1
|
Peng Y, Chen B. Role of cell membrane homeostasis in the pathogenicity of pathogenic filamentous fungi. Virulence 2024; 15:2299183. [PMID: 38156783 PMCID: PMC10761126 DOI: 10.1080/21505594.2023.2299183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
The cell membrane forms a fundamental part of all living cells and participates in a variety of physiological processes, such as material exchange, stress response, cell recognition, signal transduction, cellular immunity, apoptosis, and pathogenicity. Here, we review the mechanisms and functions of the membrane structure (lipid components of the membrane and the biosynthesis of unsaturated fatty acids), membrane proteins (transmembrane proteins and proteins contributing to membrane curvature), transcriptional regulation, and cell wall components that influence the virulence and pathogenicity of filamentous fungi.
Collapse
Affiliation(s)
- Yuejin Peng
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Vela S, Wolf ESA, Rollins JA, Cuevas HE, Vermerris W. Dual-RNA-sequencing to elucidate the interactions between sorghum and Colletotrichum sublineola. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1437344. [PMID: 39220294 PMCID: PMC11362643 DOI: 10.3389/ffunb.2024.1437344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
In warm and humid regions, the productivity of sorghum is significantly limited by the fungal hemibiotrophic pathogen Colletotrichum sublineola, the causal agent of anthracnose, a problematic disease of sorghum (Sorghum bicolor (L.) Moench) that can result in grain and biomass yield losses of up to 50%. Despite available genomic resources of both the host and fungal pathogen, the molecular basis of sorghum-C. sublineola interactions are poorly understood. By employing a dual-RNA sequencing approach, the molecular crosstalk between sorghum and C. sublineola can be elucidated. In this study, we examined the transcriptomes of four resistant sorghum accessions from the sorghum association panel (SAP) at varying time points post-infection with C. sublineola. Approximately 0.3% and 93% of the reads mapped to the genomes of C. sublineola and Sorghum bicolor, respectively. Expression profiling of in vitro versus in planta C. sublineola at 1-, 3-, and 5-days post-infection (dpi) indicated that genes encoding secreted candidate effectors, carbohydrate-active enzymes (CAZymes), and membrane transporters increased in expression during the transition from the biotrophic to the necrotrophic phase (3 dpi). The hallmark of the pathogen-associated molecular pattern (PAMP)-triggered immunity in sorghum includes the production of reactive oxygen species (ROS) and phytoalexins. The majority of effector candidates secreted by C. sublineola were predicted to be localized in the host apoplast, where they could interfere with the PAMP-triggered immunity response, specifically in the host ROS signaling pathway. The genes encoding critical molecular factors influencing pathogenicity identified in this study are a useful resource for subsequent genetic experiments aimed at validating their contributions to pathogen virulence. This comprehensive study not only provides a better understanding of the biology of C. sublineola but also supports the long-term goal of developing resistant sorghum cultivars.
Collapse
Affiliation(s)
- Saddie Vela
- Plant Molecular & Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
| | - Emily S. A. Wolf
- Plant Molecular & Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
| | - Jeffrey A. Rollins
- Plant Molecular & Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Hugo E. Cuevas
- United States Department of Agriculture, Agricultural Research Service, Tropical Agriculture Research Station, Mayagüez, PR, United States
| | - Wilfred Vermerris
- Plant Molecular & Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL, United States
- University of Florida Genetics Institute, Gainesville, FL, United States
| |
Collapse
|
3
|
Turco S, Drais MI, Rossini L, Di Sora N, Brugneti F, Speranza S, Contarini M, Mazzaglia A. Genomic and Pathogenic Characterization of Akanthomyces muscarius Isolated from Living Mite Infesting Hazelnut Big Buds. Genes (Basel) 2024; 15:993. [PMID: 39202354 PMCID: PMC11354060 DOI: 10.3390/genes15080993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
The capability of entomopathogenic fungi to live as plant endophytes is well established. However, their presence in undiscovered environmental niches represents the beginning of a new challenging research journey. Recently, Akanthomyces muscarius (Ascomycota, Cordycipitaceae) (Petch) Spatafora, Kepler & B. Shrestha was isolated from hazelnut buds infested by the big bud mite pest Phytoptus avellanae Nalepa, which makes the buds swollen, reddish, and unable to further develop. Gall formation is known to be regulated by a consortium of microbes and mites, and to better understand the possible role of A. muscarius within the infested gall, its whole genome sequence was obtained using a hybrid approach of Illumina and Nanopore reads. The functional and comparative genomics analysis provided within this study may help answer questions related to the ecology and the entomopathogenicity of this fungus.
Collapse
Affiliation(s)
- Silvia Turco
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
| | - Mounira Inas Drais
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
| | - Luca Rossini
- Service d’Automatique et d’Analyse des Systèmes, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Nicolò Di Sora
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
| | - Federico Brugneti
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
| | - Stefano Speranza
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE, CONICET-UNLP), La Plata B1900, Argentina
| | - Mario Contarini
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
| | - Angelo Mazzaglia
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
| |
Collapse
|
4
|
Zhou J, Wang S, Xia Y, Peng G. MaAzaR, a Zn 2Cys 6/Fungus-Specific Transcriptional Factor, Is Involved in Stress Tolerance and Conidiation Pattern Shift in Metarhizium acridum. J Fungi (Basel) 2024; 10:468. [PMID: 39057353 PMCID: PMC11278141 DOI: 10.3390/jof10070468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Entomopathogenic fungi are valuable sources of biological pesticides, with conidial yield and quality being pivotal factors determining their broad applications. AzaR, a fungus-specific zinc-cluster transcription factor, is known to regulate the biosynthesis of polyketone secondary metabolites in Aspergillus niger; however, its role in pathogenic fungi remains unclear. This study investigated the role of MaAzaR in the growth, development, and environmental tolerance of Metarhizium acridum. MaAzaR deletion slowed down conidial germination rate, caused reduction in conidial yield, lowered fungal tolerance to UV radiation, did not affect fungal heat-shock tolerance, and increased fungal sensitivity to the cell-wall-destructive agent calcofluor white. Furthermore, MaAzaR deletion transformed microcycle conidiation to normal conidiation on the microcycle conidiation medium. Transcription profile analysis demonstrated that MaAzaR could regulate transformation of the conidiation pattern by controlling the expression of genes related to cell division, mycelium growth and development, and cell wall integrity. Thus, this study identified a new gene related to fungal conidiation and environmental tolerance, enriching our understanding of the molecular mechanism of microcycle conidiation and providing theoretical support and genetic resources for the development of high-yielding strains.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Siqin Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Guoxiong Peng
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
| |
Collapse
|
5
|
Kan Y, He Z, Keyhani NO, Li N, Huang S, Zhao X, Liu P, Zeng F, Li M, Luo Z, Zhang Y. A network of transcription factors in complex with a regulating cell cycle cyclin orchestrates fungal oxidative stress responses. BMC Biol 2024; 22:81. [PMID: 38609978 PMCID: PMC11015564 DOI: 10.1186/s12915-024-01884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Response to oxidative stress is universal in almost all organisms and the mitochondrial membrane protein, BbOhmm, negatively affects oxidative stress responses and virulence in the insect fungal pathogen, Beauveria bassiana. Nothing further, however, is known concerning how BbOhmm and this phenomenon is regulated. RESULTS Three oxidative stress response regulating Zn2Cys6 transcription factors (BbOsrR1, 2, and 3) were identified and verified via chromatin immunoprecipitation (ChIP)-qPCR analysis as binding to the BbOhmm promoter region, with BbOsrR2 showing the strongest binding. Targeted gene knockout of BbOsrR1 or BbOsrR3 led to decreased BbOhmm expression and consequently increased tolerances to free radical generating compounds (H2O2 and menadione), whereas the ΔBbOsrR2 strain showed increased BbOhmm expression with concomitant decreased tolerances to these compounds. RNA and ChIP sequencing analysis revealed that BbOsrR1 directly regulated a wide range of antioxidation and transcription-associated genes, negatively affecting the expression of the BbClp1 cyclin and BbOsrR2. BbClp1 was shown to localize to the cell nucleus and negatively mediate oxidative stress responses. BbOsrR2 and BbOsrR3 were shown to feed into the Fus3-MAPK pathway in addition to regulating antioxidation and detoxification genes. Binding motifs for the three transcription factors were found to partially overlap in the promoter region of BbOhmm and other target genes. Whereas BbOsrR1 appeared to function independently, co-immunoprecipitation revealed complex formation between BbClp1, BbOsrR2, and BbOsrR3, with BbClp1 partially regulating BbOsrR2 phosphorylation. CONCLUSIONS These findings reveal a regulatory network mediated by BbOsrR1 and the formation of a BbClp1-BbOsrR2-BbOsrR3 complex that orchestrates fungal oxidative stress responses.
Collapse
Affiliation(s)
- Yanze Kan
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China
| | - Zhangjiang He
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China
- Biochemical Engineering Center of Guizhou Province, Guizhou University, Guiyang, 50025, People's Republic of China
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL, 60607, USA
| | - Ning Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China
| | - Shuaishuai Huang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China
| | - Xin Zhao
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China
| | - Pengfei Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China
| | - Fanqin Zeng
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China
| | - Min Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, 400715, People's Republic of China.
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
6
|
Qu S, Chi SD, He ZM. The Development of Aspergillus flavus and Biosynthesis of Aflatoxin B1 are Regulated by the Golgi-Localized Mn 2+ Transporter Pmr1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1276-1291. [PMID: 38179648 DOI: 10.1021/acs.jafc.3c06964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Microorganisms rely on diverse ion transport and trace elements to sustain growth, development, and secondary metabolism. Manganese (Mn2+) is essential for various biological processes and plays a crucial role in the metabolism of human cells, plants, and yeast. In Aspergillus flavus, we confirmed that Pmr1 localized in cis- and medial-Golgi compartments was critical in facilitating Mn2+ transport, fungal growth, development, secondary metabolism, and glycosylation. In comparison to the wild type, the Δpmr1 mutant displayed heightened sensitivity to environmental stress, accompanied by inhibited synthesis of aflatoxin B1, kojic acid, and a substantial reduction in pathogenicity toward peanuts and maize. Interestingly, the addition of exogenous Mn2+ effectively rectified the developmental and secondary metabolic defects in the Δpmr1 mutant. However, Mn2+ supplement failed to restore the growth and development of the Δpmr1Δgdt1 double mutant, which indicated that the Gdt1 compensated for the functional deficiency of pmr1. In addition, our results showed that pmr1 knockout leads to an upregulation of O-glycosyl-N-acetylglucose (O-GlcNAc) and O-GlcNAc transferase (OGT), while Mn2+ supplementation can restore the glycosylation in A. flavus. Collectively, this study indicates that the pmr1 regulates Mn2+ via Golgi and maintains growth and metabolism functions of A. flavus through regulation of the glycosylation.
Collapse
Affiliation(s)
- Su Qu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sheng-Da Chi
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhu-Mei He
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
- School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
7
|
Tong SM, Feng MG. Molecular basis and regulatory mechanisms underlying fungal insecticides' resistance to solar ultraviolet irradiation. PEST MANAGEMENT SCIENCE 2022; 78:30-42. [PMID: 34397162 DOI: 10.1002/ps.6600] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Resistance to solar ultraviolet (UV) irradiation is crucial for field-persistent control efficacies of fungal formulations against arthropod pests, because their active ingredients are formulated conidia very sensitive to solar UV wavelengths. This review seeks to summarize advances in studies aiming to quantify, understand and improve conidial UV resistance. One focus of studies has been on the many sets of genes that have been revealed in the postgenomic era to contribute to or mediate UV resistance in the insect pathogens serving as main sources of fungal insecticides. Such genetic studies have unveiled the broad basis of UV-resistant molecules including cytosolic solutes, cell wall components, various antioxidant enzymes, and numerous effectors and signaling proteins, that function in developmental, biosynthetic and stress-responsive pathways. Another focus has been on the molecular basis and regulatory mechanisms underlying photorepair of UV-induced DNA lesions and photoreactivation of UV-impaired conidia. Studies have shed light upon a photoprotective mechanism depending on not only one or two photorepair-required photolyases, but also two white collar proteins and other partners that play similar or more important roles in photorepair via interactions with photolyases. Research hotspots are suggested to explore a regulatory network of fungal photoprotection and to improve the development and application strategies of UV-resistant fungal insecticides. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sen-Miao Tong
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Caspofungin resistance in clinical Aspergillus Flavus isolates. J Mycol Med 2021; 31:101166. [PMID: 34293598 DOI: 10.1016/j.mycmed.2021.101166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 05/28/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022]
Abstract
INTRODUCTION AND AIMS The present study was conducted to determine the candidate genes involved in caspofungin (CAS) resistance in clinical isolates of Aspergillus flavus (A. flavus). MATERIALS AND METHODS The antifungal susceptibility assay of the CAS was performed on 14 clinical isolates of A. flavus using the CLSI-M-38-A2 broth micro-dilution protocol. Since CAS had various potencies, the minimum effective concentration (MEC) of anidulafungin (AND) was also evaluated in the present study. The FKS1 gene sequencing was conducted to assess whether mutations occurred in the whole FKS1 gene as well as hot spot regions of the FKS1 gene of the two resistant isolates. A complementary DNA-amplified fragment length polymorphism (CDNA-AFLP) method was performed to investigate differential gene expression between the two resistant and two sensitive clinical isolates in the presence of CAS. Furthermore, quantitative real-time PCR (QRT-PCR) was utilized to determine the relative expression levels of the identified genes. RESULTS No mutations were observed in the whole FKS1 gene hot spot regions of the FKS1 genes in the resistant isolates. A subset of two genes with known biological functions and four genes with unknown biological functions were identified in the CAS-resistant isolates using the CDNA-AFLP. The QRT-PCR revealed the down-regulation of the P-type ATPase and ubiquinone biosynthesis methyltransferase COQ5 in the CAS-resistant isolates, compared to the susceptible isolates. CONCLUSION The findings showed that P-type ATPase and ubiquinone biosynthesis methyltransferase COQ5 might be involved in the CAS-resistance A. flavus clinical isolates. Moreover, a subset of genes was differentially expressed to enhance fungi survival in CAS exposure. Further studies are recommended to highlight the gene overexpression and knock-out experiments in A. flavus or surrogate organisms to confirm that these mentioned genes confer the CAS resistant A. flavus.
Collapse
|
9
|
Plaza V, Silva-Moreno E, Castillo L. Breakpoint: Cell Wall and Glycoproteins and their Crucial Role in the Phytopathogenic Fungi Infection. Curr Protein Pept Sci 2021; 21:227-244. [PMID: 31490745 DOI: 10.2174/1389203720666190906165111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/02/2019] [Accepted: 08/17/2019] [Indexed: 01/09/2023]
Abstract
The cell wall that surrounds fungal cells is essential for their survival, provides protection against physical and chemical stresses, and plays relevant roles during infection. In general, the fungal cell wall is composed of an outer layer of glycoprotein and an inner skeletal layer of β-glucans or α- glucans and chitin. Chitin synthase genes have been shown to be important for septum formation, cell division and virulence. In the same way, chitin can act as a potent elicitor to activate defense response in several plant species; however, the fungi can convert chitin to chitosan during plant infection to evade plant defense mechanisms. Moreover, α-1,3-Glucan, a non-degradable polysaccharide in plants, represents a key feature in fungal cell walls formed in plants and plays a protective role for this fungus against plant lytic enzymes. A similar case is with β-1,3- and β-1,6-glucan which are essential for infection, structure rigidity and pathogenicity during fungal infection. Cell wall glycoproteins are also vital to fungi. They have been associated with conidial separation, the increase of chitin in conidial cell walls, germination, appressorium formation, as well as osmotic and cell wall stress and virulence; however, the specific roles of glycoproteins in filamentous fungi remain unknown. Fungi that can respond to environmental stimuli distinguish these signals and relay them through intracellular signaling pathways to change the cell wall composition. They play a crucial role in appressorium formation and penetration, and release cell wall degrading enzymes, which determine the outcome of the interaction with the host. In this review, we highlight the interaction of phypatophogen cell wall and signaling pathways with its host and their contribution to fungal pathogenesis.
Collapse
Affiliation(s)
- Verónica Plaza
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | - Evelyn Silva-Moreno
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Temuco, Chile
| | - Luis Castillo
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, La Serena, Chile
| |
Collapse
|
10
|
Mou YN, Gao BJ, Ren K, Tong SM, Ying SH, Feng MG. P-type Na +/K + ATPases essential and nonessential for cellular homeostasis and insect pathogenicity of Beauveria bassiana. Virulence 2020; 11:1415-1431. [PMID: 33103596 PMCID: PMC7588218 DOI: 10.1080/21505594.2020.1836903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/11/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
ENA1 and ENA2 are P-type IID/ENA Na+/K+-ATPases required for cellular homeostasis in yeasts but remain poorly understood in filamentous fungal insect pathogens. Here, we characterized seven genes encoding five ENA1/2 homologues (ENA1a-c and ENA2a/b) and two P-type IIC/NK Na+/K+-ATPases (NK1/2) in Beauveria bassiana, an insect-pathogenic fungus serving as a main source of fungal insecticides worldwide. Most of these genes were highly responsive to alkaline pH and Na+/K+ cues at transcription level. Cellular Na+, K+ and H+ homeostasis was disturbed only in the absence of ena1a or ena2b. The disturbed homeostasis featured acceleration of vacuolar acidification, elevation of cytosolic Na+/K+ level at pH 5.0 to 9.0, and stabilization of extracellular H+ level to initial pH 7.5 during a 5-day period of submerged incubation. Despite little defect in hyphal growth and asexual development, the Δena1a and Δena2b mutants were less tolerant to metal cations (Na+, K+, Li+, Zn2+, Mn2+ and Fe3+), cell wall perturbation, oxidation, non-cation hyperosmolarity and UVB irradiation, severely compromised in insect pathogenicity via normal cuticle infection, and attenuated in virulence via hemocoel injection. The deletion mutants of five other ENA and NK genes showed little change in vacuolar pH and all examined phenotypes. Therefore, only ENA1a and ENA2b evidently involved in both transmembrane and vacuolar activities are essential for cellular cation homeostasis, insect pathogenicity and multiple stress tolerance in B. bassiana. These findings provide a novel insight into ENA1a- and ENA2b-dependent vacuolar pH stability, cation-homeostatic process and fungal fitness to host insect and environment.
Collapse
Affiliation(s)
- Ya-Ni Mou
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ben-Jie Gao
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kang Ren
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sen-Miao Tong
- College of Agricultural and Food Science, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Sheng-Hua Ying
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Wang J, Chen J, Hu Y, Ying SH, Feng MG. Roles of six Hsp70 genes in virulence, cell wall integrity, antioxidant activity and multiple stress tolerance of Beauveria bassiana. Fungal Genet Biol 2020; 144:103437. [DOI: 10.1016/j.fgb.2020.103437] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/25/2020] [Accepted: 07/19/2020] [Indexed: 12/31/2022]
|
12
|
Xin C, Yang J, Mao Y, Chen W, Wang Z, Song Z. GATA-type transcription factor MrNsdD regulates dimorphic transition, conidiation, virulence and microsclerotium formation in the entomopathogenic fungus Metarhizium rileyi. Microb Biotechnol 2020; 13:1489-1501. [PMID: 32395911 PMCID: PMC7415378 DOI: 10.1111/1751-7915.13581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/07/2020] [Indexed: 12/04/2022] Open
Abstract
The GATA-type sexual development transcription factor NsdD has been implicated in virulence, secondary metabolism and asexual development in filamentous fungi. However, little is known about its function in the yeast-to-hypha transition and in microsclerotium formation. In the current study, the orthologous NsdD gene MrNsdD in the entomopathogenic fungus Metarhizium rileyi was characterized. Transcriptional analysis indicated that MrNsdD was involved in yeast-to-hypha transition, conidiation and microsclerotium formation. After targeted deletion of MrNsdD, dimorphic transition, conidiation, fungal virulence and microsclerotium formation were all impaired. Compared with the wild-type strain, the ΔMrNsdD mutants were hypersensitive to thermal stress. Furthermore, transcriptome sequencing analysis revealed that MrNsdD regulated a distinct signalling pathway in M. rileyi during the yeast-to-hypha transition or microsclerotium formation, but exhibited overlapping regulation of genes during the two distinct developmental stages. Taken together, characterization of the MrNsdD targets in this study will aid in the dissection of the molecular mechanisms of dimorphic transition and microsclerotium development.
Collapse
Affiliation(s)
- Caiyan Xin
- School of Basic Medical SciencesSouthwest Medical UniversityLuzhou646000China
| | - Jie Yang
- School of Basic Medical SciencesSouthwest Medical UniversityLuzhou646000China
| | - Yingyu Mao
- School of Basic Medical SciencesSouthwest Medical UniversityLuzhou646000China
| | - Wenbi Chen
- School of Basic Medical SciencesSouthwest Medical UniversityLuzhou646000China
| | - Zhongkang Wang
- Chongqing Engineering Research Center for Fungal InsecticideSchool of Life ScienceChongqing UniversityChongqing400030China
| | - Zhangyong Song
- School of Basic Medical SciencesSouthwest Medical UniversityLuzhou646000China
| |
Collapse
|
13
|
Mouhoumed AZ, Mou YN, Tong SM, Ying SH, Feng MG. Three proline rotamases involved in calcium homeostasis play differential roles in stress tolerance, virulence and calcineurin regulation of Beauveria bassiana. Cell Microbiol 2020; 22:e13239. [PMID: 32602171 DOI: 10.1111/cmi.13239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 01/20/2023]
Abstract
FK506-sensitive proline rotamases (FPRs), also known as FK506-binding proteins (FKBPs), can mediate immunosuppressive drug resistance in budding yeast but their physiological roles in filamentous fungi remain opaque. Here, we report that three FPRs (cytosolic/nuclear 12.15-kD Fpr1, membrane-associated 14.78-kD Fpr2 and nuclear 50.43-kD Fpr3) are all equally essential for cellular Ca2+ homeostasis and contribute significantly to calcineurin activity at different levels in the insect-pathogenic fungus Beauveria bassiana although the deletion of fpr1 alone conferred resistance to FK506. Radial growth, conidiation, conidial viability and virulence were less compromised in the absence of fpr1 or fpr2 than in the absence of fpr3, which abolished almost all growth on scant media and reduced growth moderately on rich media. The Δfpr3 mutant was more sensitive to Na+ , K+ , Mn2+ , Ca2+ , Cu2+ , metal chelate, heat shock and UVB irradiation than was Δfpr2 while both mutants were equally sensitive to Zn2+ , Mg2+ , Fe2+ , H2 O2 and cell wall-perturbing agents. In contrast, the Δfpr1 mutant was less sensitive to fewer stress cues. Most of 32 examined genes involved in DNA damage repair, Na+ /K+ detoxification or osmotolerance and Ca2+ homeostasis were downregulated sharply in Δfpr2 and Δfpr3 but rarely so affected in Δfpr1, coinciding well with their phenotypic changes. These findings uncover important, but differential, roles of three FPRs in the fungal adaptation to insect host and environment and provide novel insight into their essential roles in calcium signalling pathway.
Collapse
Affiliation(s)
- Amina-Zahra Mouhoumed
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ya-Ni Mou
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sen-Miao Tong
- College of Agricultural and Food Science, Zhejiang A&F University, Lin'an, Zhejiang, China
| | - Sheng-Hua Ying
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Phenotypic and molecular insights into heat tolerance of formulated cells as active ingredients of fungal insecticides. Appl Microbiol Biotechnol 2020; 104:5711-5724. [PMID: 32405755 DOI: 10.1007/s00253-020-10659-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/25/2022]
Abstract
Formulated conidia of insect-pathogenic fungi, such as Beauveria and Metarhizium, serve as the active ingredients of fungal insecticides but are highly sensitive to persistent high temperatures (32-35 °C) that can be beyond their upper thermal limits especially in tropical areas and during summer months. Fungal heat tolerance and inter- or intra-specific variability are critical factors and limitations to field applications of fungal pesticides during seasons favoring outbreaks of pest populations. The past decades have witnessed tremendous advances in improving fungal pesticides through selection of heat-tolerant strains from natural isolates, improvements and innovations in terms of solid-state fermentation technologies for the production of more heat-tolerant conidia, and the use of genetic engineering of candidate strains for enhancing heat tolerance. More recently, with the entry into a post-genomic era, a large number of signaling and effector genes have been characterized as important sustainers of heat tolerance in both Beauveria and Metarhizium, which represent the main species used as fungal pesticides worldwide. This review focuses on recent advances and provides an overview into the broad molecular basis of fungal heat tolerance and its multiple regulatory pathways. Emphases are placed on approaches for screening of heat-tolerant strains, methods for optimizing conidial quality linked to virulence and heat tolerance particularly involving cell wall architecture and optimized trehalose/mannitol contents, and how molecular determinants can be exploited for genetic improvement of heat tolerance and pest-control potential. Examples of fungal pesticides with different host spectra and their appropriateness for use in apiculture are given. KEY POINTS: • Heat tolerance is critical for field stability and efficacy of fungal insecticides. • Inter- and intra-specific variability exists in insect-pathogenic fungi. • Optimized production technology and biotechnology can improve heat tolerance. • Fungal heat tolerance is orchestrated by multiple molecular pathways.
Collapse
|
15
|
Li Y, Ren H, Zhao Y, Sun J, Fan Y, Jin D, Pei Y. Characterization of three FK506-binding proteins in the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol 2020; 171:107334. [PMID: 32006551 DOI: 10.1016/j.jip.2020.107334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 10/25/2022]
Abstract
FK506 binding proteins (FKBPs) participate in regulation of diverse biological processes. However, the role of these proteins in insect-pathogenic fungi is far from well understood. To investigate the functions of FKBPs in Beauveria bassiana, a widely used entomopathogenic fungus for control of insect pests, we identify three putative FKBP genes, Bbfkbp12, Bbfkbp15, and Bbfkbp50, in the fungus. Gene-disruption experiments show that loss of Bbfkbp12 results in a significant increase of resistance of B. bassiana against the immunosuppressive compounds FK506 and rapamycin, while loss of Bbfkbp50 leads to the resistance to the ergosterol synthesis inhibitor lovastatin. Transcription assays of calcineurin (CaN)- and mTOR (mammalian target of rapamycin)-downstream target genes confirm that BbFKBP12 is the target of both FK506 and rapamycin, associated with CaN- and mTOR-signal pathways in B. bassiana. GFP-tagging of the proteins shows that BbFKBP12 and BbFKBP15 localize in cytoplasm while BbFKBP50 in nucleus. Our results provide useful information for the study of functions of CaN- and mTOR-mediated signaling, and ergosterol synthesis in the entomopathogenic fungi.
Collapse
Affiliation(s)
- Yujie Li
- Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Hui Ren
- Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Yutao Zhao
- Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Jiyuan Sun
- Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Yanhua Fan
- Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Dan Jin
- Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China.
| |
Collapse
|
16
|
Lange M, Peiter E. Calcium Transport Proteins in Fungi: The Phylogenetic Diversity of Their Relevance for Growth, Virulence, and Stress Resistance. Front Microbiol 2020; 10:3100. [PMID: 32047484 PMCID: PMC6997533 DOI: 10.3389/fmicb.2019.03100] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
The key players of calcium (Ca2+) homeostasis and Ca2+ signal generation, which are Ca2+ channels, Ca2+/H+ antiporters, and Ca2+-ATPases, are present in all fungi. Their coordinated action maintains a low Ca2+ baseline, allows a fast increase in free Ca2+ concentration upon a stimulus, and terminates this Ca2+ elevation by an exponential decrease – hence forming a Ca2+ signal. In this respect, the Ca2+ signaling machinery is conserved in different fungi. However, does the similarity of the genetic inventory that shapes the Ca2+ peak imply that if “you’ve seen one, you’ve seen them all” in terms of physiological relevance? Individual studies have focused mostly on a single species, and mechanisms elucidated in few model organisms are usually extrapolated to other species. This mini-review focuses on the physiological relevance of the machinery that maintains Ca2+ homeostasis for growth, virulence, and stress responses. It reveals common and divergent functions of homologous proteins in different fungal species. In conclusion, for the physiological role of these Ca2+ transport proteins, “seen one,” in many cases, does not mean: “seen them all.”
Collapse
Affiliation(s)
- Mario Lange
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
17
|
Gu CX, Zhang BL, Bai WW, Liu J, Zhou W, Ling ZQ, Lu Y, Xu L, Wan YJ. Characterization of the endothiapepsin-like protein in the entomopathogenic fungus Beauveria bassiana and its virulence effect on the silkworm, Bombyx mori. J Invertebr Pathol 2019; 169:107277. [PMID: 31715184 DOI: 10.1016/j.jip.2019.107277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022]
Abstract
Endothiapepsin is an aspartic proteinase that was first isolated from the plant pathogenic fungus Endothia parasitica. In previous studies, we reported on three endothiapepsin-like proteins in the entomopathogenic fungus Beauveria bassiana; the genes were up-regulated in B. bassiana hyper-virulent strain GXsk1011 at early stage infection in the silkworm. However, whether these proteins play a role in pathogenicity or not remains unknown. In this study, we cloned one protein, BbepnL-1 gene (BBA-07766), that has 98% homology with B. bassiana strain Bb2860, and expressed it in the yeast Pichia pastoris to investigate its function. The endothiapepsin-like protein is a secreted proteinase of molecular weight approximately 40 kDa. It has an N-glycosylation site and a mutation in the C-terminal conserved domain- a Thr was mutated to Gly in B. bassiana GXsk1011 and is different than the endothiapepsin of Endothia parasitica. The recombinant endothiapepsin-like protein showed enzyme activity and degraded the protein components of the silkworm cuticle. To further investigate the activity of the endothiapepsin-like protein, we knocked out the gene BbepnL-1 and showed that the loss of BbepnL-1 reduced the virulence in the silkworm. These results demonstrated that the endothiapepsin-like protein of B. bassiana is a virulence factor.
Collapse
Affiliation(s)
- Cai-Xia Gu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Bao-Ling Zhang
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Wen-Wen Bai
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Jing Liu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Wei Zhou
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Zi-Qi Ling
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Yan Lu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Liang Xu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Yong-Ji Wan
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
18
|
Genomic Analysis of the Insect-Killing Fungus Beauveria bassiana JEF-007 as a Biopesticide. Sci Rep 2018; 8:12388. [PMID: 30120392 PMCID: PMC6098154 DOI: 10.1038/s41598-018-30856-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
Insect-killing fungi have high potential in pest management. A deeper insight into the fungal genes at the whole genome level is necessary to understand the inter-species or intra-species genetic diversity of fungal genes, and to select excellent isolates. In this work, we conducted a whole genome sequencing of Beauveria bassiana (Bb) JEF-007 and characterized pathogenesis-related features and compared with other isolates including Bb ARSEF2860. A large number of Bb JEF-007 genes showed high identity with Bb ARSEF2860, but some genes showed moderate or low identity. The two Bb isolates showed a significant difference in vegetative growth, antibiotic-susceptibility, and virulence against Tenebrio molitor larvae. When highly identical genes between the two Bb isolates were subjected to real-time PCR, their transcription levels were different, particularly in heat shock protein 30 (hsp30) gene which is related to conidial thermotolerance. In several B. bassiana isolates, chitinases and trypsin-like protease genes involved in pathogenesis were highly conserved, but other genes showed noticeable sequence variation within the same species. Given the transcriptional and genetic diversity in B. bassiana, a selection of virulent isolates with industrial advantages is a pre-requisite, and this genetic approach could support the development of excellent biopesticides with intellectual property protection.
Collapse
|
19
|
Zhou G, Ying SH, Hu Y, Fang X, Feng MG, Wang J. Roles of Three HSF Domain-Containing Proteins in Mediating Heat-Shock Protein Genes and Sustaining Asexual Cycle, Stress Tolerance, and Virulence in Beauveria bassiana. Front Microbiol 2018; 9:1677. [PMID: 30090094 PMCID: PMC6068467 DOI: 10.3389/fmicb.2018.01677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/04/2018] [Indexed: 12/28/2022] Open
Abstract
Heat-shock transcription factors (HSFs) with a HSF domain are regulators of fungal heat-shock protein (HSP) genes and many others vectoring heat-shock elements, to which the domain binds in response to heat shock and other stress cues. The fungal insect pathogen Beauveria bassiana harbors three HSF domain-containing orthologous to Hsf1, Sfl1, and Skn7 in many fungi. Here, we show that the three proteins are interrelated at transcription level, play overlapping or opposite roles in activating different families of 28 HSP genes and mediate differential expression of some genes required for asexual developmental and intracellular Na+ homeostasis. Expression levels of skn7 and sfl1 largely increased in Δhsf1, which is evidently lethal in some other fungi. Hsf1 was distinct from Sfl1 and Skn7 in activating most HSP genes under normal and heat-shocked conditions. Sfl1 and Skn7 played overlapping roles in activating more than half of the HSP genes under heat shock. Each protein also activated a few HSP genes not targeted by two others under certain conditions. Deletion of sfl1 resulted in most severe growth defects on rich medium and several minimal media at optimal 25°C while such growth defects were less severe in Δhsf1 and minor in Δskn7. Conidiation level was lowered by 76% in Δskn7, 62% in Δsfl1, and 39% in Δhsf1. These deletion mutants also showed differential changes in cell wall integrity, antioxidant activity, virulence and cellular tolerance to osmotic salt, heat shock, and UV-B irradiation. These results provide a global insight into vital roles of Hsf1, Sfl1, and Skn7 in B. bassiana adaptation to environment and host.
Collapse
Affiliation(s)
- Gang Zhou
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou, China.,Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yue Hu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou, China.,Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Qu S, Wang S. Interaction of entomopathogenic fungi with the host immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:96-103. [PMID: 29355579 DOI: 10.1016/j.dci.2018.01.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Entomopathogenic fungi can invade wide range of insect hosts in the natural world and have been used as environmentally friendly alternatives to chemical insecticides for pest control. Studies of host-pathogen interactions provide valuable insights into the coevolutionay arms race between fungal pathogens and their hosts. Entomopathogenic fungi have evolved a series of sophisticated strategies to counter insect immune defenses. In response to fungal infection, insect hosts rely on behavior avoidance, physical barrier and innate immune defenses in the fight against invading pathogens. The insect cuticle acts as the first physical barrier against pathogens. It is an inhospitable physiological environment that contains chemicals (e.g., antimicrobial peptides and reactive oxygen species), which inhibit fungal growth. In addition, innate immune responses, including cellular immunity and humoral immunity, play critical roles in preventing fungal infection. In this review, we outline the current state of our knowledge of insect defenses to fungal infection and discuss the strategies by which entomopathogenic fungi counter the host immune system. Increased knowledge regarding the molecular interactions between entomopathogenic fungi and the insect host could provide new strategies for pest management.
Collapse
Affiliation(s)
- Shuang Qu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Sibao Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
21
|
Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens. Appl Microbiol Biotechnol 2018; 102:4995-5004. [DOI: 10.1007/s00253-018-9033-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 12/15/2022]
|
22
|
Lu ZM, Zhu Q, Li HX, Geng Y, Shi JS, Xu ZH. Vanillin Promotes the Germination of Antrodia camphorata Arthroconidia through PKA and MAPK Signaling Pathways. Front Microbiol 2017; 8:2048. [PMID: 29109709 PMCID: PMC5660099 DOI: 10.3389/fmicb.2017.02048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/06/2017] [Indexed: 01/19/2023] Open
Abstract
Wild fruiting bodies of medicinal mushroom Antrodia camphorata are only found on the endemic species bull camphor tree, Cinnamomum kanehirae, in Taiwan. Despite the evident importance of the host components in promoting the growth of A. camphorata, insights into the underlying mechanisms are still lacking. Here, we first evaluated effects of the compounds from C. kanehirai, C. camphora, and A. camphorata, and their structural analogs on the germination rate of A. camphorata arthroconidia. Among the 54 tested compounds, vanillin (4-hydroxy-3-methoxybenzaldehyde) was determined as the optimum germination promoter, while o-vanillin and 1-octen-3-ol as major negative regulators of arthroconidia germination. Second, the protein patterns of arthroconidia after 24 h of incubation in the presence or absence of vanillin were compared via isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics. Via bioinformatic analysis, it was found that 61 proteins might relate to the germination of arthroconidia, in which 16 proteins might involve in two potential protein kinase A (PKA) and mitogen-activated protein kinase (MAPK) signaling pathways in the vanillin-promoted germination of A. camphorata arthroconidia. Last, the mRNA expression levels of the 16 germination-related genes in the potential PKA and MAPK signaling pathways were analyzed by quantitative real time PCR. Together, our results are beneficial for the elucidation of molecular mechanisms underlying the germination of A. camphorata arthroconidia.
Collapse
Affiliation(s)
- Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Pharmaceutical Science, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Qing Zhu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Pharmaceutical Science, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Hua-Xiang Li
- National Engineering Laboratory for Cereal Fermentation Technology, School of Pharmaceutical Science, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Yan Geng
- National Engineering Laboratory for Cereal Fermentation Technology, School of Pharmaceutical Science, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Jin-Song Shi
- National Engineering Laboratory for Cereal Fermentation Technology, School of Pharmaceutical Science, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Pharmaceutical Science, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.,Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
23
|
Chu ZJ, Sun HH, Zhu XG, Ying SH, Feng MG. Discovery of a new intravacuolar protein required for the autophagy, development and virulence of Beauveria bassiana. Environ Microbiol 2017; 19:2806-2818. [DOI: 10.1111/1462-2920.13803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/20/2017] [Accepted: 05/20/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Zhen-Jian Chu
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou Zhejiang People's Republic of China
| | - Huan-Huan Sun
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou Zhejiang People's Republic of China
| | - Xiao-Guan Zhu
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou Zhejiang People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou Zhejiang People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou Zhejiang People's Republic of China
| |
Collapse
|
24
|
Wang J, Zhu XG, Ying SH, Feng MG. Differential Roles for Six P-Type Calcium ATPases in Sustaining Intracellular Ca 2+ Homeostasis, Asexual Cycle and Environmental Fitness of Beauveria bassiana. Sci Rep 2017; 7:1420. [PMID: 28469160 PMCID: PMC5431182 DOI: 10.1038/s41598-017-01570-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/31/2017] [Indexed: 12/18/2022] Open
Abstract
A global insight into the roles of multiple P-type calcium ATPase (CA) pumps in sustaining the life of a filamentous fungal pathogen is lacking. Here we elucidated the functions of five CA pumps (Eca1, Spf1 and PmcA/B/C) following previous characterization of Pmr1 in Beauveria bassiana, a fungal insect pathogen. The fungal CA pumps interacted at transcriptional level, at which singular deletions of five CA genes depressed eca1 expression by 76–98% and deletion of spf1 resulted in drastic upregulation of four CA genes by 36–50-fold. Intracellular Ca2+ concentration increased differentially in most deletion mutants exposed to the stresses of Ca2+, EDTA chelator, and/or endoplasmic reticulum and calcineurin inhibitors, accompanied with their changed sensitivities to not only the mentioned agents but also Fe2+, Cu2+ and Zn2+. Liquid culture acidification was delayed in the Δspf1, Δpmr1 and ΔpmcA mutants, coinciding well with altered levels of their extracellular lactic and oxalic acids. Moreover, all deletion mutants showed differential defects in conidial germination, vegetative growth, conidiation capacity, antioxidant activity, cell wall integrity, conidial UV-B resistance and/or virulence. Our results provide the first global insight into differential roles for six CA pumps in sustaining intracellular Ca2+ level, asexual cycle and environmental fitness of B. bassiana.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiao-Guan Zhu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
25
|
Wang JJ, Bai WW, Zhou W, Liu J, Chen J, Liu XY, Xiang TT, Liu RH, Wang WH, Zhang BL, Wan YJ. Transcriptomic analysis of two Beauveria bassiana strains grown on cuticle extracts of the silkworm uncovers their different metabolic response at early infection stage. J Invertebr Pathol 2017; 145:45-54. [DOI: 10.1016/j.jip.2017.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/17/2017] [Accepted: 03/25/2017] [Indexed: 10/19/2022]
|
26
|
Jogawat A, Vadassery J, Verma N, Oelmüller R, Dua M, Nevo E, Johri AK. PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica, confers salinity stress tolerance in rice plants. Sci Rep 2016; 6:36765. [PMID: 27849025 PMCID: PMC5111105 DOI: 10.1038/srep36765] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/20/2016] [Indexed: 12/04/2022] Open
Abstract
In this study, yeast HOG1 homologue from the root endophyte Piriformospora indica (PiHOG1) was isolated and functionally characterized. Functional expression of PiHOG1 in S. cerevisiae ∆hog1 mutant restored osmotolerance under high osmotic stress. Knockdown (KD) transformants of PiHOG1 generated by RNA interference in P. indica showed that genes for the HOG pathway, osmoresponse and salinity tolerance were less stimulated in KD-PiHOG1 compared to the wild-type under salinity stress. Furthermore, KD lines are impaired in the colonization of rice roots under salinity stress of 200 mM NaCl, and the biomass of the host plants, their shoot and root lengths, root number, photosynthetic pigment and proline contents were reduced as compared to rice plants colonized by WT P. indica. Therefore, PiHOG1 is critical for root colonisation, salinity tolerance and the performance of the host plant under salinity stress. Moreover, downregulation of PiHOG1 resulted not only in reduced and delayed phosphorylation of the remaining PiHOG1 protein in colonized salinity-stressed rice roots, but also in the downregulation of the upstream MAP kinase genes PiPBS2 and PiSSK2 involved in salinity tolerance signalling in the fungus. Our data demonstrate that PiHOG1 is not only involved in the salinity response of P. indica, but also helping host plant to overcome salinity stress.
Collapse
Affiliation(s)
- Abhimanyu Jogawat
- School of Life Sciences Jawaharlal Nehru University, New Delhi-110067, India
| | | | - Nidhi Verma
- School of Life Sciences Jawaharlal Nehru University, New Delhi-110067, India
| | - Ralf Oelmüller
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Eviatar Nevo
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 3498838, Israel
| | - Atul Kumar Johri
- School of Life Sciences Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
27
|
Wang J, Ying SH, Hu Y, Feng MG. Vital role for the J-domain protein Mdj1 in asexual development, multiple stress tolerance, and virulence of Beauveria bassiana. Appl Microbiol Biotechnol 2016; 101:185-195. [DOI: 10.1007/s00253-016-7757-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/07/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022]
|
28
|
A putative mitochondrial calcium uniporter in A. fumigatus contributes to mitochondrial Ca(2+) homeostasis and stress responses. Fungal Genet Biol 2016; 94:15-22. [PMID: 27378202 DOI: 10.1016/j.fgb.2016.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/14/2016] [Accepted: 07/01/2016] [Indexed: 12/30/2022]
Abstract
Ca(2+) uptake into mitochondria plays a central role in cell physiology by stimulating ATP production, shaping cytosolic Ca(2+) transients and regulating cell survival or death. Although this system has been studied extensively in mammalian cells, the physiological implications of Ca(2+) uptake into mitochondria in fungal cells are still unknown. In this study, a bi-directional best-hit BLASTP search revealed that the genome of Aspergillus fumigatus encodes a homolog of a putative mitochondrial Ca(2+) uniporter (MCU) and a mitochondrial carrier protein AGC1/MICU1 homolog. Both putative homologs are mitochondrially localized and required for the response to azole and oxidative stress such that the loss of either McuA or AgcA results in reduced susceptibility to azole and oxidative stress, suggesting a role in environmental stress adaptation. Overexpressing mcuA restores the azole-resistance phenotype of the ΔagcA strain to wild-type levels, but not vice versa, indicating McuA plays a dominant role during these stress responses. Using a mitochondrially targeted version of the calcium-sensitive photoprotein aequorin, we found that only mcuA deletion leads to dysfunctional [Ca(2+)]mt and [Ca(2+)]c homeostasis, suggesting that McuA, but not AgcA, contributes to Ca(2+) uptake into mitochondria. Further point-mutation experiments combined with extracellular Ca(2+) chelator treatment verified that two predicted Ca(2+)-binding sites in McuA are required for Ca(2+) uptake into mitochondria and stress responses through the regulation of [Ca(2+)]c homeostasis.
Collapse
|
29
|
Butt TM, Coates CJ, Dubovskiy IM, Ratcliffe NA. Entomopathogenic Fungi: New Insights into Host-Pathogen Interactions. ADVANCES IN GENETICS 2016; 94:307-64. [PMID: 27131329 DOI: 10.1016/bs.adgen.2016.01.006] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Although many insects successfully live in dangerous environments exposed to diverse communities of microbes, they are often exploited and killed by specialist pathogens. Studies of host-pathogen interactions (HPI) provide valuable insights into the dynamics of the highly aggressive coevolutionary arms race between entomopathogenic fungi (EPF) and their arthropod hosts. The host defenses are designed to exclude the pathogen or mitigate the damage inflicted while the pathogen responds with immune evasion and utilization of host resources. EPF neutralize their immediate surroundings on the insect integument and benefit from the physiochemical properties of the cuticle and its compounds that exclude competing microbes. EPF also exhibit adaptations aimed at minimizing trauma that can be deleterious to both host and pathogen (eg, melanization of hemolymph), form narrow penetration pegs that alleviate host dehydration and produce blastospores that lack immunogenic sugars/enzymes but facilitate rapid assimilation of hemolymph nutrients. In response, insects deploy an extensive armory of hemocytes and macromolecules, such as lectins and phenoloxidase, that repel, immobilize, and kill EPF. New evidence suggests that immune bioactives work synergistically (eg, lysozyme with antimicrobial peptides) to combat infections. Some proteins, including transferrin and apolipophorin III, also demonstrate multifunctional properties, participating in metabolism, homeostasis, and pathogen recognition. This review discusses the molecular intricacies of these HPI, highlighting the interplay between immunity, stress management, and metabolism. Increased knowledge in this area could enhance the efficacy of EPF, ensuring their future in integrated pest management programs.
Collapse
Affiliation(s)
- T M Butt
- Swansea University, Swansea, Wales, United Kingdom
| | - C J Coates
- Swansea University, Swansea, Wales, United Kingdom
| | | | - N A Ratcliffe
- Swansea University, Swansea, Wales, United Kingdom; Universidade Federal Fluminense, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Wang J, Ying SH, Hu Y, Feng MG. Mas5, a homologue of bacterial DnaJ, is indispensable for the host infection and environmental adaptation of a filamentous fungal insect pathogen. Environ Microbiol 2016; 18:1037-47. [DOI: 10.1111/1462-2920.13197] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Jie Wang
- Institute of Microbiology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
- Key Laboratory of Tropical Marine Bio-resources and Ecology; RNAM Center for Marine Microbiology; Guangdong Key Laboratory of Marine Material Medical; South China Sea Institute of Oceanology; Chinese Academy of Sciences; Guangzhou Guangdong 510301 China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Yue Hu
- Institute of Microbiology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
| |
Collapse
|
31
|
Molecular Genetics of Beauveria bassiana Infection of Insects. ADVANCES IN GENETICS 2016; 94:165-249. [DOI: 10.1016/bs.adgen.2015.11.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol 2016; 133:41-9. [DOI: 10.1016/j.jip.2015.11.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/18/2015] [Accepted: 11/24/2015] [Indexed: 01/13/2023]
|
33
|
Calcium signaling mediates antifungal activity of triazole drugs in the Aspergilli. Fungal Genet Biol 2015; 81:182-90. [DOI: 10.1016/j.fgb.2014.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 01/01/2023]
|
34
|
Fortwendel JR. Orchestration of Morphogenesis in Filamentous Fungi: Conserved Roles for Ras Signaling Networks. FUNGAL BIOL REV 2015; 29:54-62. [PMID: 26257821 DOI: 10.1016/j.fbr.2015.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Filamentous fungi undergo complex developmental programs including conidial germination, polarized morphogenesis, and differentiation of sexual and asexual structures. For many fungi, the coordinated completion of development is required for pathogenicity, as specialized morphological structures must be produced by the invading fungus. Ras proteins are highly conserved GTPase signal transducers and function as major regulators of growth and development in eukaryotes. Filamentous fungi typically express two Ras homologues, comprising distinct groups of Ras1-like and Ras2-like proteins based on sequence homology. Recent evidence suggests shared roles for both Ras1 and Ras2 homologues, but also supports the existence of unique functions in the areas of stress response and virulence. This review focuses on the roles played by both Ras protein groups during growth, development, and pathogenicity of a diverse array of filamentous fungi.
Collapse
Affiliation(s)
- Jarrod R Fortwendel
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
35
|
Plaza V, Lagües Y, Carvajal M, Pérez-García LA, Mora-Montes HM, Canessa P, Larrondo LF, Castillo L. bcpmr1 encodes a P-type Ca(2+)/Mn(2+)-ATPase mediating cell-wall integrity and virulence in the phytopathogen Botrytis cinerea. Fungal Genet Biol 2015; 76:36-46. [PMID: 25677379 DOI: 10.1016/j.fgb.2015.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 01/14/2015] [Accepted: 01/30/2015] [Indexed: 12/28/2022]
Abstract
The cell wall of fungi is generally composed of an inner skeletal layer consisting of various polysaccharides surrounded by a layer of glycoproteins. These usually contain both N- and O-linked oligosaccharides, coupled to the proteins by stepwise addition of mannose residues by mannosyltransferases in the endoplasmic reticulum and the Golgi apparatus. In yeast, an essential luminal cofactor for these mannosyltransferases is Mn(2+) provided by the Ca(2+)/Mn(2+)-ATPase known as Pmr1. In this study, we have identified and characterized the Botrytis cinerea pmr1 gene, the closest homolog of yeast PMR1. We hypothesized that bcpmr1 also encodes a Ca(2+)/Mn(2+)-ATPase that plays an important role in the protein glycosylation pathway. Phenotypic analysis showed that bcpmr1 null mutants displayed a significant reduction in conidial production, radial growth and diameter of sclerotia. Significant alterations in hyphal cell wall composition were observed including a 83% decrease of mannan levels and an increase in the amount of chitin and glucan. These changes were accompanied by a hypersensitivity to cell wall-perturbing agents such as Calcofluor white, Congo red and zymolyase. Importantly, the Δbcpmr1 mutant showed reduced virulence in tomato (leafs and fruits) and apple (fruits) and reduced biofilm formation. Together, our results highlight the importance of bcpmr1 for protein glycosylation, cell wall structure and virulence of B. cinerea.
Collapse
Affiliation(s)
- Verónica Plaza
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Universidad de La Serena, La Serena, Chile; Millennium Nucleus for Fungal Integrative and Synthetic Biology (FISB), Chile
| | - Yanssuy Lagües
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | - Mauro Carvajal
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | - Luis A Pérez-García
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Col. Noria Alta, C.P. 36050 Guanajuato, Gto., Mexico
| | - Hector M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Col. Noria Alta, C.P. 36050 Guanajuato, Gto., Mexico
| | - Paulo Canessa
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for Fungal Integrative and Synthetic Biology (FISB), Chile
| | - Luis F Larrondo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for Fungal Integrative and Synthetic Biology (FISB), Chile
| | - Luis Castillo
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Universidad de La Serena, La Serena, Chile; Millennium Nucleus for Fungal Integrative and Synthetic Biology (FISB), Chile.
| |
Collapse
|
36
|
He Z, Zhang S, Keyhani NO, Song Y, Huang S, Pei Y, Zhang Y. A novel mitochondrial membrane protein, Ohmm, limits fungal oxidative stress resistance and virulence in the insect fungal pathogenBeauveria bassiana. Environ Microbiol 2014; 17:4213-38. [DOI: 10.1111/1462-2920.12713] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/07/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Zhangjiang He
- Biotechnology Research Center; Southwest University; Chongqing 400715 China
| | - Suhong Zhang
- Biotechnology Research Center; Southwest University; Chongqing 400715 China
| | - Nemat O. Keyhani
- Department of Microbiology and Cell Science; University of Florida; Gainesville FL 32611 USA
| | - Yulin Song
- Biotechnology Research Center; Southwest University; Chongqing 400715 China
| | - Shuaishuai Huang
- Biotechnology Research Center; Southwest University; Chongqing 400715 China
| | - Yan Pei
- Biotechnology Research Center; Southwest University; Chongqing 400715 China
| | - Yongjun Zhang
- Biotechnology Research Center; Southwest University; Chongqing 400715 China
- College of Plant Protection; Southwest University; Chongqing 400715 China
| |
Collapse
|
37
|
Li F, Wang ZL, Zhang LB, Ying SH, Feng MG. The role of three calcineurin subunits and a related transcription factor (Crz1) in conidiation, multistress tolerance and virulence in Beauveria bassiana. Appl Microbiol Biotechnol 2014; 99:827-40. [DOI: 10.1007/s00253-014-6124-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/28/2014] [Accepted: 09/30/2014] [Indexed: 11/25/2022]
|
38
|
Hu Y, Wang J, Ying SH, Feng MG. Five vacuolar Ca(2+) exchangers play different roles in calcineurin-dependent Ca(2+)/Mn(2+) tolerance, multistress responses and virulence of a filamentous entomopathogen. Fungal Genet Biol 2014; 73:12-9. [PMID: 25256588 DOI: 10.1016/j.fgb.2014.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/28/2014] [Accepted: 09/16/2014] [Indexed: 11/28/2022]
Abstract
Multiple Vcx1 (vacuolar calcium exchanger) paralogues exist in many filamentous fungi but are functionally unexplored unlike a single Vcx1 ortholog well characterized in yeasts. Here we show that five Vcx1 paralogues (Vcx1A-E) in Beauveria bassiana are conditionally functional for intracellular Ca(2+) homeostasis and contribute differentially to multistress tolerance and virulence in the filamentous entomopathogen. Each vcx1 deletion drastically upregulated transcriptional expressions of four other partners and six P-type Ca(2+)-ATPases, resulting in elevated or lowered intracellular Ca(2+) concentration in some deletion mutants treated with Ca(2+) stress or untreated at 25 and 30 °C. When calcineurin was inactivated by cyclosporine A, Ca(2+) tolerance decreased by 11-17% in five Δvcx1 mutants, but Mn(2+) sensitivity increased only in Δvcx1A and Δvcx1D, at optimal 25 °C. These two mutants were also more sensitive to Ca(2+) stress at 30 °C when calcineurin was active, and showed minor growth defect at 25 and 30 °C when calcineurin was inactive. Moreover, all the Δvcx1 mutants were more sensitive to dithiothreitol (stress-response trigger to endoplasmic reticulum) and Congo red (cell wall stressor); three of them were consistently less tolerant to the oxidants menadione and H2O2. The fungal virulence to Galleria mellonella larvae decreased by 15-40% in four Δvcx1 mutants excluding Δvcx1E, which was uniquely defective in conidial thermotolerance. All the changes were restored by each vcx1 complementation. Our findings indicate that the five Vcx1 paralogues in B. bassiana contribute differentially to calcineurin-dependent Ca(2+)/Mn(2+) tolerance, multistress responses and virulence, and recall attention to multifunctional Vcx1 paralogues in filamentous fungi.
Collapse
Affiliation(s)
- Yue Hu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jie Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.
| |
Collapse
|
39
|
Adenylate cyclase orthologues in two filamentous entomopathogens contribute differentially to growth, conidiation, pathogenicity, and multistress responses. Fungal Biol 2014; 118:422-31. [PMID: 24742837 DOI: 10.1016/j.funbio.2014.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 12/31/2022]
Abstract
Adenylate cyclase (AC) is a core element of cAMP signalling network. Here we show functional diversity and differentiation of Beauveria bassiana AC (BbAC) and Metarhizium robertsii AC (MrAC). Severe growth defects occurred in ΔBbAC and ΔMrAC grown on nutrition-rich SDAY and several minimal media but were largely alleviated by adding cAMP to SDAY. Conidial yield increased greatly in ΔBbAC but decreased in ΔMrAC. During colony growth, ΔBbAC was highly sensitive to oxidation, high osmolarity, cell wall perturbation, carbendazim fungicide, Mn(2+), Zn(2+), Fe(3+), and EDTA but more tolerant to Cu(2+) while ΔMrAC showed higher osmotolerance, decreased sensitivity to Fe(3+), and null response to carbendazim or cell wall stress despite similar responses to oxidation and other metal ions. Conidial UV-B resistance decreased by 32% in ΔBbAC and 22% in ΔMrAC despite little change in their theromotolerance. Median lethal time (LT50) estimates of ΔBbAC and ΔMrAC against susceptible insects were 10.9 and 1.4 d longer than those from wild-type strains respectively. All the phenotypic changes were restored to wild-type levels by each gene complementation. Taken together, BbAC and MrAC regulated differentially conidiation, pathogenicity, and multistress responses in B. bassiana and M. robertsii, thereby making different contributions to their biocontrol potential.
Collapse
|
40
|
Song TT, Zhao J, Ying SH, Feng MG. Differential contributions of five ABC transporters to mutidrug resistance, antioxidion and virulence of Beauveria bassiana, an entomopathogenic fungus. PLoS One 2013; 8:e62179. [PMID: 23596534 PMCID: PMC3626590 DOI: 10.1371/journal.pone.0062179] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/18/2013] [Indexed: 01/13/2023] Open
Abstract
Multidrug resistance (MDR) confers agrochemical compatibility to fungal cells-based mycoinsecticdes but mechanisms involved in MDR remain poorly understood for entomopathogenic fungi, which have been widely applied as biocontrol agents against arthropod pests. Here we characterized the functions of five ATP-binding cassette (ABC) transporters, which were classified to the subfamilies ABC-B (Mdr1), ABC-C (Mrp1) and ABC-G (Pdr1, Pdr2 and Pdr5) and selected from 54 full-size ABC proteins of Beauveria bassiana based on their main domain architecture, membrane topology and transcriptional responses to three antifungal inducers. Disruption of each transporter gene resulted in significant reduction in resistance to four to six of eight fungicides or antifungal drugs tested due to their differences in structure and function. Compared with wild-type and complemented (control) strains, disruption mutants of all the five transporter genes became significantly less tolerant to the oxidants menadione and H2O2 based on 22−41% and 10−31% reductions of their effective concentrations required for the suppression of 50% colony growth at 25°C. Under a standardized spray, the killing actions of ΔPdr5 and ΔMrp1 mutants against Spodoptera litura second-instar larvae were delayed by 59% and 33% respectively. However, no significant virulence change was observed in three other delta mutants. Taken together, the examined five ABC transporters contribute differentially to not only the fungal MDR but antioxidant capability, a phenotype rarely associated with ABC efflux pumps in previous reports; at least some of them are required for the full virulence of B. bassiana, thereby affecting the fungal biocontrol potential. Our results indicate that ABC pump-dependent MDR mechanisms exist in entomopathogenic fungi as do in yeasts and human and plant pathogenic fungi.
Collapse
Affiliation(s)
- Ting-Ting Song
- Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Horticulture Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, People's Republic of China
| | - Jing Zhao
- Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- * E-mail:
| |
Collapse
|