1
|
Backman T, Burbano HA, Karasov TL. Tradeoffs and constraints on the evolution of tailocins. Trends Microbiol 2024; 32:1084-1095. [PMID: 39504934 DOI: 10.1016/j.tim.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 11/08/2024]
Abstract
Phage tail-like bacteriocins (tailocins) are protein complexes produced by bacteria with the potential to kill their neighbors. Widespread throughout Gram-negative bacteria, tailocins exhibit extreme specificity in their targets, largely killing closely related strains. Despite their presence in diverse bacteria, the impact of these competitive weapons on the surrounding microbiota is largely unknown. Recent studies revealed the rapid evolution and genetic diversity of tailocins in microbial communities and suggest that there are constraints on the evolution of specificity and resistance. Given the precision of their targeted killing and the ease of engineering new specificities, understanding the evolution and ecological impact of tailocins may enable the design of promising candidates for novel targeted antibiotics.
Collapse
Affiliation(s)
- Talia Backman
- School of Biological Sciences, University of Utah 257S 1400E, Salt Lake City, UT 84112, USA.
| | - Hernán A Burbano
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution, and Environment, University College London, London, UK.
| | - Talia L Karasov
- School of Biological Sciences, University of Utah 257S 1400E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Charest AM, Reed E, Bozorgzadeh S, Hernandez L, Getsey NV, Smith L, Galperina A, Beauregard HE, Charest HA, Mitchell M, Riley MA. Nisin Inhibition of Gram-Negative Bacteria. Microorganisms 2024; 12:1230. [PMID: 38930612 PMCID: PMC11205666 DOI: 10.3390/microorganisms12061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Aims: This study investigates the activity of the broad-spectrum bacteriocin nisin against a large panel of Gram-negative bacterial isolates, including relevant plant, animal, and human pathogens. The aim is to generate supportive evidence towards the use/inclusion of bacteriocin-based therapeutics and open avenues for their continued development. Methods and Results: Nisin inhibitory activity was screened against a panel of 575 strains of Gram-negative bacteria, encompassing 17 genera. Nisin inhibition was observed in 309 out of 575 strains, challenging the prevailing belief that nisin lacks effectiveness against Gram-negative bacteria. The genera Acinetobacter, Helicobacter, Erwinia, and Xanthomonas exhibited particularly high nisin sensitivity. Conclusions: The findings of this study highlight the promising potential of nisin as a therapeutic agent for several key Gram-negative plant, animal, and human pathogens. These results challenge the prevailing notion that nisin is less effective or ineffective against Gram-negative pathogens when compared to Gram-positive pathogens and support future pursuits of nisin as a complementary therapy to existing antibiotics. Significance and Impact of Study: This research supports further exploration of nisin as a promising therapeutic agent for numerous human, animal, and plant health applications, offering a complementary tool for infection control in the face of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Adam M. Charest
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Ethan Reed
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Samantha Bozorgzadeh
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Lorenzo Hernandez
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Natalie V. Getsey
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Liam Smith
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Anastasia Galperina
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Hadley E. Beauregard
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Hailey A. Charest
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Mathew Mitchell
- Organicin Scientific, 240 Thatcher Road, Amherst, MA 01003, USA;
| | - Margaret A. Riley
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
- Organicin Scientific, 240 Thatcher Road, Amherst, MA 01003, USA;
| |
Collapse
|
3
|
Backman T, Latorre SM, Symeonidi E, Muszyński A, Bleak E, Eads L, Martinez-Koury PI, Som S, Hawks A, Gloss AD, Belnap DM, Manuel AM, Deutschbauer AM, Bergelson J, Azadi P, Burbano HA, Karasov TL. A phage tail-like bacteriocin suppresses competitors in metapopulations of pathogenic bacteria. Science 2024; 384:eado0713. [PMID: 38870284 PMCID: PMC11404688 DOI: 10.1126/science.ado0713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/24/2024] [Indexed: 06/15/2024]
Abstract
Bacteria can repurpose their own bacteriophage viruses (phage) to kill competing bacteria. Phage-derived elements are frequently strain specific in their killing activity, although there is limited evidence that this specificity drives bacterial population dynamics. Here, we identified intact phage and their derived elements in a metapopulation of wild plant-associated Pseudomonas genomes. We discovered that the most abundant viral cluster encodes a phage remnant resembling a phage tail called a tailocin, which bacteria have co-opted to kill bacterial competitors. Each pathogenic Pseudomonas strain carries one of a few distinct tailocin variants that target the variable polysaccharides in the outer membrane of co-occurring pathogenic Pseudomonas strains. Analysis of herbarium samples from the past 170 years revealed that the same tailocin and bacterial receptor variants have persisted in Pseudomonas populations. These results suggest that tailocin genetic diversity can be mined to develop targeted "tailocin cocktails" for microbial control.
Collapse
Affiliation(s)
- Talia Backman
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Sergio M. Latorre
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Efthymia Symeonidi
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ella Bleak
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Lauren Eads
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Sarita Som
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Aubrey Hawks
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Andrew D. Gloss
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - David M. Belnap
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Allison M. Manuel
- Mass Spectrometry and Proteomics Core, The University of Utah, Salt Lake City, UT 84112, USA
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joy Bergelson
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Hernán A. Burbano
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Talia L. Karasov
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Greer SF, Rabiey M, Studholme DJ, Grant M. The potential of bacteriocins and bacteriophages to control bacterial disease of crops with a focus on Xanthomonas spp. J R Soc N Z 2024; 55:302-326. [PMID: 39677383 PMCID: PMC11639067 DOI: 10.1080/03036758.2024.2345315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/02/2024] [Indexed: 12/17/2024]
Abstract
Crop production plays a crucial role in ensuring global food security and maintaining economic stability. The presence of bacterial phytopathogens, particularly Xanthomonas species (a key focus of this review), poses significant threats to crops, leading to substantial economic losses. Current control strategies, such as the use of chemicals and antibiotics, face challenges such as environmental impact and the development of antimicrobial resistance. This review discusses the potential of bacteriocins, bacterial-derived proteinaceous antimicrobials and bacteriophages, viruses that target bacteria as sustainable alternatives for effectively managing Xanthomonas diseases. We focus on the diversity of bacteriocins found within xanthomonads by identifying and predicting the structures of candidate bacteriocin genes from publicly available genome sequences using BAGEL4 and AlphaFold. Harnessing the power of bacteriocins and bacteriophages has great potential as an eco-friendly and sustainable approach for precision control of Xanthomonas diseases in agriculture. However, realising the full potential of these natural antimicrobials requires continued research, field trials and collaboration among scientists, regulators and farmers. This collective effort is crucial to establishing these alternatives as promising substitutes for traditional disease management methods.
Collapse
Affiliation(s)
- Shannon F. Greer
- School of Life Sciences, University of Warwick, Innovation Campus, Stratford-upon-Avon, UK
| | - Mojgan Rabiey
- School of Life Sciences, University of Warwick, Innovation Campus, Stratford-upon-Avon, UK
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, UK
| | | | - Murray Grant
- School of Life Sciences, University of Warwick, Innovation Campus, Stratford-upon-Avon, UK
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, UK
| |
Collapse
|
5
|
Ampntelnour L, Poulaki EG, Dimitrakas V, Mavrommati M, Amourgis GG, Tjamos SE. Enhancing Botrytis disease management in tomato plants: insights from a Pseudomonas putida strain with biocontrol activity. J Appl Microbiol 2024; 135:lxae094. [PMID: 38599633 DOI: 10.1093/jambio/lxae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024]
Abstract
AIMS This study explores the biocontrol potential of Pseudomonas putida Z13 against Botrytis cinerea in tomato plants, addressing challenges posed by the pathogen's fungicide resistance. The aims of the study were to investigate the in vitro and in silico biocontrol traits of Z13, identify its plant-colonizing efficacy, evaluate the efficacy of different application strategies against B. cinerea in planta, and assess the capacity of Z13 to trigger induced systemic resistance (ISR) in plants. METHODS AND RESULTS The in vitro experiments revealed that Z13 inhibits the growth of B. cinerea, produces siderophores, and exhibits swimming and swarming activity. Additionally, the Z13 genome harbors genes that encode compounds triggering ISR, such as pyoverdine and pyrroloquinoline quinone. The in planta experiments demonstrated Z13's efficacy in effectively colonizing the rhizosphere and leaves of tomato plants. Therefore, three application strategies of Z13 were evaluated against B. cinerea: root drenching, foliar spray, and the combination of root drenching and foliar spray. It was demonstrated that the most effective treatment of Z13 against B. cinerea was the combination of root drenching and foliar spray. Transcriptomic analysis showed that Z13 upregulates the expression of the plant defense-related genes PR1 and PIN2 upon B. cinerea inoculation. CONCLUSION The results of the study demonstrated that Z13 possesses significant biocontrol traits, such as the production of siderophores, resulting in significant plant protection against B. cinerea when applied as a single treatment to the rhizosphere or in combination with leaf spraying. Additionally, it was shown that Z13 root colonization primes plant defenses against the pathogen.
Collapse
Affiliation(s)
- Litsa Ampntelnour
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Eirini G Poulaki
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Vasilis Dimitrakas
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Maria Mavrommati
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Grigorios G Amourgis
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Sotiris E Tjamos
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| |
Collapse
|
6
|
Sisson HM, Fagerlund RD, Jackson SA, Briers Y, Warring SL, Fineran PC. Antibacterial synergy between a phage endolysin and citric acid against the Gram-negative kiwifruit pathogen Pseudomonas syringae pv. actinidiae. Appl Environ Microbiol 2024; 90:e0184623. [PMID: 38319087 PMCID: PMC10952447 DOI: 10.1128/aem.01846-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Horticultural diseases caused by bacterial pathogens provide an obstacle to crop production globally. Management of the infection of kiwifruit by the Gram-negative phytopathogen Pseudomonas syringae pv. actinidiae (Psa) currently includes copper and antibiotics. However, the emergence of bacterial resistance and a changing regulatory landscape are providing the impetus to develop environmentally sustainable antimicrobials. One potential strategy is the use of bacteriophage endolysins, which degrade peptidoglycan during normal phage replication, causing cell lysis and the release of new viral progeny. Exogenous use of endolysins as antimicrobials is impaired by the outer membrane of Gram-negative bacteria that provides an impermeable barrier and prevents endolysins from accessing their target peptidoglycan. Here, we describe the synergy between citric acid and a phage endolysin, which results in a reduction of viable Psa below detection. We show that citric acid drives the destabilization of the outer membrane via acidification and sequestration of divalent cations from the lipopolysaccharide, which is followed by the degradation of the peptidoglycan by the endolysin. Scanning electron microscopy revealed clear morphological differences, indicating cell lysis following the endolysin-citric acid treatment. These results show the potential for citric acid-endolysin combinations as a possible antimicrobial approach in agricultural applications. IMPORTANCE The phytopathogen Pseudomonas syringae pv. actinidiae (Psa) causes major impacts to kiwifruit horticulture, and the current control strategies are heavily reliant on copper and antibiotics. The environmental impact and increasing resistance to these agrichemicals are driving interest in alternative antimicrobials including bacteriophage-derived therapies. In this study, we characterize the endolysin from the Otagovirus Psa374 which infects Psa. When combined with citric acid, this endolysin displays an impressive antibacterial synergy to reduce viable Psa below the limit of detection. The use of citric acid as a synergistic agent with endolysins has not been extensively studied and has never been evaluated against a plant pathogen. We determined that the synergy involved a combination of the chelation activity of citric acid, acidic pH, and the specific activity of the ΦPsa374 endolysin. Our study highlights an exciting opportunity for alternative antimicrobials in agriculture.
Collapse
Affiliation(s)
- Hazel M. Sisson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
| | - Robert D. Fagerlund
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Simon A. Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Suzanne L. Warring
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Backman T, Latorre SM, Symeonidi E, Muszyński A, Bleak E, Eads L, Martinez-Koury PI, Som S, Hawks A, Gloss AD, Belnap DM, Manuel AM, Deutschbauer AM, Bergelson J, Azadi P, Burbano HA, Karasov TL. A weaponized phage suppresses competitors in historical and modern metapopulations of pathogenic bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.17.536465. [PMID: 38352526 PMCID: PMC10862724 DOI: 10.1101/2023.04.17.536465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Bacteriophages, the viruses of bacteria, are proposed to drive bacterial population dynamics, yet direct evidence of their impact on natural populations is limited. Here we identified viral sequences in a metapopulation of wild plant-associated Pseudomonas spp. genomes. We discovered that the most abundant viral cluster does not encode an intact phage but instead encodes a tailocin - a phage-derived element that bacteria use to kill competitors for interbacterial warfare. Each pathogenic Pseudomonas sp. strain carries one of a few distinct tailocin variants, which target variable polysaccharides in the outer membrane of co-occurring pathogenic strains. Analysis of historic herbarium samples from the last 170 years revealed that the same tailocin and receptor variants have persisted in the Pseudomonas populations for at least two centuries, suggesting the continued use of a defined set of tailocin haplotypes and receptors. These results indicate that tailocin genetic diversity can be mined to develop targeted "tailocin cocktails" for microbial control. One-Sentence Summary Bacterial pathogens in a host-associated metapopulation use a repurposed prophage to kill their competitors.
Collapse
|
8
|
Stice SP, Jan HH, Chen HC, Nwosu L, Shin GY, Weaver S, Coutinho T, Kvitko BH, Baltrus DA. Pantailocins: phage-derived bacteriocins from Pantoea ananatis and Pantoea stewartii subsp. indologenes. Appl Environ Microbiol 2023; 89:e0092923. [PMID: 37982620 PMCID: PMC10870728 DOI: 10.1128/aem.00929-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/15/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Phage-derived bacteriocins (tailocins) are ribosomally synthesized structures produced by bacteria in order to provide advantages against competing strains under natural conditions. Tailocins are highly specific in their target range and have proven to be effective for the prevention and/or treatment of bacterial diseases under clinical and agricultural settings. We describe the discovery and characterization of a new tailocin locus encoded within genomes of Pantoea ananatis and Pantoea stewartii subsp. indologenes, which may enable the development of tailocins as preventative treatments against phytopathogenic infection by these species.
Collapse
Affiliation(s)
- Shaun P. Stice
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Hsiao-Hsuan Jan
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Hsiao-Chun Chen
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Linda Nwosu
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Gi Yoon Shin
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Savannah Weaver
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Teresa Coutinho
- The Plant Center, University of Georgia, Athens, Georgia, USA
| | - Brian H. Kvitko
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, South Africa
| | - David A. Baltrus
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
9
|
Ishiga T, Sakata N, Usuki G, Nguyen VT, Gomi K, Ishiga Y. Large-Scale Transposon Mutagenesis Reveals Type III Secretion Effector HopR1 Is a Major Virulence Factor in Pseudomonas syringae pv. actinidiae. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010141. [PMID: 36616271 PMCID: PMC9823363 DOI: 10.3390/plants12010141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 05/27/2023]
Abstract
Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a serious threat to kiwifruit production worldwide. Four biovars (Psa biovar 1; Psa1, Psa biovar 3; Psa3, Psa biovar 5; Psa5, and Psa biovar 6; Psa6) were reported in Japan, and virulent Psa3 strains spread rapidly to kiwifruit production areas worldwide. Therefore, there is an urgent need to develop critical management strategies for bacterial canker based on dissecting the dynamic interactions between Psa and kiwifruit. To investigate the molecular mechanism of Psa3 infection, we developed a rapid and reliable high-throughput flood-inoculation method using kiwifruit seedlings. Using this inoculation method, we screened 3000 Psa3 transposon insertion mutants and identified 91 reduced virulence mutants and characterized the transposon insertion sites in these mutants. We identified seven type III secretion system mutants, and four type III secretion effectors mutants including hopR1. Mature kiwifruit leaves spray-inoculated with the hopR1 mutant showed significantly reduced virulence compared to Psa3 wild-type, indicating that HopR1 has a critical role in Psa3 virulence. Deletion mutants of hopR1 in Psa1, Psa3, Psa5, and Psa6 revealed that the type III secretion effector HopR1 is a major virulence factor in these biovars. Moreover, hopR1 mutants of Psa3 failed to reopen stomata on kiwifruit leaves, suggesting that HopR1 facilitates Psa entry through stomata into plants. Furthermore, defense related genes were highly expressed in kiwifruit plants inoculated with hopR1 mutant compared to Psa wild-type, indicating that HopR1 suppresses defense-related genes of kiwifruit. These results suggest that HopR1 universally contributes to virulence in all Psa biovars by overcoming not only stomatal-based defense, but also apoplastic defense.
Collapse
Affiliation(s)
- Takako Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan
| | - Nanami Sakata
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan
| | - Giyu Usuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan
| | - Viet Tru Nguyen
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan
- Western Highlands Agriculture and Forestry Science Institute, 53 Nguyen Luong Bang Street, Buon Ma Thuot City 630000, Vietnam
| | - Kenji Gomi
- Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan
| |
Collapse
|
10
|
Weaver SL, Zhu L, Ravishankar S, Clark M, Baltrus DA. Interspecies killing activity of Pseudomonas syringae tailocins. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36342839 DOI: 10.1099/mic.0.001258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tailocins are ribosomally synthesized bacteriocins, encoded by bacterial genomes, but originally derived from bacteriophage tails. As with both bacteriocins and phage, tailocins are largely thought to be species-specific with killing activity often assumed to be directed against closely related strains. Previous investigations into interactions between tailocin host range and sensitivity across phylogenetically diverse isolates of the phytopathogen Pseudomonas syringae have demonstrated that many strains possess intraspecific tailocin activity and that this activity is highly precise and specific against subsets of strains. However, here we demonstrate that at least one strain of P. syringae, USA011R, defies both expectations and current overarching dogma because tailocins from this strain possess broad killing activity against other agriculturally significant phytopathogens such as Erwinia amylovora and Xanthomonas perforans as well as against the clinical human pathogen Salmonella enterica serovar Choleraesuis. Moreover, we show that the full spectrum of this interspecific killing activity is not conserved across closely related strains with data suggesting that even if tailocins can target different species, they do so with different efficiencies. Our results reported herein highlight the potential for and phenotypic divergence of interspecific killing activity of P. syringae tailocins and establish a platform for further investigations into the evolution of tailocin host range and strain specificity.
Collapse
Affiliation(s)
- Savannah L Weaver
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.,School of Plant Sciences, University of Arizona, Tucson AZ, USA
| | - Libin Zhu
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA
| | - Sadhana Ravishankar
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA
| | - Meara Clark
- School of Plant Sciences, University of Arizona, Tucson AZ, USA
| | - David A Baltrus
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.,School of Plant Sciences, University of Arizona, Tucson AZ, USA.,School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA
| |
Collapse
|
11
|
Warring SL, Malone LM, Jayaraman J, Easingwood RA, Rigano LA, Frampton RA, Visnovsky SB, Addison SM, Hernandez L, Pitman AR, Lopez Acedo E, Kleffmann T, Templeton MD, Bostina M, Fineran PC. A lipopolysaccharide-dependent phage infects a pseudomonad phytopathogen and can evolve to evade phage resistance. Environ Microbiol 2022; 24:4834-4852. [PMID: 35912527 PMCID: PMC9796965 DOI: 10.1111/1462-2920.16106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 06/17/2022] [Indexed: 01/07/2023]
Abstract
Bacterial pathogens are major causes of crop diseases, leading to significant production losses. For instance, kiwifruit canker, caused by the phytopathogen Pseudomonas syringae pv. actinidiae (Psa), has posed a global challenge to kiwifruit production. Treatment with copper and antibiotics, whilst initially effective, is leading to the rise of bacterial resistance, requiring new biocontrol approaches. Previously, we isolated a group of closely related Psa phages with biocontrol potential, which represent environmentally sustainable antimicrobials. However, their deployment as antimicrobials requires further insight into their properties and infection strategy. Here, we provide an in-depth examination of the genome of ΦPsa374-like phages and show that they use lipopolysaccharides (LPS) as their main receptor. Through proteomics and cryo-electron microscopy of ΦPsa374, we revealed the structural proteome and that this phage possess a T = 9 capsid triangulation, unusual for myoviruses. Furthermore, we show that ΦPsa374 phage resistance arises in planta through mutations in a glycosyltransferase involved in LPS synthesis. Lastly, through in vitro evolution experiments we showed that phage resistance is overcome by mutations in a tail fibre and structural protein of unknown function in ΦPsa374. This study provides new insight into the properties of ΦPsa374-like phages that informs their use as antimicrobials against Psa.
Collapse
Affiliation(s)
- Suzanne L. Warring
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Lucia M. Malone
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Jay Jayaraman
- The New Zealand Institute for Plant & Food Research Limited, Mt AlbertAucklandNew Zealand,Bioprotection AotearoaCanterburyNew Zealand
| | | | - Luciano A. Rigano
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand,Plant Health & Environment Laboratory, Biosecurity New ZealandMinistry for Primary IndustriesAucklandNew Zealand
| | - Rebekah A. Frampton
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand,The New Zealand Institute for Plant & Food Research LimitedChristchurchNew Zealand
| | - Sandra B. Visnovsky
- The New Zealand Institute for Plant & Food Research LimitedChristchurchNew Zealand
| | - Shea M. Addison
- The New Zealand Institute for Plant & Food Research LimitedChristchurchNew Zealand
| | - Loreto Hernandez
- The New Zealand Institute for Plant & Food Research LimitedChristchurchNew Zealand
| | - Andrew R. Pitman
- The New Zealand Institute for Plant & Food Research LimitedChristchurchNew Zealand,Foundation for Arable Research (FAR), TempletonChristchurchNew Zealand
| | - Elena Lopez Acedo
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | | | - Matthew D. Templeton
- The New Zealand Institute for Plant & Food Research Limited, Mt AlbertAucklandNew Zealand,Bioprotection AotearoaCanterburyNew Zealand,School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Mihnea Bostina
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand,Otago Centre for Electron MicroscopyUniversity of OtagoDunedinNew Zealand
| | - Peter C. Fineran
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand,Bioprotection AotearoaCanterburyNew Zealand
| |
Collapse
|
12
|
de Sousa LP, Cipriano MAP, Freitas SDS, Carazzolle MF, da Silva MJ, Mondego JMC. Genomic and physiological evaluation of two root associated Pseudomonas from Coffea arabica. Microbiol Res 2022; 263:127129. [PMID: 35907286 DOI: 10.1016/j.micres.2022.127129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
Many Pseudomonas species promote plant growth and colonize a wide range of environments. The annotation of a Coffea arabica ESTs database revealed a considerable number of Pseudomonas sequences. To evaluate the genomic and physiology of Pseudomonas that inhabit coffee plants, fluorescent Pseudomonas from C. arabica root environment were isolated. Two of them had their genomes sequenced; one from rhizospheric soil, named as MNR3A, and one from internal part of the root, named as EMN2. In parallel, we performed biochemical and physiological experiments to confirm genomic analyses results. Interestingly, EMN2 has achromobactin and aerobactin siderophore receptors, but does not have the genes responsible for the production of these siderophores, suggesting an interesting bacterial competition strategy. The two bacterial isolates were able to degrade and catabolize plant phenolic compounds for their own benefit. Surprisingly, MNR3A and EMN2 do not contain caffeine methylases that are responsible for the catabolism of caffeine. In fact, bench experiments confirm that the bacteria did not metabolize caffeine, but were resistant and chemically attracted to it. Furthermore, both bacteria, most especially MNR3A, were able to increase growth of lettuce plants. Our results indicate MNR3A as a potential plant growth promoting bacteria.
Collapse
Affiliation(s)
- Leandro Pio de Sousa
- Instituto Agronômico de Campinas, IAC, Campinas, SP, Brazil; UNICAMP, Programa de Pós-graduação em Genética e Biologia Molecular, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Morinière L, Mirabel L, Gueguen E, Bertolla F. A Comprehensive Overview of the Genes and Functions Required for Lettuce Infection by the Hemibiotrophic Phytopathogen Xanthomonas hortorum pv. vitians. mSystems 2022; 7:e0129021. [PMID: 35311560 PMCID: PMC9040725 DOI: 10.1128/msystems.01290-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
The successful infection of a host plant by a phytopathogenic bacterium depends on a finely tuned molecular cross talk between the two partners. Thanks to transposon insertion sequencing techniques (Tn-seq), whole genomes can now be assessed to determine which genes are important for the fitness of several plant-associated bacteria in planta. Despite its agricultural relevance, the dynamic molecular interaction established between the foliar hemibiotrophic phytopathogen Xanthomonas hortorum pv. vitians and its host, lettuce (Lactuca sativa), remains completely unknown. To decipher the genes and functions mobilized by the pathogen throughout the infection process, we conducted a Tn-seq experiment in lettuce leaves to mimic the selective pressure occurring during natural infection. This genome-wide screening identified 170 genes whose disruption caused serious fitness defects in lettuce. A thorough examination of these genes using comparative genomics and gene set enrichment analyses highlighted that several functions and pathways were highly critical for the pathogen's survival. Numerous genes involved in amino acid, nucleic acid, and exopolysaccharide biosynthesis were critical. The xps type II secretion system operon, a few TonB-dependent transporters involved in carbohydrate or siderophore scavenging, and multiple genes of the carbohydrate catabolism pathways were also critical, emphasizing the importance of nutrition systems in a nutrient-limited environment. Finally, several genes implied in camouflage from the plant immune system and resistance to immunity-induced oxidative stress were strongly involved in host colonization. As a whole, these results highlight some of the central metabolic pathways and cellular functions critical for Xanthomonas host adaptation and pathogenesis. IMPORTANCE Xanthomonas hortorum was recently the subject of renewed interest, as several studies highlighted that its members were responsible for diseases in a wide range of plant species, including crops of agricultural relevance (e.g., tomato and carrot). Among X. hortorum variants, X. hortorum pv. vitians is a reemerging foliar hemibiotrophic phytopathogen responsible for severe outbreaks of bacterial leaf spot of lettuce all around the world. Despite recent findings, sustainable and practical means of disease control remain to be developed. Understanding the host-pathogen interaction from a molecular perspective is crucial to support these efforts. The genes and functions mobilized by X. hortorum pv. vitians during its interaction with lettuce had never been investigated. Our study sheds light on these processes by screening the whole pathogen genome for genes critical for its fitness during the infection process, using transposon insertion sequencing and comparative genomics.
Collapse
Affiliation(s)
- Lucas Morinière
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Laurène Mirabel
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Erwan Gueguen
- Université Lyon, Université Claude Bernard Lyon 1, INSA, CNRS, UMR Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| | - Franck Bertolla
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
14
|
Haro-Moreno JM, López-Pérez M, Rodriguez-Valera F. Enhanced Recovery of Microbial Genes and Genomes From a Marine Water Column Using Long-Read Metagenomics. Front Microbiol 2021; 12:708782. [PMID: 34512586 PMCID: PMC8430335 DOI: 10.3389/fmicb.2021.708782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Third-generation sequencing has penetrated little in metagenomics due to the high error rate and dependence for assembly on short-read designed bioinformatics. However, second-generation sequencing metagenomics (mostly Illumina) suffers from limitations, particularly in the assembly of microbes with high microdiversity and retrieval of the flexible (adaptive) fraction of prokaryotic genomes. Here, we have used a third-generation technique to study the metagenome of a well-known marine sample from the mixed epipelagic water column of the winter Mediterranean. We have compared PacBio Sequel II with the classical approach using Illumina Nextseq short reads followed by assembly to study the metagenome. Long reads allow for efficient direct retrieval of complete genes avoiding the bias of the assembly step. Besides, the application of long reads on metagenomic assembly allows for the reconstruction of much more complete metagenome-assembled genomes (MAGs), particularly from microbes with high microdiversity such as Pelagibacterales. The flexible genome of reconstructed MAGs was much more complete containing many adaptive genes (some with biotechnological potential). PacBio Sequel II CCS appears particularly suitable for cellular metagenomics due to its low error rate. For most applications of metagenomics, from community structure analysis to ecosystem functioning, long reads should be applied whenever possible. Specifically, for in silico screening of biotechnologically useful genes, or population genomics, long-read metagenomics appears presently as a very fruitful approach and can be analyzed from raw reads before a computationally demanding (and potentially artifactual) assembly step.
Collapse
Affiliation(s)
- Jose M. Haro-Moreno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|