1
|
Salinas-García MÁ, Fernbach J, Rinnan R, Priemé A. Extreme smells-microbial production of volatile organic compounds at the limits of life. FEMS Microbiol Rev 2025; 49:fuaf004. [PMID: 39880796 PMCID: PMC11837334 DOI: 10.1093/femsre/fuaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 01/31/2025] Open
Abstract
Microbial volatile organic compounds (MVOCs) are diverse molecules produced by microorganisms, ranging from mere waste byproducts to important signalling molecules. While the interest in MVOCs has been increasing steadily, there is a significant gap in our knowledge of MVOCs in extreme environments with e.g. extreme temperatures or acidity. Microorganisms in these conditions are subjected to additional stress compared to their counterparts in moderate environments and in many cases have evolved unique adaptations, including the production of specialized MVOCs. This review highlights the diversity of MVOCs identified in extreme environments or produced by isolated extremophiles. Furthermore, we explore potential applications already investigated and discuss broader implications for biotechnology, environmental biology, and astrobiology.
Collapse
Affiliation(s)
- Miguel Ángel Salinas-García
- Centre for Exolife Sciences (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen, Denmark
- Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Jonas Fernbach
- Centre for Exolife Sciences (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen, Denmark
| | - Riikka Rinnan
- Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Anders Priemé
- Centre for Exolife Sciences (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen, Denmark
- Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Choi Y, Kang B, Kim D. Effective detection of indoor fungal contamination through the identification of volatile organic compounds using mass spectrometry and machine learning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125195. [PMID: 39490513 DOI: 10.1016/j.envpol.2024.125195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Indoor fungal contamination poses significant challenges to human health and indoor air quality. This study addresses an effective approach using mass spectrometry and machine learning to identify microbial volatile organic compounds (MVOCs) originated from indoor fungi. Three common indoor fungi, including Penicillium Chrysogenum, Cladosporium cladosporioides, and Aspergillus niger, were cultivated on various substrates, namely potato dextrose agar, wallpaper, and silicone. Solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) was used to analyze MVOCs together, along with the VOCs (namely, non-MVOCs) emitted by various indoor materials (wallpaper adhesives, diffusers, particle board, oriented strand board, medium-density fiberboard, bleach, print cartridges, and cosmetic creams). This study demonstrates the significant effectiveness of machine learning, particularly the random forest model, in accurately distinguishing MVOCs from non-MVOCs. Furthermore, specific VOCs such as benzocyclobutane, styrene, ethanol, benzene, and 2-butanone emerged as consistent indicators of fungal presence across different fungal species and substrates. A simplified random forest model incorporating these key VOCs achieved a high accuracy of 96.2%, highlighting their practical significance in fungal contamination detection. This integrated approach combining analytical chemistry and machine learning offers a promising strategy for the comprehensive and reliable assessment of indoor fungal contamination.
Collapse
Affiliation(s)
- Yelim Choi
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| | - Bogyeong Kang
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| | - Daekeun Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
3
|
Zhu Y, Zeng Y, Liu M, Lu T, Pang X. Rescue of morphological defects in Streptomyces venezuelae by the alkaline volatile compound trimethylamine. Microbiol Spectr 2024; 12:e0119524. [PMID: 39166853 PMCID: PMC11448094 DOI: 10.1128/spectrum.01195-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Microorganisms can produce a vast diversity of volatile organic compounds of different chemical classes that are capable of mediating intra- and inter-kingdom interactions. In this study, we showed that the soil-dwelling bacterium Streptomyces venezuelae can produce alkaline volatiles under multiple growth conditions, which we discovered through investigation of the S. venezuelae mutant strain MU-1. Strain MU-1 has a defective morphology and exhibits a bald phenotype due to the lack of aerial mycelia and spores, as confirmed by scanning electron microscopy. Using physical barriers to separate the strains on culture plates, we determined that volatile compounds produced by wild-type S. venezuelae could rescue the phenotype of strain MU-1, and pH analysis of the growth medium indicated that these volatile compounds were alkaline. Ultra-high-performance liquid chromatography, combined with mass spectrometry analysis, showed that wild-type S. venezuelae produced abundant levels of the alkaline volatile trimethylamine (TMA) and the oxide form TMAO; however, the levels of these compounds were much lower in strain MU-1. Notably, exposure to TMA alone could rescue the phenotype of this mutant strain, restoring the production of aerial mycelia and spores. We also showed that the rescue effect by alkaline volatiles is mostly species-specific, suggesting that the volatiles may aid particular mutants or other less-fit variants of closely related species to resume normal physiological status and to compete more effectively in complex communities such as soil. Our study reveals a new and intriguing role for bacterial volatiles, including volatiles that may have toxic effects on other species. IMPORTANCE Bacterial volatiles have a wide range of biological roles at intra- or inter-kingdom levels. The impact of volatiles has mainly been observed between producing bacteria and recipient bacteria, mostly of different species. In this study, we report that the wild-type, soil-dwelling bacterium Streptomyces venezuelae, which forms aerial hypha and spores as part of its normal developmental cycle, also produces the alkaline volatile compound trimethylamine (TMA) under multiple growth conditions. We showed that the environmental dispersion of TMA produced by S. venezuelae promotes the growth and differentiation of growth-deficient mutants of the same species or other slowly growing Streptomyces bacteria, and thus aids in their survival and their ability to compete in complex environmental communities such as soil. Our novel findings suggest a potentially profound biological role for volatile compounds in the growth and survival of communities of volatile-producing Streptomyces species.
Collapse
Affiliation(s)
- Yanping Zhu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yanhong Zeng
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Meng Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Ting Lu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiuhua Pang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Liu-Xu L, Ma L, Farvardin A, García-Agustín P, Llorens E. Exploring the impact of plant genotype and fungicide treatment on endophytic communities in tomato stems. Front Microbiol 2024; 15:1453699. [PMID: 39397796 PMCID: PMC11469548 DOI: 10.3389/fmicb.2024.1453699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
This study examines how plant genotype can influence the microbiome by comparing six tomato genotypes (Solanum lycopersicum) based on their traditional vs. commercial backgrounds. Using Illumina-based sequencing of the V6-V8 regions of 16S and ITS2 rRNA genes, we analyzed and compared the endophytic bacterial and fungal communities in stems to understand how microbiota can differ and be altered in plant genotypes and the relation to human manipulation. Our results reflect that traditional genotypes harbor significantly more exclusive microbial taxa and a broader phylogenetic background than the commercial ones. Traditional genotypes were significantly richer in Eurotiomycetes and Sordariomycetes fungi, while Lasiosphaeriaceae was more prevalent in commercial genotypes. TH-30 exhibited the highest bacterial abundance, significantly more than commercial genotypes, particularly in Actinomycetia, Bacteroidia, and Gammaproteobacteria. Additionally, traditional genotypes had higher bacterial diversity, notably in orders like Cytophagales, Xanthomonadales, and Burkholderiales. Moreover, we performed an evaluation of the impact of a systemic fungicide (tebuconazole-dichlofluanide) to simulate a common agronomic practice and determined that a single fungicide treatment altered the stem endophytic microbiota. Control plants had a higher prevalence of fungal orders Pleosporales, Helotiales, and Glomerellales, while treated plants were dominated by Sordariomycetes and Laboulbeniomycetes. Fungal community diversity significantly decreased, but no significant impact was observed on bacterial diversity. Our study provides evidence that the background of the tomato variety impacts the fungal and bacterial stem endophytes. Furthermore, these findings suggest the potential benefits of using of traditional genotypes as a source of novel beneficial microbiota that may prove highly valuable in unpredicted challenges and the advancement in sustainable agriculture.
Collapse
Affiliation(s)
- Luisa Liu-Xu
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Jaume I University, Castellón de la Plana, Spain
| | - Liang Ma
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Atefeh Farvardin
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Jaume I University, Castellón de la Plana, Spain
| | - Pilar García-Agustín
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Jaume I University, Castellón de la Plana, Spain
| | - Eugenio Llorens
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Jaume I University, Castellón de la Plana, Spain
| |
Collapse
|
5
|
Zhang Y, Du Y, Zhang Z, Islam W, Zeng F. Variation in Root-Associated Microbial Communities among Three Different Plant Species in Natural Desert Ecosystem. PLANTS (BASEL, SWITZERLAND) 2024; 13:2468. [PMID: 39273952 PMCID: PMC11396838 DOI: 10.3390/plants13172468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
The process and function that underlie the assembly of root-associated microbiomes may be strongly linked to the survival strategy of plants. However, the assembly and functional changes of root-associated microbial communities in different desert plants in natural desert ecosystems are still unclear. Thus, we studied the microbial communities and diversity of root endosphere (RE), rhizosphere soil (RS), and bulk soil (BS) among three representative desert plants (Alhagi sparsifolia, Tamarix ramosissima, and Calligonum caput-medusae) in three Xinjiang desert regions {Taklimakan (CL), Gurbantünggüt (MSW), and Kumtag (TLF)} in China. This study found that the soil properties {electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (TN) and phosphorus (TP), available nitrogen (AN) and phosphorus (AP)} of C. caput-medusae were significantly lower than those of A. sparsifolia and T. ramosissima, while the root nutrients (TN and TP) of A. sparsifolia were significantly higher compared to C. caput-medusae and T. ramosissima. The beta diversity of bacteria and fungi (RE) among the three desert plants was significantly different. The common OTU numbers of bacteria and fungi in three compartments (RE, RS, and BS) of the three desert plants were ranked as RS > BS > RE. The bacterial and fungal (RE) Shannon and Simpson indexes of C. caput-medusae were significantly lower as compared to those of A. sparsifolia and T. ramosissima. Additionally, bacterial and fungal (RE and RS) node numbers and average degree of C. caput-medusae were lower than those found in A. sparsifolia and T. ramosissima. Root and soil nutrients collectively contributed to the composition of root-associated bacterial (RE, 12.4%; RS, 10.6%; BS, 16.6%) and fungal communities (RE, 34.3%; RS, 1.5%; BS, 17.7%). These findings demonstrate variations in the bacterial and fungal populations across different plant species with distinct compartments (RE, RS, and BS) in arid environments. More importantly, the study highlights how much soil and plant nutrients contribute to root-associated microbial communities.
Collapse
Affiliation(s)
- Yulin Zhang
- College of Ecology and Environmental, Xinjiang University, Urumqi 830046, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Yi Du
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihao Zhang
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Fanjiang Zeng
- College of Ecology and Environmental, Xinjiang University, Urumqi 830046, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Qin YY, Gong Y, Kong SY, Wan ZY, Liu JQ, Xing K, Qin S. Aerial signaling by plant-associated Streptomyces setonii WY228 regulates plant growth and enhances salt stress tolerance. Microbiol Res 2024; 286:127823. [PMID: 38959523 DOI: 10.1016/j.micres.2024.127823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Plant-associated streptomycetes play important roles in plant growth and development. However, knowledge of volatile-mediated crosstalk between Streptomyces spp. and plants remains limited. In this study, we investigated the impact of volatiles from nine endophytic Streptomyces strains on the growth and development of plants. One versatile strain, Streptomyces setonii WY228, was found to significantly promote the growth of Arabidopsis thaliana and tomato seedlings, confer salt tolerance, and induce early flowering and increased fruit yield following volatile treatment. Analysis of plant growth-promoting traits revealed that S. setonii WY228 could produce indole-3-acetic acid, siderophores, ACC deaminase, fix nitrogen, and solubilize inorganic phosphate. These capabilities were further confirmed through genome sequencing and analysis. Volatilome analysis indicated that the volatile organic compounds emitted from ISP-2 medium predominantly comprised sesquiterpenes and 2-ethyl-5-methylpyrazine. Further investigations showed that 2-ethyl-5-methylpyrazine and sesquiterpenoid volatiles were the primary regulators promoting growth, as confirmed by experiments using the terpene synthesis inhibitor phosphomycin, pure compounds, and comparisons of volatile components. Transcriptome analysis, combined with mutant and inhibitor studies, demonstrated that WY228 volatiles promoted root growth by activating Arabidopsis auxin signaling and polar transport, and enhanced root hair development through ethylene signaling activation. Additionally, it was confirmed that volatiles can stimulate plant abscisic acid signaling and activate the MYB75 transcription factor, thereby promoting anthocyanin synthesis and enhancing plant salt stress tolerance. Our findings suggest that aerial signaling-mediated plant growth promotion and abiotic stress tolerance represent potentially overlooked mechanisms of Streptomyces-plant interactions. This study also provides an exciting strategy for the regulation of plant growth and the improvement of horticultural crop yields within sustainable agricultural practices.
Collapse
Affiliation(s)
- Yue-Ying Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Yuan Gong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Su-Yun Kong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Zhi-Yuan Wan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Jia-Qi Liu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Ke Xing
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| |
Collapse
|
7
|
Cuervo L, Méndez C, Olano C, Malmierca MG. Volatilome: Smells like microbial spirit. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:1-43. [PMID: 38763526 DOI: 10.1016/bs.aambs.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
In recent years, the study of volatile compounds has sparked interest due to their implications in signaling and the enormous variety of bioactive properties attributed to them. Despite the absence of analysis methods standardization, there are a multitude of tools and databases that allow the identification and quantification of volatile compounds. These compounds are chemically heterogeneous and their diverse properties are exploited by various fields such as cosmetics, the food industry, agriculture and medicine, some of which will be discussed here. In virtue of volatile compounds being ubiquitous and fast chemical messengers, these molecules mediate a large number of interspecific and intraspecific interactions, which are key at an ecological level to maintaining the balance and correct functioning of ecosystems. This review briefly summarized the role of volatile compounds in inter- and intra-specific relationships as well as industrial applications associated with the use of these compounds that is emerging as a promising field of study.
Collapse
Affiliation(s)
- Lorena Cuervo
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Carmen Méndez
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Carlos Olano
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Mónica G Malmierca
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain.
| |
Collapse
|
8
|
de Menezes Souza J, de Menezes Fonseca D, Pinheiro de Souza J, Cordeiro do Nascimento L, Mendes Hughes F, Pereira Bezerra JD, Góes-Neto A, Ferreira-Silva A. Cactus Endophytic Fungi and Bioprospecting for their Enzymes and Bioactive Molecules: A Systematic Review. Chem Biodivers 2023; 20:e202301413. [PMID: 37934008 DOI: 10.1002/cbdv.202301413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
Endophytic fungi are associated with plant health and represent a remarkable source of potential of enzymes and bioactive compounds, but the diversity of endophytes remains uncertain and poorly explored, especially in Cactaceae, one of the most species-rich families adapted to growing in arid and semi-arid regions. The aim of this study was to conduct a systematic review on the diversity and bioprospecting of endophytic fungi from Cactaceae. We analysed peer-reviewed articles from seven databases using PRISMA guidelines. The results showed that the Cactaceae family is a source of new taxa, but the diversity of endophytic fungi of Cactaceae is little explored, mainly the diversity among tissues and by metagenomics. Bioprospecting studies have shown that these microorganisms can be used in the production of enzymes and larvicidal and antifungal compounds. Our results are relevant as a starting point for researchers to develop studies that expand the knowledge of plant mycobiota in arid and semi-arid ecosystems, as well as comprising a remarkable source of fungal compounds with several biotechnological applications.
Collapse
Affiliation(s)
- Jeferson de Menezes Souza
- Graduate Program in Biotechnology, Universidade Estadual de Feira de Santana, Feira de Santana City, 44036-900, Bahia State, Brazil
| | | | - Jaciara Pinheiro de Souza
- Graduate Program in Pharmaceutical Sciences, Universidade Federal de Sergipe, Aracaju City, 41100-000, Sergipe State, Brazil
| | - Luciana Cordeiro do Nascimento
- Agricultural Sciences Center, Department of Phytotechnics and Environmental Sciences, Universidade Federal da Paraíba, Areia City, 58397-000, Paraíba State, Brazil
| | - Frederic Mendes Hughes
- Conselho de Curadores das Coleções Científicas and Graduate Program in Zoology, Universidade Estadual de Santa Cruz, Ilhéus City, 45662-900, Bahia State, Brazil
| | - Jadson Diogo Pereira Bezerra
- Departament of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia City, 74605-050, Goiás State, Brazil
| | - Aristóteles Góes-Neto
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte City, 31270-901, Minas Gerais State, Brazil
| | - Alice Ferreira-Silva
- Agricultural Sciences Center, Department of Phytotechnics and Environmental Sciences, Universidade Federal da Paraíba, Areia City, 58397-000, Paraíba State, Brazil
| |
Collapse
|
9
|
Bashir A, Manzoor MM, Ahmad T, Farooq S, Sultan P, Gupta AP, Riyaz-Ul-Hassan S. Endophytic fungal community of Rosa damascena Mill. as a promising source of indigenous biostimulants: Elucidating its spatial distribution, chemical diversity, and ecological functions. Microbiol Res 2023; 276:127479. [PMID: 37639964 DOI: 10.1016/j.micres.2023.127479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
The role of endophytes in maintaining healthy plant ecosystems and holding promise for agriculture and food security is deeply appreciated. In the current study, we determine the community structure, spatial distribution, chemical diversity, and ecological functions of fungal endophytes of Rosa damascena growing in the North-Western Himalayas. Culture-dependent methods revealed that R. damascena supported a rich endophyte diversity comprising 32 genera and 68 OTUs. The diversity was governed by climate, altitude, and tissue type. Species of Aspergillus, Cladosporium, Penicillium, and Diaporthe were the core endophytes of the host plant consisting of 48.8% of the endophytes collectively. The predominant pathogen of the host was Alternaria spp., especially A. alternata. GC-MS analyses affirmed the production of diverse arrays of volatile organic compounds (VOC) by individual endophytes. Among the primary rose oil components, Diaporthe melonis RDE257, and Periconia verrucosa RDE85 produced phenyl ethyl alcohol (PEA) and benzyl alcohol (BA). The endophytes displayed varied levels of plant growth-promoting, colonization, and anti-pathogenic traits. Between the selected endophytes, P. verrucosa and D. melonis significantly potentiated plant growth and the flavonoids and chlorophyll content in the host. The potential of these two endophytes and their metabolites PEA and BA was confirmed on Nicotiana tabacum. The treatments of the metabolites and individual endophytes enhanced the growth parameters in the model plant significantly. The results imply that P. verrucosa and D. melonis are potential plant growth enhancers and their activity may be partially due to the production of PEA and BA. Thus, R. damascena harbors diverse endophytes with potential applications in disease suppression and host growth promotion. Further investigations at the molecular level are warranted to develop green endophytic agents for sustainable cultivation of R. damascena and biocontrol of leaf spot disease.
Collapse
Affiliation(s)
- Abid Bashir
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Malik Muzafar Manzoor
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India
| | - Tanveer Ahmad
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India
| | - Sadaqat Farooq
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Phalisteen Sultan
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India
| | - Ajai P Gupta
- Quality Management & Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Syed Riyaz-Ul-Hassan
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Razo-Belmán R, Ángeles-López YI, García-Ortega LF, León-Ramírez CG, Ortiz-Castellanos L, Yu H, Martínez-Soto D. Fungal volatile organic compounds: mechanisms involved in their sensing and dynamic communication with plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1257098. [PMID: 37810383 PMCID: PMC10559904 DOI: 10.3389/fpls.2023.1257098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
Microbial volatile organic compounds (MVOCs) are mixtures of gas-phase hydrophobic carbon-based molecules produced by microorganisms such as bacteria and fungi. They can act as airborne signals sensed by plants being crucial players in triggering signaling cascades influencing their secondary metabolism, development, and growth. The role of fungal volatile organic compounds (FVOCs) from beneficial or detrimental species to influence the physiology and priming effect of plants has been well studied. However, the plants mechanisms to discern between FVOCs from friend or foe remains significantly understudied. Under this outlook, we present an overview of the VOCs produced by plant-associate fungal species, with a particular focus on the challenges faced in VOCs research: i) understanding how plants could perceive FVOCs, ii) investigating the differential responses of plants to VOCs from beneficial or detrimental fungal strains, and finally, iii) exploring practical aspects related to the collection of VOCs and their eco-friendly application in agriculture.
Collapse
Affiliation(s)
- Rosario Razo-Belmán
- Departamento de Alimentos, División de Ciencias de la Vida, Universidad de Guanajuato, Irapuato, Guanajuato, Mexico
| | | | - Luis Fernando García-Ortega
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Mexico
| | - Claudia Geraldine León-Ramírez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Mexico
| | - Lucila Ortiz-Castellanos
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Mexico
| | - Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Domingo Martínez-Soto
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| |
Collapse
|
11
|
Wang K, Lin Z, Dou J, Jiang M, Shen N, Feng J. Identification and Surveys of Promoting Plant Growth VOCs from Biocontrol Bacteria Paenibacillus peoriae GXUN15128. Microbiol Spectr 2023; 11:e0434622. [PMID: 36988498 PMCID: PMC10269716 DOI: 10.1128/spectrum.04346-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/25/2023] [Indexed: 03/30/2023] Open
Abstract
The role of microbial volatile organic compounds (MVOCs) in promoting plant growth has received much attention. We isolated Paenibacillus peoriae from mangrove rhizosphere soil, which can produce VOCs to promote the growth of Arabidopsis thaliana seedlings, increase the aboveground biomass of A. thaliana, and increase the number of lateral roots of A. thaliana. The effects of different inoculation amounts and different media on the composition of MVOCs were studied by solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and headspace sampler/GC-MS. We found that the growth medium influences the function and composition of MVOCs. To survey the growth-promoting functions, the transcriptome of the receptor A. thaliana was then determined. We also verified the inhibitory effect of the soluble compounds produced by P. peoriae on the growth of 10 pathogenic fungi. The ability of P. peoriae to produce volatile and soluble compounds to promote plant growth and disease resistance has shown great potential for application in the sustainability of agricultural production. IMPORTANCE Microbial volatile organic compounds (MVOCs) have great potential as "gas fertilizers" for agricultural applications, and it is a promising research direction for the utilization of microbial resources. This study is part of the field of interactions between microorganisms and plants. To study the function and application of microorganisms from the perspective of VOCs is helpful to break the bottleneck of traditional microbial application. At present, the study of MVOCs is lacking; there is a lack of functional strains, especially with plant-protective functions and nonpathogenic application value. The significance of this study is that it provides Paenibacillus peoriae, which produces VOCs with plant growth-promoting effects and broad-spectrum antifungal activity against plant-pathogenic fungi. Our study provides a more comprehensive, new VOC component analysis method and explains how MVOCs promote plant growth through transcriptome analysis. This will greatly increase our understanding of MVOC applications as a model for other MVOC research.
Collapse
Affiliation(s)
- Kun Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Ziyan Lin
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Jin Dou
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Jing Feng
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
12
|
Hallsworth JE, Udaondo Z, Pedrós‐Alió C, Höfer J, Benison KC, Lloyd KG, Cordero RJB, de Campos CBL, Yakimov MM, Amils R. Scientific novelty beyond the experiment. Microb Biotechnol 2023; 16:1131-1173. [PMID: 36786388 PMCID: PMC10221578 DOI: 10.1111/1751-7915.14222] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
Practical experiments drive important scientific discoveries in biology, but theory-based research studies also contribute novel-sometimes paradigm-changing-findings. Here, we appraise the roles of theory-based approaches focusing on the experiment-dominated wet-biology research areas of microbial growth and survival, cell physiology, host-pathogen interactions, and competitive or symbiotic interactions. Additional examples relate to analyses of genome-sequence data, climate change and planetary health, habitability, and astrobiology. We assess the importance of thought at each step of the research process; the roles of natural philosophy, and inconsistencies in logic and language, as drivers of scientific progress; the value of thought experiments; the use and limitations of artificial intelligence technologies, including their potential for interdisciplinary and transdisciplinary research; and other instances when theory is the most-direct and most-scientifically robust route to scientific novelty including the development of techniques for practical experimentation or fieldwork. We highlight the intrinsic need for human engagement in scientific innovation, an issue pertinent to the ongoing controversy over papers authored using/authored by artificial intelligence (such as the large language model/chatbot ChatGPT). Other issues discussed are the way in which aspects of language can bias thinking towards the spatial rather than the temporal (and how this biased thinking can lead to skewed scientific terminology); receptivity to research that is non-mainstream; and the importance of theory-based science in education and epistemology. Whereas we briefly highlight classic works (those by Oakes Ames, Francis H.C. Crick and James D. Watson, Charles R. Darwin, Albert Einstein, James E. Lovelock, Lynn Margulis, Gilbert Ryle, Erwin R.J.A. Schrödinger, Alan M. Turing, and others), the focus is on microbiology studies that are more-recent, discussing these in the context of the scientific process and the types of scientific novelty that they represent. These include several studies carried out during the 2020 to 2022 lockdowns of the COVID-19 pandemic when access to research laboratories was disallowed (or limited). We interviewed the authors of some of the featured microbiology-related papers and-although we ourselves are involved in laboratory experiments and practical fieldwork-also drew from our own research experiences showing that such studies can not only produce new scientific findings but can also transcend barriers between disciplines, act counter to scientific reductionism, integrate biological data across different timescales and levels of complexity, and circumvent constraints imposed by practical techniques. In relation to urgent research needs, we believe that climate change and other global challenges may require approaches beyond the experiment.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | - Zulema Udaondo
- Department of Biomedical InformaticsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Carlos Pedrós‐Alió
- Department of Systems BiologyCentro Nacional de Biotecnología (CSIC)MadridSpain
| | - Juan Höfer
- Escuela de Ciencias del MarPontificia Universidad Católica de ValparaísoValparaísoChile
| | - Kathleen C. Benison
- Department of Geology and GeographyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Karen G. Lloyd
- Microbiology DepartmentUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Radamés J. B. Cordero
- Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Claudia B. L. de Campos
- Institute of Science and TechnologyUniversidade Federal de Sao Paulo (UNIFESP)São José dos CamposSPBrazil
| | | | - Ricardo Amils
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Nicolás Cabrera n° 1, Universidad Autónoma de MadridMadridSpain
- Department of Planetology and HabitabilityCentro de Astrobiología (INTA‐CSIC)Torrejón de ArdozSpain
| |
Collapse
|
13
|
Torres-Ortega R, Guillén-Alonso H, Alcalde-Vázquez R, Ramírez-Chávez E, Molina-Torres J, Winkler R. In Vivo Low-Temperature Plasma Ionization Mass Spectrometry (LTP-MS) Reveals Regulation of 6-Pentyl-2H-Pyran-2-One (6-PP) as a Physiological Variable during Plant-Fungal Interaction. Metabolites 2022; 12:metabo12121231. [PMID: 36557269 PMCID: PMC9783819 DOI: 10.3390/metabo12121231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Volatile organic compounds (VOCs) comprises a broad class of small molecules (up to ~300 g/mol) produced by biological and non-biological sources. VOCs play a vital role in an organism's metabolism during its growth, defense, and reproduction. The well-known 6-pentyl-α-pyrone (6-PP) molecule is an example of a major volatile biosynthesized by Trichoderma atroviride that modulates the expression of PIN auxin-transport proteins in primary roots of Arabidopsis thaliana during their relationship. Their beneficial relation includes lateral root formation, defense induction, and increased plant biomass production. The role of 6-PP has been widely studied due to its relevance in this cross-kingdom relationship. Conventional VOCs measurements are often destructive; samples require further preparation, and the time resolution is low (around hours). Some techniques enable at-line or real-time analyses but are highly selective to defined compounds. Due to these technical constraints, it is difficult to acquire relevant information about the dynamics of VOCs in biological systems. Low-temperature plasma (LTP) ionization allows the analysis of a wide range of VOCs by mass spectrometry (MS). In addition, LTP-MS requires no sample preparation, is solvent-free, and enables the detection of 6-PP faster than conventional analytical methods. Applying static statistical methods such as Principal Component Analysis (PCA) and Discriminant Factorial Analysis (DFA) leads to a loss of information since the biological systems are dynamic. Thus, we applied a time series analysis to find patterns in the signal changes. Our results indicate that the 6-PP signal is constitutively emitted by T. atroviride only; the signal shows high skewness and kurtosis. In A. thaliana grown alone, no signal corresponding to 6-PP is detected above the white noise level. However, during T. atroviride-A. thaliana interaction, the signal performance showed reduced skewness and kurtosis with high autocorrelation. These results suggest that 6-PP is a physiological variable that promotes homeostasis during the plant-fungal relationship. Although the molecular mechanism of this cross-kingdom control is still unknown, our study indicates that 6-PP has to be regulated by A. thaliana during their interaction.
Collapse
Affiliation(s)
- Rosina Torres-Ortega
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36824, Mexico
- UGA-Langebio, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| | - Héctor Guillén-Alonso
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36824, Mexico
- UGA-Langebio, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
- Department of Biochemical Engineering, Nacional Technological Institute, Celaya 38010, Mexico
| | - Raúl Alcalde-Vázquez
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36824, Mexico
- UGA-Langebio, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| | - Enrique Ramírez-Chávez
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36824, Mexico
| | - Jorge Molina-Torres
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36824, Mexico
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36824, Mexico
- UGA-Langebio, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
- Correspondence:
| |
Collapse
|
14
|
Zhang X, Lv H, Tian M, Dong Z, Fu Q, Sun J, Huang Q, Wang J. Colonization characteristics of fungi in Polygonum hydropipe L. and Polygonum lapathifolium L. and its effect on the content of active ingredients. FRONTIERS IN PLANT SCIENCE 2022; 13:984483. [PMID: 36247635 PMCID: PMC9554492 DOI: 10.3389/fpls.2022.984483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Polygonum hydropiper, is a plant of the Persicaria genus, which is commonly used to treat various diseases, including gastrointestinal disorders, neurological disorders, inflammation, and diarrhea. However, because of different local standards of P. hydropiper, people often confuse it with Polygonum lapathifolium L. and other closely related plants. This poses a serious threat to the safety and efficacy of the clinical use of P. hydropiper. This study aims to determine the six active ingredients of P. hydropiper and P. lapathifolium. Then the endophytic fungi and rhizosphere soil of the two species were sequenced by Illumina Miseq PE300. The results show significant differences between the community composition of the leaves, stems, and roots of the P. hydropiper and the P. lapathifolium in the same soil environment. Of the six secondary metabolites detected, five had significant differences between P. hydropiper and P. lapathifolium. Then, we evaluated the composition of the significantly different communities between P. hydropiper and P. lapathifolium. In the P. hydropiper, the relative abundance of differential communities in the leaves was highest, of which Cercospora dominated the differential communities in the leaves and stem; in the P. lapathifolium, the relative abundance of differential community in the stem was highest, and Cladosporium dominated the differential communities in the three compartments. By constructing the interaction network of P. hydropiper and P. lapathifolium and analyzing the network nodes, we found that the core community in P. hydropiper accounted for 87.59% of the total community, dominated by Cercospora; the core community of P. lapathifolium accounted for 19.81% of the total community, dominated by Sarocladium. Of these core communities, 23 were significantly associated with active ingredient content. Therefore, we believe that the community from Cercospora significantly interferes with recruiting fungal communities in P. hydropiper and affects the accumulation of secondary metabolites in the host plant. These results provide an essential foundation for the large-scale production of P. hydropiper. They indicate that by colonizing specific fungal communities, secondary metabolic characteristics of host plants can be helped to be shaped, which is an essential means for developing new medicinal plants.
Collapse
Affiliation(s)
- Xiaorui Zhang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyang Lv
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoying Tian
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaowei Dong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinwen Fu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jilin Sun
- Sichuan Fuzheng Pharmaceutical Co., Ltd., Chengdu, China
| | - Qinwan Huang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Marone MP, Campanari MFZ, Raya FT, Pereira GAG, Carazzolle MF. Fungal communities represent the majority of root-specific transcripts in the transcriptomes of Agave plants grown in semiarid regions. PeerJ 2022; 10:e13252. [PMID: 35529479 PMCID: PMC9070324 DOI: 10.7717/peerj.13252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/21/2022] [Indexed: 01/13/2023] Open
Abstract
Agave plants present drought resistance mechanisms, commercial applications, and potential for bioenergy production. Currently, Agave species are used to produce alcoholic beverages and sisal fibers in semi-arid regions, mainly in Mexico and Brazil. Because of their high productivities, low lignin content, and high shoot-to-root ratio, agaves show potential as biomass feedstock to bioenergy production in marginal areas. Plants host many microorganisms and understanding their metabolism can inform biotechnological purposes. Here, we identify and characterize fungal transcripts found in three fiber-producing agave cultivars (Agave fourcroydes, A. sisalana, and hybrid 11648). We used leaf, stem, and root samples collected from the agave germplasm bank located in the state of Paraiba, in the Brazilian semiarid region, which has faced irregular precipitation periods. We used data from a de novo assembled transcriptome assembly (all tissues together). Regardless of the cultivar, around 10% of the transcripts mapped to fungi. Surprisingly, most root-specific transcripts were fungal (58%); of these around 64% were identified as Ascomycota and 28% as Basidiomycota in the three communities. Transcripts that code for heat shock proteins (HSPs) and enzymes involved in transport across the membrane in Ascomycota and Basidiomycota, abounded in libraries generated from the three cultivars. Indeed, among the most expressed transcripts, many were annotated as HSPs, which appear involved in abiotic stress resistance. Most HSPs expressed by Ascomycota are small HSPs, highly related to dealing with temperature stresses. Also, some KEGG pathways suggest interaction with the roots, related to transport to outside the cell, such as exosome (present in the three Ascomycota communities) and membrane trafficking, which were further investigated. We also found chitinases among secreted CAZymes, that can be related to pathogen control. We anticipate that our results can provide a starting point to the study of the potential uses of agaves' fungi as biotechnological tools.
Collapse
Affiliation(s)
- Marina Püpke Marone
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Fabio Trigo Raya
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | - Gonçalo Amarante Guimarães Pereira
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil,Center for Computing and Engineering Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Marcelo Falsarella Carazzolle
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil,Center for Computing and Engineering Sciences, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
16
|
MoBiMS: A modular miniature mass analyzer for the real-time monitoring of gases and volatile compounds in biological systems. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Jiang L, Lee MH, Kim CY, Kim SW, Kim PI, Min SR, Lee J. Plant Growth Promotion by Two Volatile Organic Compounds Emitted From the Fungus Cladosporium halotolerans NGPF1. FRONTIERS IN PLANT SCIENCE 2021; 12:794349. [PMID: 34925431 PMCID: PMC8678569 DOI: 10.3389/fpls.2021.794349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Microbial volatiles have beneficial roles in the agricultural ecological system, enhancing plant growth and inducing systemic resistance against plant pathogens without being hazardous to the environment. The interactions of plant and fungal volatiles have been extensively studied, but there is limited research specifically elucidating the effects of distinct volatile organic compounds (VOCs) on plant growth promotion. The current study was conducted to investigate the impact of VOCs from Cladosporium halotolerans NGPF1 on plant growth, and to elucidate the mechanisms for the plant growth-promoting (PGP) activity of these VOCs. The VOCs from C. halotolerans NGPF1 significantly promoted plant growth compared with the control, and this PGP activity of the VOCs was culture medium-dependent. Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) identified two VOC structures with profiles that differed depending on the culture medium. The two compounds that were only produced in potato dextrose (PD) medium were identified as 2-methyl-butanal and 3-methyl-butanal, and both modulated plant growth promotion and root system development. The PGP effects of the identified synthetic compounds were analyzed individually and in blends using N. benthamiana plants. A blend of the two VOCs enhanced growth promotion and root system development compared with the individual compounds. Furthermore, real-time PCR revealed markedly increased expression of genes involved in auxin, expansin, and gibberellin biosynthesis and metabolism in plant leaves exposed to the two volatile blends, while cytokinin and ethylene expression levels were decreased or similar in comparison with the control. These findings demonstrate that naturally occurring fungal VOCs can induce plant growth promotion and provide new insights into the mechanism of PGP activity. The application of stimulatory volatiles for growth enhancement could be used in the agricultural industry to increase crop yield.
Collapse
Affiliation(s)
- Lingmin Jiang
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, South Korea
| | - Myoung Hui Lee
- Wheat Research team, National Institute of Crop Science, Rural Development Administration, Wanju, South Korea
| | - Cha Young Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, South Korea
| | - Suk Weon Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, South Korea
| | - Pyoung Il Kim
- Center for Industrialization of Agricultural and Livestock Microorganisms (CIALM), Jeongeup, South Korea
| | - Sung Ran Min
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jiyoung Lee
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, South Korea
| |
Collapse
|
18
|
Ferreira-Silva A, Hughes FM, Rosa CA, Rosa LH. Higher turnover of endophytic fungal assemblages in the tissues of globose cactus Melocactus ernestii from Brazilian semi-arid biome. Symbiosis 2021. [DOI: 10.1007/s13199-021-00795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Timmis K, Ramos JL. The soil crisis: the need to treat as a global health problem and the pivotal role of microbes in prophylaxis and therapy. Microb Biotechnol 2021; 14:769-797. [PMID: 33751840 PMCID: PMC8085983 DOI: 10.1111/1751-7915.13771] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Soil provides a multitude of services that are essential to a healthily functioning biosphere and continuity of the human race, such as feeding the growing human population and the sequestration of carbon needed to counteract global warming. Healthy soil availability is the limiting parameter in the provision of a number of these services. As a result of anthropogenic abuses, and natural and global warming-promoted extreme weather events, Planet Earth is currently experiencing an unprecedented crisis of soil deterioration, desertification and erosive loss that increasingly prejudices the services it provides. Such services are pivotal to the Sustainability Development Goals formulated by the United Nations. Immediate and coordinated action on a global scale is urgently required to slow and ultimately reverse the loss of healthy soils. Despite the 'dirt-dust', non-vital appearance of soil, it is a highly dynamic living entity, whose life is overwhelmingly microbial. The soil microbiota, which constitutes the greatest reservoir and donor of microbial diversity on Earth, acts as a vast bioreactor, mediating a myriad of chemical reactions that turn the biogeochemical cycles, recycle wastes, purify water, and underpin the multitude of other services soil provides. Fuelling the belowground microbial bioreactor is the aboveground plant and photosynthetic surface microbial life which captures solar energy, fixes inorganic CO2 to organic carbon, and channels fixed carbon and energy into soil. In order to muster an effective response to the crisis, to avoid further deterioration, and to restore unhealthy soils, we need a new and coherent approach, namely to deal with soils worldwide as patients in need of health care and create (i) a public health system for development of effective policies for land use, conservation, restoration, recommendations of prophylactic measures, monitoring and identification of problems (epidemiology), organizing crisis responses, etc., and (ii) a healthcare system charged with soil care: the promotion of good practices, implementation of prophylaxis measures, and institution of therapies for treatment of unhealthy soils and restoration of drylands. These systems need to be national but there is also a desperate need for international coordination. To enable development of effective, evidence-based strategies that will underpin the efforts of soil healthcare systems, a substantial investment in wide-ranging interdisciplinary research on soil health and disease is mandatory. This must lead to a level of understanding of the soil:biota functionalities underlying key ecosystem services that enables formulation of effective diagnosis-prophylaxis-therapy pathways for sustainable use, protection and restoration of different types of soil resources in different climatic zones. These conservation-regenerative-restorative measures need to be complemented by an educative-political-economic-legislative framework that provides incentives encouraging soil care: knowledge, policy, economic and others, and laws which promote international adherence to the principles of restorative soil management. And: we must all be engaged in improving soil health; everyone has a duty of care (https://www.bbc.co.uk/ideas/videos/why-soil-is-one-of-the-most-amazing-things-on-eart/p090cf64). Creative application of microbes, microbiomes and microbial biotechnology will be central to the successful operation of the healthcare systems.
Collapse
Affiliation(s)
- Kenneth Timmis
- Institute of MicrobiologyTechnical University BraunschweigBraunschweigGermany
| | | |
Collapse
|