1
|
Ravindra K, Kaur M, Mor S. Impacts of microplastics on gut health: Current status and future directions. Indian J Gastroenterol 2025:10.1007/s12664-025-01744-0. [PMID: 40268833 DOI: 10.1007/s12664-025-01744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/14/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND AND OBJECTIVES Microplastics are pervasive environmental pollutants, attracting significant concern due to their potential adverse effects on ecosystems and human health. This study hypothesizes that microplastics may significantly impact gastrointestinal (GI) health through various mechanisms. The objective of this systematic review is to explore the effects of microplastics on GI health, focusing on animal models such as mice, fish and earthworms. METHODS A systematic review approach was employed, analyzing studies that investigate the impact of microplastics on the gut microbiota, gut barrier integrity and GI inflammation. The review includes a synthesis of findings from multiple animal models. RESULTS The review reveals consistent evidence that microplastics can disrupt the gut microbiota, impair the gut barrier, and induce inflammatory responses in the GI tract. Statistical analysis shows a significant correlation between microplastic exposure and GI health deterioration across various animal models. CONCLUSIONS The findings underscore the harmful effects of microplastics on GI health, emphasizing the urgent need for policy interventions to reduce plastic pollution. Implementing measures to limit the production and usage of disposable plastics is crucial for mitigating the risks posed by microplastic contamination to promote environmental sustainability and safeguard human well-being.
Collapse
Affiliation(s)
- Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research, Chandigarh, 160 012, India.
| | - Manpreet Kaur
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
2
|
Wu YJ, Xiong JF, Zhan CN, Xu H. Gut microbiota alterations in colorectal adenoma-carcinoma sequence based on 16S rRNA gene sequencing: A systematic review and meta-analysis. Microb Pathog 2024; 195:106889. [PMID: 39197689 DOI: 10.1016/j.micpath.2024.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/12/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Most sporadic colorectal cancers (CRC) develop through the adenoma-carcinoma sequence. While dysbiosis of the intestinal flora contributes to CRC's pathogenesis, precise microbial taxa closely associated with the colorectal adenoma-carcinoma sequence remain elusive. This meta-analysis aimed to summarize the features of intestinal flora in patients with AD and CRC. METHODS PubMed, Embase, Cochrane Library, and Web of Science were searched for case-control studies comparing the relative abundance of gut microbiota in the feces of patients with AD, CRC, and healthy controls (HC) from inception to January 2024. The weighted mean difference (WMD) with a 95 % confidence interval (CI) was used to display the results. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of the entailed literature. Publication bias was evaluated with the Egger's and Begg's tests. RESULTS Eleven studies were included, involving 477 CRC patients, 628 AD patients, and 864 healthy controls. Compared with HC, the patients with AD had a significantly lower Chao 1 index (WMD = -30.17, 95 % CI [-41.10, -19.23], P < 0.001) and Shannon index (WMD = -0.11 95 % CI [-0.18, -0.04], P = 0.002). Compared with AD, the CRC patients had a significantly higher Chao1 index (WMD = 22.09, 95 % CI [7.59, 36.00], P = 0.003) and Shannon index (WMD = 0.08, 95 % CI [0.00, 0.15], P = 0.037). Enterobacteriaceae (WMD = 0.03 95 % CI [0.00,0.05], P = 0.047; WMD = 0.02 95 % CI [0.00,0.04], P = 0.027) significantly increased in the order of Control-AD-CRC, while that of Blautia (WMD = -0.00 95 % CI [-0.01, -0.00], P = 0.001; WMD = -0.00 95 % CI [-0.00, -0.00], P = 0.002) was reduced. Compared with HC, the relative abundance of Proteobacteria (WMD = 0.05 95 % CI [0.03,0.07], P < 0.001), Fusobacteria (WMD = 0.02 95 % CI [0.00,0.03], P = 0.042), Streptococcaceae (WMD = 0.03 95 % CI [0.01,0.05], P = 0.017), Prevotellaceae (WMD = 0.02 95 % CI [0.00,0.04], P = 0.040), and Escherichia-Shigella (WMD = 0.06 95 % CI [0.01, 0.11], P = 0.021) was enriched in the CRC group. The relative abundance of Alistipes (WMD = 0.00 95 % CI [0.00,0.01], P = 0.032) and Streptococcus (WMD = 0.00 95 % CI [0.00,0.00], P = 0.001) was increased in the AD vs HC. The relative abundance of Firmicutes (WMD = -0.07 95 % CI [-0.12, -0.03], P = 0.003), Bifidobacteria (WMD = -0.03 95 % CI [-0.05, -0.01], P = 0.016), and Klebsiella (WMD = -0.01 95 % CI [-0.01, -0.00], P = 0.001) was decreased in the CRC vs HC. Compared with AD, the relative abundance of Firmicutes (WMD = -0.04 95 % CI [-0.07, -0.02], P = 0.002), Peptostreptococcaceae (WMD = -0.03 95 % CI [-0.05, -0.00], P = 0.021), Lachnospiraceae (WMD = -0.04 95 % CI [-0.08,-0.00], P = 0.037), Ruminococcaceae (WMD = -0.06 95 % CI [-0.09,-0.03], P < 0.001), Faecalibacterium (WMD = -0.01 95 % CI [-0.02, -0.01], P = 0.001), and Lachnoclostridium (WMD = -0.02 95 % CI [-0.03, -0.00], P = 0.040) was decreased in the CRC group, while Proteobacteria (WMD = 0.04 95 % CI [0.02,0.05], P < 0.001) was increased. CONCLUSIONS The dysbiosis characterized by reduced levels of short-chain fatty acid (SCFA)-producing bacteria, decreased anti-inflammatory bacteria, increased pro-inflammatory bacteria, and an elevation of bacteria with cytotoxic effects damaging to DNA may represent the specific microbial signature of colorectal adenoma/carcinoma. Further research is required to elucidate the mechanisms by which gut dysbiosis leads to the progression from AD to CRC and to explore the potential of specific microbiota markers in clinical treatment and non-invasive screening.
Collapse
Affiliation(s)
- Yi-Jun Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing-Fang Xiong
- Department of Geriatrics, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Cheng-Nan Zhan
- Medical Service Community, Hangzhou Xiaoshan Hospital of TCM, Hangzhou, China
| | - Hong Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, China.
| |
Collapse
|
3
|
Žukauskaitė K, Horvath A, Gricius Ž, Kvietkauskas M, Baušys B, Dulskas A, Kuliavas J, Baušys R, Letautienė SR, Vaicekauskaitė I, Sabaliauskaitė R, Baušys A, Stadlbauer V, Jarmalaitė S. Impact of mechanical bowel preparation on the gut microbiome of patients undergoing left-sided colorectal cancer surgery: randomized clinical trial. Br J Surg 2024; 111:znae213. [PMID: 39222391 PMCID: PMC11368128 DOI: 10.1093/bjs/znae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Postoperative complications after colorectal cancer surgery have been linked to the gut microbiome. However, the impact of mechanical bowel preparation using oral preparation agents or rectal enema on postoperative infections remains poorly understood. This study aimed to compare the impact of oral preparation and rectal enema on the gut microbiome and postoperative complications. METHODS This open-label pilot RCT was conducted at the National Cancer Institute, Vilnius, Lithuania. Patients with left-side colorectal cancer scheduled for elective resection with primary anastomosis were randomized 1 : 1 to preoperative mechanical bowel preparation with either oral preparation or rectal enema. Stool samples were collected before surgery, and on postoperative day 6 and 30 for 16S rRNA gene sequencing analysis. The primary outcome was difference in β-diversity between groups on postoperative day 6. RESULTS Forty participants were randomized to oral preparation (20) or rectal enema (20). The two groups had similar changes in microbiome composition, and there was no difference in β-diversity on postoperative day 6. Postoperative infections occurred in 12 patients (32%), without differences between the study groups. Patients with infections had an increased abundance of bacteria from the Actinomycetaceae family, Actinomyces genus, Sutterella uncultured species, and Enterococcus faecalis species. CONCLUSION Mechanical bowel preparation with oral preparation or rectal enema resulted in similar dysbiosis. Patients who experienced postoperative infections exhibited distinct gut microbiome compositions on postoperative day 6, characterized by an increased abundance of bacteria from the Actinomycetaceae family, Actinomyces genus, Sutterella uncultured species, and Enterococcus faecalis species. REGISTRATION NUMBER NCT04013841 (http://www.clinicaltrials.gov).
Collapse
Affiliation(s)
- Kristina Žukauskaitė
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
- Department of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Angela Horvath
- Department of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- Centre for Biomarker Research in Medicine (CBmed GmbH), Graz, Austria
| | - Žilvinas Gricius
- Clinic of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Mindaugas Kvietkauskas
- Clinic of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Bernardas Baušys
- Clinic of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Audrius Dulskas
- Clinic of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- National Cancer Institute, Vilnius, Lithuania
| | - Justas Kuliavas
- Clinic of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- National Cancer Institute, Vilnius, Lithuania
| | | | | | - Ieva Vaicekauskaitė
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
- National Cancer Institute, Vilnius, Lithuania
| | - Rasa Sabaliauskaitė
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
- National Cancer Institute, Vilnius, Lithuania
| | - Augustinas Baušys
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
- National Cancer Institute, Vilnius, Lithuania
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Vanessa Stadlbauer
- Department of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- Centre for Biomarker Research in Medicine (CBmed GmbH), Graz, Austria
| | - Sonata Jarmalaitė
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
- National Cancer Institute, Vilnius, Lithuania
| |
Collapse
|
4
|
Xu M, Chen Y, Li P, Ye Q, Feng S, Yan B. Antibiotic use during radical surgery in stage I-III colorectal cancer: correlation with outcomes? BMC Cancer 2024; 24:769. [PMID: 38926655 PMCID: PMC11210026 DOI: 10.1186/s12885-024-12550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
AIMS Accumulating evidence indicates that the use of antibiotics (ATBs) in cancer patients is potentially correlated with patient prognosis. Interestingly, the use of these agents is not uncommon in colorectal cancer (CRC) patients during surgery; however, their prognostic value in the clinic has never been addressed. MATERIALS AND METHODS Data on ATB use during surgery, including the cumulative defined daily dose (cDDD) and the number of categories, were collected. Differences in the clinical data between the low and high cDDD subgroups and between subgroups with ≤ 4 and >4 categories. Additionally, the disease-free survival (DFS) and overall survival (OS) among these subgroups and the specific categories were compared. Finally, a Cox proportional hazard model was used to validate the risk factors for the outcome. RESULTS The number of categories, rather than the cDDD, was a significant predictor of both DFS (P = 0.043) and OS (P = 0.039). Patients with obstruction are more likely to have a high cDDD, whereas older patients are more likely to have multiple categories. There were no significant differences in the DFS (log rank = 1.36, P = 0.244) or OS (log rank = 0.40, P = 0.528) between patients in the low- and high-cDDD subgroups, whereas patients with ≤ 4 categories had superior DFS (log rank = 9.92, P = 0.002) and OS (log rank = 8.30, P = 0.004) compared with those with >4 categories. Specifically, the use of quinolones was harmful to survival (DFS: log rank = 3.67, P = 0.055; OS: log rank = 5.10, P = 0.024), whereas the use of macrolides was beneficial to survival (DFS: log rank = 12.26, P < 0.001; OS: log rank = 9.77, P = 0.002). Finally, the number of categories was identified as an independent risk factor for both DFS (HR = 2.05, 95% CI: 1.35-3.11, P = 0.001) and OS (HR = 1.82, 95% CI: 1.14-2.90, P = 0.012). CONCLUSIONS The cDDD of ATBs during surgery in stage I-III CRC patients did not correlate with outcome; however, patients in multiple categories or a specific category are likely to have inferior survival. These results suggest that particular caution should be taken when selecting ATBs for these patients in the clinic.
Collapse
Affiliation(s)
- Mingyue Xu
- Department of General Surgery, Hainan Hospital of PLA General Hospital, Sanya City, 572000, Hainan Province, P.R. China
| | - Yuanyuan Chen
- Department of General Medicine, Hainan Hospital of PLA General Hospital, Sanya City, 572000, Hainan Province, P.R. China
| | - Panhua Li
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya City, 572000, Hainan Province, P.R. China
| | - Qianwen Ye
- Department of General Surgery, Hainan Hospital of PLA General Hospital, Sanya City, 572000, Hainan Province, P.R. China
| | - Shouhan Feng
- Department of Oncology, Huzhou Traditional Chinese Medicine Hospital affiliated to Zhejiang Chinese Medical University, No. 315 of South Street, Huzhou City, 313000, Zhejiang Province, P.R. China.
| | - Bing Yan
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya City, 572000, Hainan Province, P.R. China.
| |
Collapse
|
5
|
Shi J, Shen H, Huang H, Zhan L, Chen W, Zhou Z, Lv Y, Xiong K, Jiang Z, Chen Q, Liu L. Gut microbiota characteristics of colorectal cancer patients in Hubei, China, and differences with cohorts from other Chinese regions. Front Microbiol 2024; 15:1395514. [PMID: 38962132 PMCID: PMC11220721 DOI: 10.3389/fmicb.2024.1395514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
The research on the correlation or causality between gut microbiota and the occurrence, development, and treatment of colorectal cancer (CRC) is receiving increasing emphasis. At the same time, the incidence and mortality of colorectal cancer vary among individuals and regions, as does the gut microbiota. In order to gain a better understanding of the characteristics of the gut microbiota in CRC patients and the differences between different regions, we initially compared the gut microbiota of 25 CRC patients and 26 healthy controls in the central region of China (Hubei Province) using 16S rRNA high-throughput sequencing technology. The results showed that Corynebacterium, Enterococcus, Lactobacillus, and Escherichia-Shigella were significantly enriched in CRC patients. In addition, we also compared the potential differences in functional pathways between the CRC group and the healthy control group using PICRUSt's functional prediction analysis. We then analyzed and compared it with five cohort studies from various regions of China, including Central, East, and Northeast China. We found that geographical factors may affect the composition of intestinal microbiota in CRC patients. The composition of intestinal microbiota is crucial information that influences colorectal cancer screening, early detection, and the prediction of CRC treatment outcomes. This emphasizes the importance of conducting research on CRC-related gut microbiota in various regions of China.
Collapse
Affiliation(s)
- Jianguo Shi
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hexiao Shen
- School of Life Sciences and Health Engineering, Hubei University, Wuhan, China
| | - Hui Huang
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lifang Zhan
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Chen
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuohui Zhou
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongling Lv
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Xiong
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiwei Jiang
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiyi Chen
- Department of Colorectal Disease, Intestinal Microenvironment Treatment Center, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Lei Liu
- Department of Gastrointestinal Surgery, Intestinal Microenvironment Treatment Center, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Alhhazmi AA, Alhamawi RM, Almisned RM, Almutairi HA, Jan AA, Kurdi SM, Almutawif YA, Mohammed-Saeid W. Gut Microbial and Associated Metabolite Markers for Colorectal Cancer Diagnosis. Microorganisms 2023; 11:2037. [PMID: 37630597 PMCID: PMC10457972 DOI: 10.3390/microorganisms11082037] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Globally, colorectal cancer (CRC) is the second most common cause of mortality worldwide. Considerable evidence indicates that dysbiosis of the gut microbial community and its metabolite secretions play a fundamental role in advanced adenoma (ADA) and CRC development and progression. This study is a systematic review that aims to assess the clinical association between gut microbial markers and/or gut and circulating metabolites with ADA and CRC. Five electronic databases were searched by four independent reviewers. Only controlled trials that compared ADA and/or CRC with healthy control (HC) using either untargeted (16s rRNA gene or whole genome sequencing) or targeted (gene-based real-time PCR) identification methods for gut microbiome profile, or untargeted or targeted metabolite profiling approaches from the gut or serum/plasma, were eligible. Three independent reviewers evaluated the quality of the studies using the Cochrane Handbook for Systematic Reviews of Interventions. Twenty-four studies were eligible. We identified strong evidence of two microbial markers Fusobacterium and Porphyromonas for ADA vs. CRC, and nine microbial markers Lachnospiraceae-Lachnoclostridium, Ruminococcaceae-Ruminococcus, Parvimonas spp., Parvimonas micra, Enterobacteriaceae, Fusobacterium spp., Bacteroides, Peptostreptococcus-Peptostreptococcus stomatis, Clostridia spp.-Clostridium hylemonae, Clostridium symbiosum, and Porphyromonas-Porphyromonas asaccharolytica for CRC vs. HC. The remaining metabolite marker evidence between the various groups, including ADA vs. HC, ADA vs. HC, and CRC vs. HC, was not of sufficient quality to support additional findings. The identified gut microbial markers can be used in a panel for diagnosing ADA and/or CRC. Further research in the metabolite markers area is needed to evaluate the possibility to use in diagnostic or prognostic markers for colorectal cancer.
Collapse
Affiliation(s)
- Areej A. Alhhazmi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (S.M.K.); (Y.A.A.)
| | - Renad M. Alhamawi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (S.M.K.); (Y.A.A.)
| | - Reema M. Almisned
- Seha Polyclinic, P.O. Box 150, Al-Madinah Al-Munawarah 41311, Saudi Arabia;
| | - Hanouf A. Almutairi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), P.O. Box 6900, Thuwal 23955, Saudi Arabia;
| | - Ahdab A. Jan
- Abdulla Fouad Medical Supplies and Services (AFMS), P.O. Box 150, Al-Madinah Al-Munawarah 21414, Saudi Arabia;
| | - Shahad M. Kurdi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (S.M.K.); (Y.A.A.)
| | - Yahya A. Almutawif
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (S.M.K.); (Y.A.A.)
| | - Waleed Mohammed-Saeid
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia;
| |
Collapse
|
7
|
Liu Y, Pei Z, Pan T, Wang H, Chen W, Lu W. Indole metabolites and colorectal cancer: Gut microbial tryptophan metabolism, host gut microbiome biomarkers, and potential intervention mechanisms. Microbiol Res 2023; 272:127392. [PMID: 37119643 DOI: 10.1016/j.micres.2023.127392] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
Tryptophan (Trp) functions in host-disease interactions. Its metabolism is a multi-pathway process. Indole and its derivatives are Trp metabolites unique to the human gut microbiota. Changes in Trp metabolism have also been detected in colorectal cancer (CRC). Here, combined with the existing CRC biomarkers, we ascribed it to the altered bacteria having the indole-producing ability by making a genomic prediction. We also reviewed the anti-inflammatory and possible anti-cancer mechanisms of indoles, including their effects on tumor cells, the ability to repair the gut barrier, regulation of the host immune system, and provide resistance against oxidative stress. Indole and its derivatives, along with related bacteria, could be targeted as auxiliary strategies to restrain cancer development in the future.
Collapse
Affiliation(s)
- Yufei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Tong Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
8
|
Zheng Z, Hu Y, Tang J, Xu W, Zhu W, Zhang W. The implication of gut microbiota in recovery from gastrointestinal surgery. Front Cell Infect Microbiol 2023; 13:1110787. [PMID: 36926517 PMCID: PMC10011459 DOI: 10.3389/fcimb.2023.1110787] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Recovery from gastrointestinal (GI) surgery is often interrupted by the unpredictable occurrence of postoperative complications, including infections, anastomotic leak, GI dysmotility, malabsorption, cancer development, and cancer recurrence, in which the implication of gut microbiota is beginning to emerge. Gut microbiota can be imbalanced before surgery due to the underlying disease and its treatment. The immediate preparations for GI surgery, including fasting, mechanical bowel cleaning, and antibiotic intervention, disrupt gut microbiota. Surgical removal of GI segments also perturbs gut microbiota due to GI tract reconstruction and epithelial barrier destruction. In return, the altered gut microbiota contributes to the occurrence of postoperative complications. Therefore, understanding how to balance the gut microbiota during the perioperative period is important for surgeons. We aim to overview the current knowledge to investigate the role of gut microbiota in recovery from GI surgery, focusing on the crosstalk between gut microbiota and host in the pathogenesis of postoperative complications. A comprehensive understanding of the postoperative response of the GI tract to the altered gut microbiota provides valuable cues for surgeons to preserve the beneficial functions and suppress the adverse effects of gut microbiota, which will help to enhance recovery from GI surgery.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Zhang
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Wang Z, Dan W, Zhang N, Fang J, Yang Y. Colorectal cancer and gut microbiota studies in China. Gut Microbes 2023; 15:2236364. [PMID: 37482657 PMCID: PMC10364665 DOI: 10.1080/19490976.2023.2236364] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor worldwide. The incidence and mortality rates of CRC have been increasing in China, possibly due to economic development, lifestyle, and dietary changes. Evidence suggests that gut microbiota plays an essential role in the tumorigenesis of CRC. Gut dysbiosis, specific pathogenic microbes, metabolites, virulence factors, and microbial carcinogenic mechanisms contribute to the initiation and progression of CRC. Gut microbiota biomarkers have potential translational applications in CRC screening and early diagnosis. Gut microbiota-related interventions could improve anti-tumor therapy's efficacy and severe intestinal toxic effects. Chinese researchers have made many achievements in the relationship between gut microbiota and CRC, although some challenges remain. This review summarizes the current evidence from China on the role of gut microbiota in CRC, mainly including the gut microbiota characteristics, especially Fusobacterium nucleatum and Parvimonas micra, which have been identified to be enriched in CRC patients; microbial pathogens such as F. nucleatum and enterotoxigenic Bacteroides fragilis, and P. micra, which Chinese scientists have extensively studied; diagnostic biomarkers especially F. nucleatum; therapeutic effects, including microecological agents represented by certain Lactobacillus strains, fecal microbiota transplantation, and traditional Chinese medicines such as Berberine and Curcumin. More efforts should be focused on exploring the underlying mechanisms of microbial pathogenesis of CRC and providing novel gut microbiota-related therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Zikai Wang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Wanyue Dan
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School, Nankai University, Tianjin, China
| | - Nana Zhang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunsheng Yang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Chen C, Shen J, Du Y, Shi X, Niu Y, Jin G, Liu Y, Shi Y, Lyu J, Lin L. Characteristics of gut microbiota in patients with gastric cancer by surgery, chemotherapy and lymph node metastasis. Clin Transl Oncol 2022; 24:2181-2190. [PMID: 35794453 DOI: 10.1007/s12094-022-02875-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Gastric cancer (GC) is a malignant gastrointestinal tumor that can result in high mortality. Surgery and chemotherapy are often used for the effective treatment of GC. In addition, lymph node metastasis is a significant factor affecting the therapy of GC. Current researches have revealed that gut microbiota has the potential as biomarkers to distinguish healthy people and GC patients. However, the relationship between surgery, chemotherapy, and lymph node metastasis is still unclear. METHODS In this study, 16S rRNA sequencing was used to investigate 157 GC fecal samples to identify the role of surgery, chemotherapy, and lymph node metastasis. Immunohistochemical analysis was used to value the expression of Ki67, HER2 in GC patient tissues. RESULTS There exist some gut microbiotas which can distinguish surgery from non-surgery GC patients, including Enterococcus, Megasphaera, Corynebacterium, Roseburia, and Lachnospira. Differences between lymph node metastasis and chemotherapy in GC patients are not significant. Moreover, we found the abundance of Blautia, Ruminococcus, Oscillospira were related to the expression of Ki67 and the abundance of Prevotella, Lachnospira, Eubacterium, Desulfovibiro were correlated with the expression of HER2. CONCLUSIONS The choice of treatment has a certain impact on the intestinal flora of patients with gastric cancer. Our research shows that surgery has a great effect on the intestinal flora of patients with gastric cancer. However, there were no significant differences in the characteristics of intestinal flora in patients with gastric cancer whether they received chemotherapy or whether they had lymph node metastasis. In addition, the association of gut microbiota with Ki67 and HER2 indicators is expected to provide the possibility of gut microbiota as a tumor prognostic marker.
Collapse
Affiliation(s)
- Changchang Chen
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jian Shen
- Department of Medical Administration, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yaoqiang Du
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Xinwei Shi
- The Eye Hospital of Wenzhou Medical University (Zhejiang Eye Hospital), Hangzhou, Zhejiang, China
| | - Yaofang Niu
- Hangzhou Guhe Information and Technology Company, Hangzhou, Zhejiang, China
| | - Gulei Jin
- Hangzhou Guhe Information and Technology Company, Hangzhou, Zhejiang, China
| | - Yanxin Liu
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yongkang Shi
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
| | - Jianxin Lyu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
| | - Lijun Lin
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Hoang T, Kim MJ, Park JW, Jeong SY, Lee J, Shin A. Nutrition-wide association study of microbiome diversity and composition in colorectal cancer patients. BMC Cancer 2022; 22:656. [PMID: 35701733 PMCID: PMC9199192 DOI: 10.1186/s12885-022-09735-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The effects of diet on the interaction between microbes and host health have been widely studied. However, its effects on the gut microbiota of patients with colorectal cancer (CRC) have not been elucidated. This study aimed to investigate the association between diet and the overall diversity and different taxa levels of the gut microbiota in CRC patients via the nutrition-wide association approach. METHODS This hospital-based study utilized data of 115 CRC patients who underwent CRC surgery in Department of Surgery, Seoul National University Hospital. Spearman correlation analyses were conducted for 216 dietary features and three alpha-diversity indices, Firmicutes/Bacteroidetes ratio, and relative abundance of 439 gut microbial taxonomy. To identify main enterotypes of the gut microbiota, we performed the principal coordinate analysis based on the β-diversity index. Finally, we performed linear regression to examine the association between dietary intake and main microbiome features, and linear discriminant analysis effect size (LEfSe) to identify bacterial taxa phylogenetically enriched in the low and high diet consumption groups. RESULTS Several bacteria were enriched in patients with higher consumption of mature pumpkin/pumpkin juice (ρ, 0.31 to 0.41) but lower intake of eggs (ρ, -0.32 to -0.26). We observed negative correlations between Bacteroides fragilis abundance and intake of pork (belly), beef soup with vegetables, animal fat, and fatty acids (ρ, -0.34 to -0.27); an inverse correlation was also observed between Clostridium symbiosum abundance and intake of some fatty acids, amines, and amino acids (ρ, -0.30 to -0.24). Furthermore, high intake of seaweed was associated with a 6% (95% CI, 2% to 11%) and 7% (95% CI, 2% to 11%) lower abundance of Rikenellaceae and Alistipes, respectively, whereas overall beverage consumption was associated with an 10% (95% CI, 2% to 18%) higher abundance of Bacteroidetes, Bacteroidia, and Bacteroidales, compared to that in the low intake group. LEfSe analysis identified phylogenetically enriched taxa associated with the intake of sugars and sweets, legumes, mushrooms, eggs, oils and fats, plant fat, carbohydrates, and monounsaturated fatty acids. CONCLUSIONS Our data elucidates the diet-microbe interactions in CRC patients. Additional research is needed to understand the significance of these results in CRC prognosis.
Collapse
Affiliation(s)
- Tung Hoang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Min Jung Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Ji Won Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seung-Yong Jeong
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jeeyoo Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea.
| |
Collapse
|
12
|
Yu L, Zhao G, Wang L, Zhou X, Sun J, Li X, Zhu Y, He Y, Kofonikolas K, Bogaert D, Dunlop M, Zhu Y, Theodoratou E, Li X. A systematic review of microbial markers for risk prediction of colorectal neoplasia. Br J Cancer 2022; 126:1318-1328. [PMID: 35292756 PMCID: PMC9042911 DOI: 10.1038/s41416-022-01740-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/23/2021] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Substantial evidence indicates that dysbiosis of the gut microbial community is associated with colorectal neoplasia. This review aims to systematically summarise the microbial markers associated with colorectal neoplasia and to assess their predictive performance. METHODS A comprehensive literature search of MEDLINE and EMBASE databases was performed to identify eligible studies. Observational studies exploring the associations between microbial biomarkers and colorectal neoplasia were included. We also included prediction studies that constructed models using microbial markers to predict CRC and adenomas. Risk of bias for included observational and prediction studies was assessed. RESULTS Forty-five studies were included to assess the associations between microbial markers and colorectal neoplasia. Nine faecal microbiotas (i.e., Fusobacterium, Enterococcus, Porphyromonas, Salmonella, Pseudomonas, Peptostreptococcus, Actinomyces, Bifidobacterium and Roseburia), two oral pathogens (i.e., Treponema denticola and Prevotella intermedia) and serum antibody levels response to Streptococcus gallolyticus subspecies gallolyticus were found to be consistently associated with colorectal neoplasia. Thirty studies reported prediction models using microbial markers, and 83.3% of these models had acceptable-to-good discrimination (AUROC > 0.75). The results of predictive performance were promising, but most of the studies were limited to small number of cases (range: 9-485 cases) and lack of independent external validation (76.7%). CONCLUSIONS This review provides insight into the evidence supporting the association between different types of microbial species and their predictive value for colorectal neoplasia. Prediction models developed from case-control studies require further external validation in high-quality prospective studies. Further studies should assess the feasibility and impact of incorporating microbial biomarkers in CRC screening programme.
Collapse
Affiliation(s)
- Lili Yu
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Zhao
- Center for Disease Control and Prevention of Hangzhou, Hangzhou, China
| | - Lijuan Wang
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan Zhou
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Sun
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxuan Li
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingshuang Zhu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yazhou He
- Department of Oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | | | - Debby Bogaert
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Malcolm Dunlop
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Yimin Zhu
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Understanding the Role of the Microbiome in Cancer Diagnostics and Therapeutics by Creating and Utilizing ML Models. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent studies have highlighted that gut microbiota can alter colorectal cancer susceptibility and progression due to its impact on colorectal carcinogenesis. This work represents a comprehensive technical approach in modeling and interpreting the drug-resistance mechanisms from clinical data for patients diagnosed with colorectal cancer. To accomplish our aim, we developed a methodology based on evaluating high-performance machine learning models where a Python-based random forest classifier provides the best performance metrics, with an overall accuracy of 91.7%. Our approach identified and interpreted the most significant genera in the cases of resistant groups. Thus far, many studies point out the importance of present genera in the microbiome and intend to treat it separately. The symbiotic bacterial analysis generated different sets of joint feature combinations, providing a combined overview of the model’s predictiveness and uncovering additional data correlations where different genera joint impacts support the therapy-resistant effect. This study points out the different perspectives of treatment since our aggregate analysis gives precise results for the genera that are often found together in a resistant group of patients, meaning that resistance is not due to the presence of one pathogenic genus in the patient microbiome, but rather several bacterial genera that live in symbiosis.
Collapse
|
14
|
Cronin P, Murphy CL, Barrett M, Ghosh TS, Pellanda P, O'Connor EM, Zulquernain SA, Kileen S, McCourt M, Andrews E, O'Riordain MG, Shanahan F, O'Toole PW. Colorectal microbiota after removal of colorectal cancer. NAR Cancer 2022; 4:zcac011. [PMID: 35399186 PMCID: PMC8991967 DOI: 10.1093/narcan/zcac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 01/01/2023] Open
Abstract
The colonic microbiome has been implicated in the pathogenesis of colorectal cancer (CRC) and intestinal microbiome alterations are not confined to the tumour. Since data on whether the microbiome normalises or remains altered after resection of CRC are conflicting, we studied the colonic microbiota of patients after resection of CRC. We profiled the microbiota using 16S rRNA gene amplicon sequencing in colonic biopsies from patients after resection of CRC (n = 63) in comparison with controls (n = 52), subjects with newly diagnosed CRC (n = 93) and polyps (i = 28). The colonic microbiota after surgical resection remained significantly different from that of controls in 65% of patients. Genus-level profiling and beta-diversity confirmed two distinct groups of patients after resection of CRC: one with an abnormal microbiota similar to that of patients with newly diagnosed CRC and another similar to non-CRC controls. Consumption levels of several dietary ingredients and cardiovascular drugs co-varied with differences in microbiota composition suggesting lifestyle factors may modulate differential microbiome trajectories after surgical resection. This study supports investigation of the colonic microbiota as a marker of risk for development of CRC.
Collapse
Affiliation(s)
- Peter Cronin
- Department of Biological Science, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Clodagh L Murphy
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Maurice Barrett
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | | | - Paola Pellanda
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Eibhlis M O'Connor
- Department of Biological Science, University of Limerick, Limerick, V94 T9PX, Ireland
| | | | - Shane Kileen
- Cork University Hospital, Cork, T12 DC4A, Ireland
| | | | | | | | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| |
Collapse
|
15
|
Peng YC, Xu JX, Zeng CF, Zhao XH, You XM, Xu PP, Li LQ, Qi LN. Operable hepatitis B virus-related hepatocellular carcinoma: gut microbiota profile of patients at different ages. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:477. [PMID: 35571398 PMCID: PMC9096381 DOI: 10.21037/atm-22-1572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/20/2022] [Indexed: 11/08/2022]
Abstract
Background Age was important prognostic factors for operable hepatocellular carcinoma patients. The aim of the present study was to assess the difference in gut microbiota in patients with operable hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) at different ages ; to investigate the features of the microbiota and its function associated with different ages; to provide a preliminary look at effects of the gut microbiota dimension on prognostic. Methods From September 2020 to May 2021, patients with HBV-HCC were able to undergo liver resection and were recruited consecutively and divided into the younger age group (age <45 years) (Y.AG) (n=20), middle age group (age from 45 to 65 years) (M.AG) (n=13) 45–65 years, and older age group (age >65 years) (O.AG) (n=20). The relationships between gut microbiota and different ages were explored using 16S rRNA gene sequencing data. PICRUST2 was used to examine the metagenomic data in PHLF patients. Fisher’s exact and Mann-Whitney U-test were used for the data analysis. Results Pairwise comparison between the three groups showed that the α-diversity of Y.AG was significantly higher than that of O.AG (ACE Index, P=0.017; chao1 Index, P=0.031; observed_species Index, P=0.011; and goods_coverage Index, P=0.041). The β-diversity in the 3 groups differed significantly (stress =0.100), while the composition (β-diversity) differed significantly between the Y.AG and the M.AG (stress =0.090), the M.AG and the O.AG (stress =0.095), and the Y.AG and the O.AG (stress =0.099). At the genus level, 7 bacterial genera were significantly enriched in the O.AG compared with the Y.AG, of which Streptococcus, Blautia, Erysipelotrichaceae_UCG-003, and Fusicatenibacter represented the major variances in O.AG microbiomes. Eleven genera were significantly increased in the O.AG, of which Prevotella, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Ruminiclostridium, and Phascolarctobacterium represented the major variances in the O.AG. The Y.AG and the O.AG were predicted by PICRUSt2 analysis, which found 72 pathways related to differential gut microbiome at the genus level. Redundancy analysis showed that 7 environmental factors were significantly correlated with intestinal microorganisms, especially in the Y.AG compared with the O.AG. Conclusions Analysis of gut microbiota characteristics in patients of different ages could ultimately contribute to the development of novel avenues for the treatment of HCC at different ages.
Collapse
Affiliation(s)
- Yu-Chong Peng
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Jing-Xuan Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Chuan-Fa Zeng
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Xin-Hua Zhao
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Xue-Mei You
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Ping-Ping Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, China
| | - Lu-Nan Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| |
Collapse
|
16
|
Huang R, He K, Duan X, Xiao J, Wang H, Xiang G. Changes of Intestinal Microflora in Colorectal Cancer Patients after Surgical Resection and Chemotherapy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1940846. [PMID: 35251295 PMCID: PMC8896156 DOI: 10.1155/2022/1940846] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The change of bacterial flora structure in colorectal cancer (CRC) patients after treatment is not clear. The aim of this study was to explore the change and function of intestinal microflora in CRC before and after treatment. METHOD The 16S conserved region V3+V4 of intestinal flora obtained from CRC patients was sequenced and analyzed. Alpha and beta diversity indices were used to analyze the abundance and structure of gut flora. FAPROTAX, BugBase, and Tax4Fun software were used to analyze the species phenotypes and Kyoto Encyclopedia of Genes and Genomes Ontology (KO) function pathways. RESULTS Total abundance and structure of species in CRC patients were significantly increased compared with healthy people (control group) (P < 0.05), but there was no significant difference between CRC patients before and after treatment (P > 0.05). There was significant difference in relative abundance of bacteria at different levels (phylum, class, order, family, genus, and species) between the CRC group with after operation (CRC_O group) and chemotherapy (CRC_C group) treatment, particularly Prevotellaceae_UCG-001, Akkermansia, Fusicatenibacter, Tyzzerella_4, Megamonas, etc. in genus level. The KO function analysis showed that most of the bacteria with differences were mainly involved in the biosynthesis of lipopolysaccharide (Megamonas, Megasphaera, and Ruminococcus torques_group), protein digestion and absorption, renin-angiotensin system pathway (Akkermansia, Eubacterium_ruminantium_group, and Eubacterium_nodatum_group genus), adipocytokine signaling pathway and peroxisome pathway (Tyzzerella_4, Phascolarctobacterium, Ruminococcus_gnavus_group), and so on. CONCLUSION The abundance of intestinal microflora in CRC patients was increased significantly contrasted to healthy people, and surgery and chemotherapy were hard to reduce this phenomenon. Megamonas was involved in lipopolysaccharide biosynthesis and carcinogenesis in colorectal cancer. Surgery and drug treatment did not reduced lipopolysaccharide biosynthesis but increased the number of probiotic Akkermansia population and reduced the pathogenic bacteria Tyzzerella_4, participate in adipocytokine signaling pathway, and affect metabolism.
Collapse
Affiliation(s)
- Rui Huang
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Ke He
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Xiaopeng Duan
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Jinfeng Xiao
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Hanning Wang
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Guoan Xiang
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| |
Collapse
|
17
|
A comprehensive analysis of the microbiota composition and host driver gene mutations in colorectal cancer. Invest New Drugs 2022; 40:884-894. [PMID: 35727391 PMCID: PMC9395472 DOI: 10.1007/s10637-022-01263-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
Abstract
Studies of both, microbiota and target therapy associated with gene mutations in colorectal cancer, (CRC) have attracted increasing attention. However, only a few of them analyzed the combined effects on CRC. we analyzed differences in intestinal microbiota of 44 colorectal cancer patients and 20 healthy controls (HC) using 16S rRNA gene sequencing of fecal samples. For 39 of the CRC patients, targeted Next Generation Sequencing (NGS) was carried out at formalin fixed paraffin embedded (FFPE) samples to identify somatic mutation profiles. Compared to the HC group, the microbial diversity of CRC patients was significantly lower. In the CRC group, we found a microbiome that was significantly enriched for strains of Bifidobacterium, Bacteroides, and Megasphaera whereas in the HC group the abundance of Collinsella, Faecalibacterium, and Agathobacter strains was higher. Among the mutations detected in the CRC group, the APC gene had the highest mutation rate (77%, 30/39). We found that the KRAS mutant type was closely associated with Faecalibacterium, Roseburia, Megamonas, Lachnoclostridium, and Harryflintia. Notably, Spearman correlation analysis showed that KRAS mutations were negatively correlated with the existence of Bifidobacterium and positively correlated with Faecalibacterium. By employing 16S rRNA gene sequencing, we identified more unique features of microbiota profiles in CRC patients. For the first time, our study showed that gene mutations could directly be linked to the microbiota composition of CRC patients. We hypothesize that the effect of a targeted colorectal cancer therapy is also closely related to the colorectal flora, however, this requires further investigation.
Collapse
|
18
|
Kaźmierczak-Siedlecka K, Daca A, Fic M, van de Wetering T, Folwarski M, Makarewicz W. Therapeutic methods of gut microbiota modification in colorectal cancer management - fecal microbiota transplantation, prebiotics, probiotics, and synbiotics. Gut Microbes 2020; 11:1518-1530. [PMID: 32453670 PMCID: PMC7524363 DOI: 10.1080/19490976.2020.1764309] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The link between gut microbiota and the development of colorectal cancer has been investigated. An imbalance in the gut microbiota promotes the progress of colorectal carcinogenesis via multiple mechanisms, including inflammation, activation of carcinogens, and tumorigenic pathways as well as damaging host DNA. Several therapeutic methods are available with which to alter the composition and the activity of gut microbiota, such as administration of prebiotics, probiotics, and synbiotics; these can confer various benefits for colorectal cancer patients. Nowadays, fecal microbiota transplantation is the most modern way of modulating the gut microbiota. Even though data regarding fecal microbiota transplantation in colorectal cancer patients are still rather limited, it has been approved as a clinical method of treatment-recurrent Clostridium difficile infection, which may also occur in these patients. The major benefits of fecal microbiota transplantation include modulation of immunotherapy efficacy, amelioration of bile acid metabolism, and restoration of intestinal microbial diversity. Nonetheless, more studies are needed to assess the long-term effects of fecal microbiota transplantation. In this review, the impact of gut microbiota on the efficiency of anti-cancer therapy and colorectal cancer patients' overall survival is also discussed.
Collapse
Affiliation(s)
- Karolina Kaźmierczak-Siedlecka
- Department of Surgical Oncology, Medical University of Gdansk, Gdańsk, Poland,CONTACT Karolina Kaźmierczak-Siedlecka ul. Smoluchowskiego 17, 80-214 Gdańsk, Poland
| | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Gdańsk, Poland
| | - Mateusz Fic
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University Szczecin, Szczecin, Poland
| | - Thierry van de Wetering
- Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdańsk, Poland
| | - Marcin Folwarski
- Department of Clinical Nutrition and Dietetics, Medical University of Gdansk, Gdańsk, Poland
| | - Wojciech Makarewicz
- Department of Surgical Oncology, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
19
|
Koliarakis I, Athanasakis E, Sgantzos M, Mariolis-Sapsakos T, Xynos E, Chrysos E, Souglakos J, Tsiaoussis J. Intestinal Microbiota in Colorectal Cancer Surgery. Cancers (Basel) 2020; 12:E3011. [PMID: 33081401 PMCID: PMC7602998 DOI: 10.3390/cancers12103011] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The intestinal microbiota consists of numerous microbial species that collectively interact with the host, playing a crucial role in health and disease. Colorectal cancer is well-known to be related to dysbiotic alterations in intestinal microbiota. It is evident that the microbiota is significantly affected by colorectal surgery in combination with the various perioperative interventions, mainly mechanical bowel preparation and antibiotic prophylaxis. The altered postoperative composition of intestinal microbiota could lead to an enhanced virulence, proliferation of pathogens, and diminishment of beneficial microorganisms resulting in severe complications including anastomotic leakage and surgical site infections. Moreover, the intestinal microbiota could be utilized as a possible biomarker in predicting long-term outcomes after surgical CRC treatment. Understanding the underlying mechanisms of these interactions will further support the establishment of genomic mapping of intestinal microbiota in the management of patients undergoing CRC surgery.
Collapse
Affiliation(s)
- Ioannis Koliarakis
- Laboratory of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece;
| | - Elias Athanasakis
- Department of General Surgery, University Hospital of Heraklion, 71110 Heraklion, Greece; (E.A.); (E.C.)
| | - Markos Sgantzos
- Laboratory of Anatomy, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larissa, Greece;
| | - Theodoros Mariolis-Sapsakos
- Surgical Department, National and Kapodistrian University of Athens, Agioi Anargyroi General and Oncologic Hospital of Kifisia, 14564 Athens, Greece;
| | - Evangelos Xynos
- Department of Surgery, Creta Interclinic Hospital of Heraklion, 71305 Heraklion, Greece;
| | - Emmanuel Chrysos
- Department of General Surgery, University Hospital of Heraklion, 71110 Heraklion, Greece; (E.A.); (E.C.)
| | - John Souglakos
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - John Tsiaoussis
- Laboratory of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece;
| |
Collapse
|
20
|
Park IJ, Lee JH, Kye BH, Oh HK, Cho YB, Kim YT, Kim JY, Sung NY, Kang SB, Seo JM, Sim JH, Lee JL, Lee IK. Effects of PrObiotics on the Symptoms and Surgical ouTComes after Anterior REsection of Colon Cancer (POSTCARE): A Randomized, Double-Blind, Placebo-Controlled Trial. J Clin Med 2020; 9:jcm9072181. [PMID: 32664289 PMCID: PMC7408996 DOI: 10.3390/jcm9072181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 01/08/2023] Open
Abstract
We investigated microbiota changes following surgical colon cancer resection and evaluate effects of probiotics on microbiota and surgical recovery. This randomized double-blind trial was performed at four medical centers in South Korea. Of 68 patients expected to undergo anterior sigmoid colon cancer resection, 60 were eligible, of whom 29 and 31 received probiotics and placebo, respectively, for four weeks, starting at one week preoperatively. Third- and/or fourth-week information on anterior resection syndrome (ARS), inflammatory markers, and quality of life was obtained. Stool sample analysis was conducted after randomization and bowel preparation and at three and four postoperative weeks. Bacteria were categorized into Set I (with probiotic effects) and II (colon cancer-associated). The probiotic group’s ARS score showed an improving trend (p = 0.063), particularly for flatus control (p = 0.030). Serum zonulin levels significantly decreased with probiotics. Probiotic ingestion resulted in compositional changes in gut microbiota; greater increases and decreases in Set I and II bacteria, respectively, occurred with probiotics. Compositional increase in Set I bacteria was associated with reduced white blood cells, neutrophils, neutrophil-lymphocyte ratio, and zonulin. Bifidobacterium composition was negatively correlated with zonulin levels in the probiotic group. Probiotics improved postoperative flatus control and modified postoperative changes in microbiota and inflammatory markers.
Collapse
Affiliation(s)
- In Ja Park
- Department of Colon and Rectal Surgery, Asan Medical Centre and University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea;
| | - Ju-Hoon Lee
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea; (J.-H.L.); (Y.-T.K.)
| | - Bong-Hyeon Kye
- Department of Surgery, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, 93, Jungbu-daero, Paldal-gu, Suwon-si, Gyeonggi-do 16247, Korea;
| | - Heung-Kwon Oh
- Department of Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Korea; (H.-K.O.); (S.-B.K.)
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea;
| | - You-Tae Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea; (J.-H.L.); (Y.-T.K.)
| | - Joo Yun Kim
- R&BD Centre, Korea Yakult Co. Ltd., 577, Gangnam-daero, Seocho-gu, Seoul 05505, Korea; (J.Y.K.); (J.-H.S.); (J.-L.L.)
| | - Na Young Sung
- National Cancer Control Institute, National Cancer Centre, 323 Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do 10408, Korea;
| | - Sung-Bum Kang
- Department of Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Korea; (H.-K.O.); (S.-B.K.)
| | - Jeong-Meen Seo
- Division of Pediatric Surgery, Samsung Medical Centre, Sungkyunkwan University School of Medicine, 81 Ilwon-ro, Gangnam-gu, Seoul 06351, Korea;
| | - Jae-Hun Sim
- R&BD Centre, Korea Yakult Co. Ltd., 577, Gangnam-daero, Seocho-gu, Seoul 05505, Korea; (J.Y.K.); (J.-H.S.); (J.-L.L.)
| | - Jung-Lyoul Lee
- R&BD Centre, Korea Yakult Co. Ltd., 577, Gangnam-daero, Seocho-gu, Seoul 05505, Korea; (J.Y.K.); (J.-H.S.); (J.-L.L.)
| | - In Kyu Lee
- Department of Surgery, Division of Colorectal Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-6104
| |
Collapse
|
21
|
Park SS, Kim B, Kim MJ, Roh SJ, Park SC, Kim BC, Han KS, Hong CW, Sohn DK, Oh JH. The effect of curative resection on fecal microbiota in patients with colorectal cancer: a prospective pilot study. Ann Surg Treat Res 2020; 99:44-51. [PMID: 32676481 PMCID: PMC7332315 DOI: 10.4174/astr.2020.99.1.44] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/03/2020] [Accepted: 04/10/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose Although many studies have evaluated the association between intestinal microorganisms and the risk of colorectal cancer (CRC), only a few studies have investigated the changes in microorganisms following curative treatment for CRC. The current study analyzed changes in intestinal microbiota following curative surgery in CRC patients. Methods Stool samples were collected before and 6 months after surgery, from 11 patients with clinical stage III CRC, who underwent curative surgery between May 2017 and June 2017. Next, 16S rRNA gene sequencing was performed. Operational taxonomic units (OTUs) and alpha diversity were evaluated using the Shannon index. The bacterial compositions of the stools were analyzed according to taxonomic rank at genus and phylum levels. Results OTUs and alpha diversity were significantly decreased following surgery (P < 0.001 and P = 0.019, respectively). The compositions of several bacterial taxa changed after surgery. At genus level, proportions of pathogens such as Campylobacter, Fusobacterium, Haemophilus, Porphyromonas, and Prevotella, decreased after surgery (adjusted P < 0.05). At phylum level, the proportion of Fusobacteria decreased after surgery (adjusted P < 0.001). Conclusion Significant changes in intestinal microbial communities were noted following curative resection of CRC patients. Especially, decreases in pathogenic bacterial populations, such as Fusobacterium and Prevotella, which are known to be associated with CRC development, were detected even though OTUs and alpha diversity were decreased following curative resection. To determine and validate the clinical significance of these findings, large scale, prospective studies that include cancer prognoses are required.
Collapse
Affiliation(s)
- Sung Sil Park
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Bun Kim
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Min Jung Kim
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Seung Jae Roh
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Sung Chan Park
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Byung Chang Kim
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Kyung Su Han
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Chang Won Hong
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Dae Kyung Sohn
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Jae Hwan Oh
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| |
Collapse
|
22
|
Liu Y, Geng R, Liu L, Jin X, Yan W, Zhao F, Wang S, Guo X, Ghimire G, Wei Y. Gut Microbiota-Based Algorithms in the Prediction of Metachronous Adenoma in Colorectal Cancer Patients Following Surgery. Front Microbiol 2020; 11:1106. [PMID: 32595614 PMCID: PMC7303296 DOI: 10.3389/fmicb.2020.01106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/04/2020] [Indexed: 01/01/2023] Open
Abstract
Evaluating the risk of colorectal metachronous adenoma (MA), which is a precancerous lesion, is necessary for metachronous colorectal cancer (CRC) precaution among CRC patients who had underwent surgical removal of their primary tumor. Here, discovery cohort (n = 41) and validation cohort (n = 45) of CRC patients were prospectively enrolled in this study. Mucosal and fecal samples were used for gut microbiota analysis by sequencing the 16S rRNA genes. Significant reduction of microbial diversity was noted in MA (P < 0.001). A signature defined by decreased abundance of eight genera and increased abundance of two genera strongly correlated with MA. The microbiota-based random forest (RF) model, established utilizing Escherichia–Shigella, Acinetobacter together with BMI in combination, achieved AUC values of 0.885 and 0.832 for MA, predicting in discovery and validation cohort, respectively. The RF model was performed as well for fecal and tumor adjacent mucosal samples with an AUC of 0.835 and 0.889, respectively. Gut microbiota profile of MA still existed in post-operative cohort patients, but the RF model could not be performed well on this cohort, with an AUC of 0.61. Finally, we introduced a risk score based on Escherichia–Shigella, Acinetobacter and BMI, and synchronous-adenoma achieved AUC values of 0.94 and 0.835 in discovery and validation cohort, respectively. This study presented a comprehensive landscape of gut microbiota in MA, demonstrated that the gut microbiota-based models and scoring system achieved good ability to predict the risk for developing MA after surgical resection. Our study suggests that gut microbiota is a potential predictive biomarker for MA.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Geng
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lujia Liu
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangren Jin
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yan
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fuya Zhao
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Wang
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Guo
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ghanashyam Ghimire
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunwei Wei
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
23
|
Wang C, Li Q, Ren J. Microbiota-Immune Interaction in the Pathogenesis of Gut-Derived Infection. Front Immunol 2019; 10:1873. [PMID: 31456801 PMCID: PMC6698791 DOI: 10.3389/fimmu.2019.01873] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Gut-derived infection is among the most common complications in patients who underwent severe trauma, serious burn, major surgery, hemorrhagic shock or severe acute pancreatitis (SAP). It could cause sepsis and multiple organ dysfunction syndrome (MODS), which are regarded as a leading cause of mortality in these cases. Gut-derived infection is commonly caused by pathological translocation of intestinal bacteria or endotoxins, resulting from the dysfunction of the gut barrier. In the last decades, the studies regarding to the pathogenesis of gut-derived infection mainly focused on the breakdown of intestinal epithelial tight junction and increased permeability. Limited information is available on the roles of intestinal microbial barrier in the development of gut-derived infection. Recently, advances of next-generation DNA sequencing techniques and its utilization has revolutionized the gut microecology, leading to novel views into the composition of the intestinal microbiota and its connections with multiple diseases. Here, we reviewed the recent progress in the research field of intestinal barrier disruption and gut-derived infection, mainly through the perspectives of the dysbiosis of intestinal microbiota and its interaction with intestinal mucosal immune cells. This review presents novel insights into how the gut microbiota collaborates with mucosal immune cells to involve the development of pathological bacterial translocation. The data might have important implication to better understand the mechanism underlying pathological bacterial translocation, contributing us to develop new strategies for prevention and treatment of gut-derived sepsis.
Collapse
Affiliation(s)
| | - Qiurong Li
- Research Institute of General Surgery, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|