1
|
Wang J, Wu D, Wu Q, Chen J, Zhao Y, Wang H, Liu F, Yuan Q. Vertical profiles of community and activity of methanotrophs in large lake and reservoir of Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177782. [PMID: 39626421 DOI: 10.1016/j.scitotenv.2024.177782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Microbial methane oxidation plays a significant role in regulating methane emissions from lakes and reservoirs. However, the differences in methane oxidation activity and methanotrophic community between lakes and reservoirs remain inadequately characterized. In this study, sediment and water samples were collected from the large shallow lake (Dianchi) and deep reservoirs (Dongfeng and Hongjiadu) located in karst area, Southwest China. The results indicated that the rates of aerobic oxidation of methane (AeOM) in lake sediment ranged from 7.1 to 27.7 μg g-1 d-1, which was higher than that in reservoirs sediment (1.92 to 11.56 μg g-1 d-1). Similarly, the average AeOM in the water column of lake (104.7 μg L-1 d-1) was much higher than that of reservoirs (46 μg L-1 d-1). The content of sediment organic carbon and dissolved inorganic carbon were important factors that influenced the rates of AeOM in sediment and water column, respectively. 16S rRNA genes sequencing revealed a higher relative abundance of methanotrophs in lake sediments compared to reservoir sediments. The dominant methanotrophic taxa in lake was Methylococcaceae (type Ib), while Methylomonadaceae (type Ia) was predominant in reservoirs. Meanwhile, anaerobic methane-oxidizing microorganisms Candidatus Methylomirabilis and Candidatus Methanoperedens were also abundant in sediments of reservoirs. However, metatranscriptomic analysis revealed that the type I methanotrophs, especially Methylobacter, was most active in the sediment of both lake and reservoir. Water depth and conductivity could be the key controlling factors of the structures of methanotrophic communities in sediment and water column, respectively. Metagenome-assembled genomes suggested that type I methanotrophs exhibited greater motility, as evidenced by a higher number of flagellar assembly genes, while type II methanotrophs demonstrated advantages in metabolic processes such as carbon, phosphorus, and methane metabolism.
Collapse
Affiliation(s)
- Jiayi Wang
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Debin Wu
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiusheng Wu
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingan Chen
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem, Guiyang 551499, China
| | - Yuan Zhao
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Wang
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fukang Liu
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Yuan
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem, Guiyang 551499, China.
| |
Collapse
|
2
|
Gorlenko V, Savvichev A, Kadnikov V, Rusanov I, Beletsky A, Zakharova E, Kostrikina N, Sigalevich P, Veslopolova E, Pimenov N. A Novel View of the Diversity of Anoxygenic Phototrophic Bacteria Inhabiting the Chemocline of Meromictic Karst Lakes. Microorganisms 2023; 12:13. [PMID: 38276182 PMCID: PMC10820006 DOI: 10.3390/microorganisms12010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
The rates of oxygenic and anoxygenic photosynthesis, the microorganisms responsible for these processes, and the hydrochemical characteristics of the sulfide-containing karst lakes, Black Kichier and Big Kichier (Mari El Republic), were investigated. In these lakes, a plate of anoxygenic phototrophic bacteria (APB) is formed at the upper boundary of sulfide occurrence in the water. The phototrophic community of the chemocline zone was analyzed using a combination of high-throughput sequencing of the 16S rRNA gene fragments and light and electron microscopic techniques. Green-colored Chlorobium clathratiforme were absolutely predominant in both lakes. The minor components included green sulfur bacteria (GSB) Chlorobium spp., symbiotic consortia Chlorochromatium magnum and Pelochromatium roseum, purple sulfur bacteria (PSB) Chromatium okenii, and unidentified phylotypes of the family Chromatiaceae, as well as members of the Chloroflexota: Chloronema sp. and Oscillochloris sp. Based on the results of the molecular analysis, the taxonomic status of Ancalochloris perfilievii and other prosthecate GSB, as well as of the PSB Thiopedia rosea, which were visually revealed in the studied freshwater lakes, is discussed.
Collapse
Affiliation(s)
- Vladimir Gorlenko
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia; (V.G.); (A.S.); (I.R.); (E.Z.); (N.K.); (P.S.); (E.V.); (N.P.)
| | - Alexander Savvichev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia; (V.G.); (A.S.); (I.R.); (E.Z.); (N.K.); (P.S.); (E.V.); (N.P.)
| | - Vitaly Kadnikov
- K.G. Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Igor Rusanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia; (V.G.); (A.S.); (I.R.); (E.Z.); (N.K.); (P.S.); (E.V.); (N.P.)
| | - Alexey Beletsky
- K.G. Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Elena Zakharova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia; (V.G.); (A.S.); (I.R.); (E.Z.); (N.K.); (P.S.); (E.V.); (N.P.)
| | - Nadezhda Kostrikina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia; (V.G.); (A.S.); (I.R.); (E.Z.); (N.K.); (P.S.); (E.V.); (N.P.)
| | - Pavel Sigalevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia; (V.G.); (A.S.); (I.R.); (E.Z.); (N.K.); (P.S.); (E.V.); (N.P.)
| | - Elena Veslopolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia; (V.G.); (A.S.); (I.R.); (E.Z.); (N.K.); (P.S.); (E.V.); (N.P.)
| | - Nikolay Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia; (V.G.); (A.S.); (I.R.); (E.Z.); (N.K.); (P.S.); (E.V.); (N.P.)
| |
Collapse
|
3
|
Grouzdev D, Gaisin V, Lunina O, Krutkina M, Krasnova E, Voronov D, Baslerov R, Sigalevich P, Savvichev A, Gorlenko V. Microbial communities of stratified aquatic ecosystems of Kandalaksha Bay (White Sea) shed light on the evolutionary history of green and brown morphotypes of Chlorobiota. FEMS Microbiol Ecol 2022; 98:6693937. [PMID: 36073352 DOI: 10.1093/femsec/fiac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022] Open
Abstract
Anoxygenic photoautotrophic metabolism of green sulfur bacteria of the family Chlorobiaceae played a significant role in establishing the Earth's biosphere. Two known major ecological forms of these phototrophs differ in their pigment composition and, therefore, in color: the green and brown forms. The latter form often occurs in low-light environments and is specialized to harvest blue light, which can penetrate to the greatest depth in the water column. In the present work, metagenomic sequencing was used to investigate the natural population of brown Chl. phaeovibrioides ZM in a marine stratified Zeleny Mys lagoon in the Kandalaksha Bay (the White Sea) to supplement the previously obtained genomes of brown Chlorobiaceae. The genomes of brown and green Chlorobiaceae were investigated using comparative genome analysis and phylogenetic and reconciliation analysis to reconstruct the evolution of these ecological forms. Our results support the suggestion that the last common ancestor of Chlorobiaceae belonged to the brown form, i.e. it was adapted to the conditions of low illumination. However, despite the vertical inheritance of these characteristics, among modern Chlorobiaceae populations, the genes responsible for synthesizing the pigments of the brown form are subject to active horizontal transfer.
Collapse
Affiliation(s)
- Denis Grouzdev
- SciBear OU, 10115 Tallinn, Estonia.,School of Marine and Atmospheric Sciences, Stony Brook University, 11794, Stony Brook, USA
| | - Vasil Gaisin
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.,Current affiliation: Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Olga Lunina
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | | | - Elena Krasnova
- Pertsov White Sea Biological Station, 184042, Republic Karelia, Russia
| | - Dmitry Voronov
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 127051, Moscow, Russia
| | - Roman Baslerov
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Pavel Sigalevich
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Alexander Savvichev
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Vladimir Gorlenko
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| |
Collapse
|
4
|
Swanner ED, Wüstner M, Leung T, Pust J, Fatka M, Lambrecht N, Chmiel HE, Strauss H. Seasonal phytoplankton and geochemical shifts in the subsurface chlorophyll maximum layer of a dimictic ferruginous lake. Microbiologyopen 2022; 11:e1287. [PMID: 35765183 PMCID: PMC9108440 DOI: 10.1002/mbo3.1287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Subsurface chlorophyll maxima layers (SCML) are ubiquitous features of stratified aquatic systems. Availability of the micronutrient iron is known to influence marine SCML, but iron has not been explored in detail as a factor in the development of freshwater SCML. This study investigates the relationship between dissolved iron and the SCML within the dimictic, ferruginous lake Grosses Heiliges Meer in northern Germany. The occurrence of the SCML under nonferruginous conditions in the spring and ferruginous conditions in the fall are context to explore temporal changes in the phytoplankton community and indicators of primary productivity. Results indicate that despite more abundant chlorophyll in the spring, the SCML sits below a likely primary productivity maximum within the epilimnion, inferred based on colocated dissolved oxygen, δ13 CDIC , and pH maxima. The peak amount of chlorophyll in the SCML is lower in the fall than in the spring, but in the fall the SCML is colocated with elevated dissolved iron concentrations and a local δ13 CDIC maximum. Cyanobacteria and Chlorophyta have elevated abundances within the SCML in the fall. Further investigation of the relationship of iron to primary productivity within ferruginous SCML may help to understand the environmental controls on primary productivity in past ferruginous oceans.
Collapse
Affiliation(s)
| | - Marina Wüstner
- Center for Applied GeoscienceUniversity of TübingenTübingenGermany
| | - Tania Leung
- Department of Geological & Atmospheric SciencesIowa State UniversityAmesIowaUSA
| | - Jürgen Pust
- Naturschutzgebietes Heiliges MeerLandschaftsverband Westfalen‐Lippe (LWL) Museum für NaturkundeReckeGermany
| | - Micah Fatka
- Department of Geological & Atmospheric SciencesIowa State UniversityAmesIowaUSA
| | - Nick Lambrecht
- Department of Geological & Atmospheric SciencesIowa State UniversityAmesIowaUSA
| | - Hannah E. Chmiel
- Environmental Engineering InstituteÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Harald Strauss
- Institute for Geology and PaleontologyUniversity of MünsterMünsterGermany
| |
Collapse
|
5
|
Chen M, Zhang YQ, Krumholz LR, Zhao LY, Yan ZS, Yang YJ, Li ZH, Hayat F, Chen HB, Huang R. Black blooms-induced adaptive responses of sulfate reduction bacteria in a shallow freshwater lake. ENVIRONMENTAL RESEARCH 2022; 209:112732. [PMID: 35077715 DOI: 10.1016/j.envres.2022.112732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Decomposing cyanobacterial bloom-induced black blooms been seen as an issue in the management of freshwater ecosystems, but its effect on sulfate-reducing bacteria (SRB) in shallow freshwater lakes is not clear. The objective of this study is to present an in-depth investigation of black bloom effects on the activities and composition of SRB, as well as the interactions between SRB and other bacteria. Water and surface sediments samples were collected from a shallow freshwater lake during black and non-black blooms. Sulfate reduction rates (SRRs) in the water column were determined from the linear regression of sulfate depletion with time. Quantitative real-time polymerase chain reactions (qPCRs), targeting the dsrA gene and Illumina sequencing of 16S rDNA, were used to estimate the SRB population and SRB community structures, respectively. Our data indicate that although a higher abundance of SRB was responsible for the higher SRR in the bottom water (34.09 ± 2.37 nmol mL-1 day-1) than in the surface water (14.57 ± 2.91 nmol mL-1 day-1) during black blooms, cell-specific sulfate reduction rates (csSRRs) in the distinct water layers were not significantly different (P = 0.95), with the value of approximately 0.017 fmol cell-1 day-1. Additionally, Desulfomicrobium and Desulfovibrio were the two main genera of SRB in the water column during black bloom season, while Desulfobulbus, Desulfobacca and Desulfatiglans genera were identified in the sediments of both the black and non-black blooms in genera pools. Each SRB genus preferentially associated with bacteria for specific functions in the bacterial co-occurrence network, regardless of whether black booms occurred or not. These results extend our knowledge on the importance of SRB during black blooms and the adaptation of SRB to environmental changes in freshwater lakes.
Collapse
Affiliation(s)
- Mo Chen
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Hubei Engineering Research Center for Rural Drinking Water Security, Hubei University, Wuhan, 430062, China.
| | - Ya-Qing Zhang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China
| | - Lee R Krumholz
- Department of Botany & Microbiology, University of Oklahoma, Norman, OK, USA
| | - Li-Ya Zhao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China; Hubei Engineering Research Center for Rural Drinking Water Security, Hubei University, Wuhan, 430062, China
| | - Zai-Sheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yu-Jing Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China; Hubei Engineering Research Center for Rural Drinking Water Security, Hubei University, Wuhan, 430062, China
| | - Zhao-Hua Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China; Hubei Engineering Research Center for Rural Drinking Water Security, Hubei University, Wuhan, 430062, China
| | - Faisal Hayat
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China
| | - Hong-Bing Chen
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China; Hubei Engineering Research Center for Rural Drinking Water Security, Hubei University, Wuhan, 430062, China
| | - Ran Huang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|
6
|
Distribution of Dissolved Nitrogen Compounds in the Water Column of a Meromictic Subarctic Lake. NITROGEN 2021. [DOI: 10.3390/nitrogen2040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to better understand the biogeochemical cycle of nitrogen in meromictic lakes, which can serve as a model for past aquatic environments, we measured dissolved concentrations of nitrate, nitrite, ammonium, and organic nitrogen in the deep (39 m maximal depth) subarctic Lake Svetloe (NW Russia). The lake is a rare type of freshwater meromictic water body with high concentrations of methane, ferrous iron, and manganese and low concentrations of sulfates and sulfides in the monimolimnion. In the oligotrophic mixolimnion, the concentration of mineral forms of nitrogen decreased in summer compared to winter, likely due to a phytoplankton bloom. The decomposition of the bulk of the organic matter occurs under microaerophilic/anaerobic conditions of the chemocline and is accompanied by the accumulation of nitrogen in the form of N-NH4 in the monimolimnion. We revealed a strong relationship between methane and nitrogen cycles in the chemocline and monimolimnion horizons. The nitrate concentrations in Lake Svetloe varied from 9 to 13 μM throughout the water column. This fact is rare for meromictic lakes, where nitrate concentrations up to 13 µM are found in the monimolimnion zone down to the bottom layers. We hypothesize, in accord with available data for other stratified lakes that under conditions of high concentrations of manganese and ammonium at the boundary of redox conditions and below, anaerobic nitrification with the formation of nitrate occurs. Overall, most of the organic matter in Lake Svetloe undergoes biodegradation essentially under microaerophilic/anaerobic conditions of the chemocline and the monimolimnion. Consequently, the manifestation of the biogeochemical nitrogen cycle is expressed in these horizons in the most vivid and complex relationship with other cycles of elements.
Collapse
|
7
|
Block KR, O'Brien JM, Edwards WJ, Marnocha CL. Vertical structure of the bacterial diversity in meromictic Fayetteville Green Lake. Microbiologyopen 2021; 10:e1228. [PMID: 34459548 PMCID: PMC8330806 DOI: 10.1002/mbo3.1228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Abstract
The permanently stratified water columns in euxinic meromictic lakes produce niche environments for phototrophic sulfur oxidizers and diverse sulfur metabolisms. While Green Lake (Fayetteville, New York, NY) is known to host a diverse community of ecologically important sulfur bacteria, analyses of its microbial communities, to date, have been largely based on pigment analysis and smaller datasets from Sanger sequencing techniques. Here, we present the results of next-generation sequencing of the eubacterial community in the context of the water column geochemistry. We observed abundant purple and green sulfur bacteria, as well as anoxygenic photosynthesis-capable cyanobacteria within the upper monimolimnion. Amidst the phototrophs, we found other sulfur-cycling bacteria including sulfur disproportionators and chemotrophic sulfur oxidizers, further detailing our understanding of the sulfur cycle and microbial ecology of euxinic, meromictic lakes.
Collapse
Affiliation(s)
| | - Joy M. O'Brien
- Department of BiologyNiagara UniversityLewistonNew YorkUSA
| | | | | |
Collapse
|
8
|
Lambrecht N, Stevenson Z, Sheik CS, Pronschinske MA, Tong H, Swanner ED. " Candidatus Chlorobium masyuteum," a Novel Photoferrotrophic Green Sulfur Bacterium Enriched From a Ferruginous Meromictic Lake. Front Microbiol 2021; 12:695260. [PMID: 34305861 PMCID: PMC8302410 DOI: 10.3389/fmicb.2021.695260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Anoxygenic phototrophic bacteria can be important primary producers in some meromictic lakes. Green sulfur bacteria (GSB) have been detected in ferruginous lakes, with some evidence that they are photosynthesizing using Fe(II) as an electron donor (i.e., photoferrotrophy). However, some photoferrotrophic GSB can also utilize reduced sulfur compounds, complicating the interpretation of Fe-dependent photosynthetic primary productivity. An enrichment (BLA1) from meromictic ferruginous Brownie Lake, Minnesota, United States, contains an Fe(II)-oxidizing GSB and a metabolically flexible putative Fe(III)-reducing anaerobe. "Candidatus Chlorobium masyuteum" grows photoautotrophically with Fe(II) and possesses the putative Fe(II) oxidase-encoding cyc2 gene also known from oxygen-dependent Fe(II)-oxidizing bacteria. It lacks genes for oxidation of reduced sulfur compounds. Its genome encodes for hydrogenases and a reverse TCA cycle that may allow it to utilize H2 and acetate as electron donors, an inference supported by the abundance of this organism when the enrichment was supplied by these substrates and light. The anaerobe "Candidatus Pseudopelobacter ferreus" is in low abundance (∼1%) in BLA1 and is a putative Fe(III)-reducing bacterium from the Geobacterales ord. nov. While "Ca. C. masyuteum" is closely related to the photoferrotrophs C. ferroooxidans strain KoFox and C. phaeoferrooxidans strain KB01, it is unique at the genomic level. The main light-harvesting molecule was identified as bacteriochlorophyll c with accessory carotenoids of the chlorobactene series. BLA1 optimally oxidizes Fe(II) at a pH of 6.8, and the rate of Fe(II) oxidation was 0.63 ± 0.069 mmol day-1, comparable to other photoferrotrophic GSB cultures or enrichments. Investigation of BLA1 expands the genetic basis for phototrophic Fe(II) oxidation by GSB and highlights the role these organisms may play in Fe(II) oxidation and carbon cycling in ferruginous lakes.
Collapse
Affiliation(s)
- Nicholas Lambrecht
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, United States
| | - Zackry Stevenson
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, United States
| | - Cody S. Sheik
- Department of Biology, University of Minnesota Duluth, Duluth, MN, United States
- Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN, United States
| | - Matthew A. Pronschinske
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, United States
| | - Hui Tong
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, United States
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou, China
| | - Elizabeth D. Swanner
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
9
|
Metabolic Diversity and Evolutionary History of the Archaeal Phylum " Candidatus Micrarchaeota" Uncovered from a Freshwater Lake Metagenome. Appl Environ Microbiol 2020; 86:AEM.02199-20. [PMID: 32978130 DOI: 10.1128/aem.02199-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022] Open
Abstract
Acidophilic archaea of the archaeal Richmond Mine acidophilic nanoorganisms (ARMAN) group from the uncultured candidate phylum "Candidatus Micrarchaeota" have small genomes and cell sizes and are known to be metabolically dependent and physically associated with their Thermoplasmatales hosts. However, phylogenetically diverse "Ca Micrarchaeota" are widely distributed in various nonacidic environments, and it remains uncertain because of the lack of complete genomes whether they are also devoted to a partner-dependent lifestyle. Here, we obtained nine metagenome-assembled genomes of "Ca Micrarchaeota" from the sediments of a meromictic freshwater lake, including a complete, closed 1.2 Mbp genome of "Ca Micrarchaeota" Sv326, an archaeon phylogenetically distant from the ARMAN lineage. Genome analysis revealed that, contrary to ARMAN "Ca Micrarchaeota," the Sv326 archaeon has complete glycolytic pathways and ATP generation mechanisms in substrate phosphorylation reactions, the capacities to utilize some sugars and amino acids as substrates, and pathways for de novo nucleotide biosynthesis but lacked an aerobic respiratory chain. We suppose that Sv326 is a free-living scavenger rather than an obligate parasite/symbiont. Comparative analysis of "Ca Micrarchaeota" genomes representing different order-level divisions indicated that evolution of the "Ca Micrarchaeota" from a free-living "Candidatus Diapherotrites"-like ancestor involved losses of important metabolic pathways in different lineages and gains of specific functions in the course of adaptation to a partner-dependent lifestyle and specific environmental conditions. The ARMAN group represents the most pronounced case of genome reduction and gene loss, while the Sv326 lineage appeared to be rather close to the ancestral state of the "Ca Micrarchaeota" in terms of metabolic potential.IMPORTANCE The recently described superphylum DPANN includes several phyla of uncultivated archaea with small cell sizes, reduced genomes, and limited metabolic capabilities. One of these phyla, "Ca Micrarchaeota," comprises an enigmatic group of archaea found in acid mine drainage environments, the archaeal Richmond Mine acidophilic nanoorganisms (ARMAN) group. Analysis of their reduced genomes revealed the absence of key metabolic pathways consistent with their partner-associated lifestyle, and physical associations of ARMAN cells with their hosts were documented. However, "Ca Micrarchaeota" include several lineages besides the ARMAN group found in nonacidic environments, and none of them have been characterized. Here, we report a complete genome of "Ca Micrarchaeota" from a non-ARMAN lineage. Analysis of this genome revealed the presence of metabolic capacities lost in ARMAN genomes that could enable a free-living lifestyle. These results expand our understanding of genetic diversity, lifestyle, and evolution of "Ca Micrarchaeota."
Collapse
|
10
|
Lambrecht N, Katsev S, Wittkop C, Hall SJ, Sheik CS, Picard A, Fakhraee M, Swanner ED. Biogeochemical and physical controls on methane fluxes from two ferruginous meromictic lakes. GEOBIOLOGY 2020; 18:54-69. [PMID: 31592570 DOI: 10.1111/gbi.12365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/20/2019] [Accepted: 08/31/2019] [Indexed: 05/28/2023]
Abstract
Meromictic lakes with anoxic bottom waters often have active methane cycles whereby methane is generally produced biogenically under anoxic conditions and oxidized in oxic surface waters prior to reaching the atmosphere. Lakes that contain dissolved ferrous iron in their deep waters (i.e., ferruginous) are rare, but valuable, as geochemical analogues of the conditions that dominated the Earth's oceans during the Precambrian when interactions between the iron and methane cycles could have shaped the greenhouse regulation of the planet's climate. Here, we explored controls on the methane fluxes from Brownie Lake and Canyon Lake, two ferruginous meromictic lakes that contain similar concentrations (max. >1 mM) of dissolved methane in their bottom waters. The order Methanobacteriales was the dominant methanogen detected in both lakes. At Brownie Lake, methanogen abundance, an increase in methane concentration with respect to depths closer to the sediment, and isotopic data suggest methanogenesis is an active process in the anoxic water column. At Canyon Lake, methanogenesis occurred primarily in the sediment. The most abundant aerobic methane-oxidizing bacteria present in both water columns were associated with the Gammaproteobacteria, with little evidence of anaerobic methane oxidizing organisms being present or active. Direct measurements at the surface revealed a methane flux from Brownie Lake that was two orders of magnitude greater than the flux from Canyon Lake. Comparison of measured versus calculated turbulent diffusive fluxes indicates that most of the methane flux at Brownie Lake was non-diffusive. Although the turbulent diffusive methane flux at Canyon Lake was attenuated by methane oxidizing bacteria, dissolved methane was detected in the epilimnion, suggestive of lateral transport of methane from littoral sediments. These results highlight the importance of direct measurements in estimating the total methane flux from water columns, and that non-diffusive transport of methane may be important to consider from other ferruginous systems.
Collapse
Affiliation(s)
- Nicholas Lambrecht
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, USA
| | - Sergei Katsev
- Department of Physics, University of Minnesota Duluth, Duluth, MN, USA
- Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN, USA
| | - Chad Wittkop
- Department of Chemistry and Geology, Minnesota State University, Mankato, MN, USA
| | - Steven J Hall
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Cody S Sheik
- Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN, USA
- Department of Biology, University of Minnesota Duluth, Duluth, MN, USA
| | - Aude Picard
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Mojtaba Fakhraee
- Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN, USA
| | - Elizabeth D Swanner
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
11
|
Light-driven anaerobic microbial oxidation of manganese. Nature 2019; 576:311-314. [PMID: 31802001 DOI: 10.1038/s41586-019-1804-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/08/2019] [Indexed: 11/09/2022]
Abstract
Oxygenic photosynthesis supplies organic carbon to the modern biosphere, but it is uncertain when this metabolism originated. It has previously been proposed1,2 that photosynthetic reaction centres capable of splitting water arose by about 3 billion years ago on the basis of the inferred presence of manganese oxides in Archaean sedimentary rocks. However, this assumes that manganese oxides can be produced only in the presence of molecular oxygen3, reactive oxygen species4,5 or by high-potential photosynthetic reaction centres6,7. Here we show that communities of anoxygenic photosynthetic microorganisms biomineralize manganese oxides in the absence of molecular oxygen and high-potential photosynthetic reaction centres. Microbial oxidation of Mn(II) under strictly anaerobic conditions during the Archaean eon would have produced geochemical signals identical to those used to date the evolution of oxygenic photosynthesis before the Great Oxidation Event1,2. This light-dependent process may also produce manganese oxides in the photic zones of modern anoxic water bodies and sediments.
Collapse
|
12
|
Microbial communities involved in the methane cycle in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe. Antonie van Leeuwenhoek 2019; 112:1801-1814. [PMID: 31372944 DOI: 10.1007/s10482-019-01308-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Although arctic and subarctic lakes are important sources of methane, the emission of which will increase due to the melting of permafrost, the processes related to the methane cycle in such environments are far from being comprehensively understood. Here we studied the microbial communities in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe using high-throughput sequencing of the 16S rRNA and methyl coenzyme M reductase subunit A genes. Hydrogenotrophic methanogens of the order Methanomicrobiales were abundant, both in the water column and in sediments, while the share of acetoclastic Methanosaetaceae decreased with the depth of sediments. Members of the Methanomassiliicoccales order were absent in the water but abundant in the deep sediments. Archaea known to perform anaerobic oxidation of methane were not found. The bacterial component of the microbial community in the bottom water layer included oxygenic (Cyanobacteria) and anoxygenic (Chlorobi) phototrophs, aerobic Type I methanotrophs, methylotrophs, syntrophs, and various organotrophs. In deeper sediments the diversity of the microbial community decreased, and it became dominated by methanogenic archaea and the members of the Bathyarchaeota, Chloroflexi and Deltaproteobacteria. This study shows that the sediments of a subarctic meromictic lake contain a taxonomically and metabolically diverse community potentially capable of complete mineralization of organic matter.
Collapse
|
13
|
Genome Sequences of Green- and Brown-Colored Strains of Chlorobium phaeovibrioides with Gas Vesicles. Microbiol Resour Announc 2019; 8:8/29/e00711-19. [PMID: 31320438 PMCID: PMC6639628 DOI: 10.1128/mra.00711-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The draft genomes of green-colored Chlorobium phaeovibrioidesGrKhr17 and brown-colored Chlorobium phaeovibrioidesBrKhr17, green sulfur bacteria with gas vesicles isolated from Lake Bolshye Khruslomeny, are presented. These sequences contribute to genomic analyses of the Chlorobiaceae family that are part of ongoing research seeking to better understand their ecosystem-specific adaptations. The draft genomes of green-colored Chlorobium phaeovibrioidesGrKhr17 and brown-colored Chlorobium phaeovibrioidesBrKhr17, green sulfur bacteria with gas vesicles isolated from Lake Bolshye Khruslomeny, are presented. These sequences contribute to genomic analyses of the Chlorobiaceae family that are part of ongoing research seeking to better understand their ecosystem-specific adaptations.
Collapse
|
14
|
Microbiological Study of Yamal Lakes: A Key to Understanding the Evolution of Gas Emission Craters. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8120478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although gas emission craters (GECs) are actively investigated, the question of which landforms result from GECs remains open. The evolution of GECs includes the filling of deep hollows with atmospheric precipitation and deposits from their retreating walls, so that the final stage of gas emission crater (GEC) lake development does not differ from that of any other lakes. Microbial activity and diversity may be indicators that make it possible to distinguish GEC lakes from other exogenous lakes. This work aimed at a comparison of the activity and diversity of microbial communities in young GEC lakes and mature background lakes of Central Yamal by using a radiotracer analysis and high-throughput sequencing of the 16S rRNA genes. The radiotracer analysis revealed slow-flowing microbial processes as expected for the cold climate of the study area. GEC lakes differed from background ones by slow rates of anaerobic processes (methanogenesis, sulfate reduction) as well as by a low abundance and diversity of methanogens. Other methane cycle micro-organisms (aerobic and anaerobic methanotrophs) were similar in all studied lakes and represented by Methylobacter and ANME 2d; the rates of methane oxidation were also similar. Actinobacteria, Bacteroidetes, Betaproteobacteria, and Acidobacteria were predominant in both lake types. Thus, GEC lakes may be identified by their scarce methanogenic population.
Collapse
|
15
|
Kallistova AY, Merkel AY, Tarnovetskii IY, Pimenov NV. Methane formation and oxidation by prokaryotes. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717060091] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Camacho A, Walter XA, Picazo A, Zopfi J. Photoferrotrophy: Remains of an Ancient Photosynthesis in Modern Environments. Front Microbiol 2017; 8:323. [PMID: 28377745 PMCID: PMC5359306 DOI: 10.3389/fmicb.2017.00323] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
Photoferrotrophy, the process by which inorganic carbon is fixed into organic matter using light as an energy source and reduced iron [Fe(II)] as an electron donor, has been proposed as one of the oldest photoautotrophic metabolisms on Earth. Under the iron-rich (ferruginous) but sulfide poor conditions dominating the Archean ocean, this type of metabolism could have accounted for most of the primary production in the photic zone. Here we review the current knowledge of biogeochemical, microbial and phylogenetic aspects of photoferrotrophy, and evaluate the ecological significance of this process in ancient and modern environments. From the ferruginous conditions that prevailed during most of the Archean, the ancient ocean evolved toward euxinic (anoxic and sulfide rich) conditions and, finally, much after the advent of oxygenic photosynthesis, to a predominantly oxic environment. Under these new conditions photoferrotrophs lost importance as primary producers, and now photoferrotrophy remains as a vestige of a formerly relevant photosynthetic process. Apart from the geological record and other biogeochemical markers, modern environments resembling the redox conditions of these ancient oceans can offer insights into the past significance of photoferrotrophy and help to explain how this metabolism operated as an important source of organic carbon for the early biosphere. Iron-rich meromictic (permanently stratified) lakes can be considered as modern analogs of the ancient Archean ocean, as they present anoxic ferruginous water columns where light can still be available at the chemocline, thus offering suitable niches for photoferrotrophs. A few bacterial strains of purple bacteria as well as of green sulfur bacteria have been shown to possess photoferrotrophic capacities, and hence, could thrive in these modern Archean ocean analogs. Studies addressing the occurrence and the biogeochemical significance of photoferrotrophy in ferruginous environments have been conducted so far in lakes Matano, Pavin, La Cruz, and the Kabuno Bay of Lake Kivu. To date, only in the latter two lakes a biogeochemical role of photoferrotrophs has been confirmed. In this review we critically summarize the current knowledge on iron-driven photosynthesis, as a remains of ancient Earth biogeochemistry.
Collapse
Affiliation(s)
- Antonio Camacho
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of ValenciaBurjassot, Spain
| | - Xavier A. Walter
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of EnglandBristol, UK
| | - Antonio Picazo
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of ValenciaBurjassot, Spain
| | - Jakob Zopfi
- Aquatic and Stable Isotope Biogeochemistry, Department of Environmental Sciences, University of BaselBasel, Switzerland
| |
Collapse
|