/bone marrow cells. Moreover, Fuzi decreased the level of testosterone, SOD, GSH and CAT, while increased the level of MDA in serum. Notably, the reproductive toxicity and genotoxicity induced by the processed products, especially Heishunpian and Danfupian, were significantly lowered compared to Fuzi. Processing could increase the level of testosterone, SOD, GSH, CAT and decrease the level of MDA compared to Fuzi. CONCLUSION Fuzi and its processed products had reproductive toxicity and genotoxicity, but the toxicity of processed products was significantly weakened compared to Fuzi. The protective mechanism of processing to reduce the toxicity of Fuzi might be related to increasing the level of testosterone and decreasing oxidative stress.
Collapse
Affiliation(s)
- Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Yeshu Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Xin Lin
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China.
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China.
| |
Collapse
|
29
|
Aconitine Neurotoxicity According to Administration Methods. J Clin Med 2021; 10:jcm10102149. [PMID: 34065630 PMCID: PMC8155921 DOI: 10.3390/jcm10102149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/24/2021] [Accepted: 05/10/2021] [Indexed: 02/02/2023] Open
Abstract
We evaluated the toxic effects of aconitine on the human nervous system and its associated factors, and the general clinical characteristics of patients who visited the emergency room due to aconitine intoxication between 2008 and 2017. We also analyzed the differences related to aconitine processing and administration methods (oral pill, boiled in water, and alcohol-soaked), and the clinical characteristics of consciousness deterioration and neurological symptoms. Of the 41 patients who visited the hospital due to aconitine intoxication, 23 (56.1%) were female, and most were older. Aconitine was mainly used for pain control (28 patients, 68.3%) and taken as oral pills (19 patients, 46%). The patients showed a single symptom or a combination of symptoms; neurological symptoms were the most common (21 patients). All patients who took aconitine after processing with alcohol showed neurological symptoms and a higher prevalence of consciousness deterioration. Neurological symptoms occurred most frequently in patients with aconitine intoxication. Although aconitine intoxication presents with various symptoms, its prognosis may vary with the processing method and prevalence of consciousness deterioration during the early stages. Therefore, the administration method and accompanying symptoms should be comprehensively investigated in patients who have taken aconitine to facilitate prompt and effective treatment and better prognoses.
Collapse
|
30
|
He LY, Hu MB, Li RL, Zhao R, Fan LH, He L, Lu F, Ye X, Huang YL, Wu CJ. Natural Medicines for the Treatment of Epilepsy: Bioactive Components, Pharmacology and Mechanism. Front Pharmacol 2021; 12:604040. [PMID: 33746751 PMCID: PMC7969896 DOI: 10.3389/fphar.2021.604040] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a chronic disease that can cause temporary brain dysfunction as a result of sudden abnormal discharge of the brain neurons. The seizure mechanism of epilepsy is closely related to the neurotransmitter imbalance, synaptic recombination, and glial cell proliferation. In addition, epileptic seizures can lead to mitochondrial damage, oxidative stress, and the disorder of sugar degradation. Although the mechanism of epilepsy research has reached up to the genetic level, the presently available treatment and recovery records of epilepsy does not seem promising. Recently, natural medicines have attracted more researches owing to their low toxicity and side-effects as well as the excellent efficacy, especially in chronic diseases. In this study, the antiepileptic mechanism of the bioactive components of natural drugs was reviewed so as to provide a reference for the development of potential antiepileptic drugs. Based on the different treatment mechanisms of natural drugs considered in this review, it is possible to select drugs clinically. Improving the accuracy of medication and the cure rate is expected to compensate for the shortage of the conventional epilepsy treatment drugs.
Collapse
Affiliation(s)
- Li-Ying He
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mei-Bian Hu
- Institute of Pharmaceutical and Food engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Ruo-Lan Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin-Hong Fan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin He
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Lu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xun Ye
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong-Liang Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun-Jie Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
31
|
Liu J, Feng W, Peng C. A Song of Ice and Fire: Cold and Hot Properties of Traditional Chinese Medicines. Front Pharmacol 2021; 11:598744. [PMID: 33542688 PMCID: PMC7851091 DOI: 10.3389/fphar.2020.598744] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
The theory of cold and hot properties is the basic theory of traditional Chinese medicines (TCMs) and has been successfully applied to combat human diseases for thousands of years. Although the theory of cold and hot is very important to guide the clinical application of TCMs, this ancient theory remains an enigma for a long time. In recent years, more and more researchers have tried to uncover this ancient theory with the help of modern techniques, and the cold and hot properties of a myriad of TCMs have been studied. However, there is no review of cold and hot properties. In this review, we first briefly introduced the basic theories about cold and hot properties, including how to distinguish between the cold and hot properties of TCMs and the classification and treatment of cold and hot syndromes. Then, focusing on the application of cold and hot properties, we take several important TCMs with cold or hot property as examples to summarize their traditional usage, phytochemistry, and pharmacology. In addition, the mechanisms of thermogenesis and antipyretic effect of these important TCMs, which are related to the cold and hot properties, were summarized. At the end of this review, the perspectives on research strategies and research directions of hot and cold properties were also offered.
Collapse
Affiliation(s)
- Juan Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwestern China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwestern China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwestern China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
32
|
Neuropharmacological Effects of Mesaconitine: Evidence from Molecular and Cellular Basis of Neural Circuit. Neural Plast 2020; 2020:8814531. [PMID: 32904549 PMCID: PMC7456483 DOI: 10.1155/2020/8814531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/27/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
Mesaconitine (MA), a diester-diterpenoid alkaloid in aconite roots, is considered to be one of the most important bioactive ingredients. In this review, we summarized its neuropharmacological effects, including analgesic effects and antiepileptiform effects. Mesaconitine can act on the central noradrenergic system and the serotonin system; behaving like the norepinephrine reuptake inhibitors and tricyclic antidepressants that increase norepinephrine levels in stress-induced depression. Therefore, the possible perspectives for future studies on the depression of MA were also discussed as well. The pharmacological effect of MA on depression is worthy of further study.
Collapse
|