1
|
Weng MM, Klempay B, Bowman JS, Fisher L, Camplong C, Doran PT, Rundell S, Glass JB, Dutta A, Pontefract A, Bartlett DH, Schmidt B, Johnson SS. Light cues drive community-wide transcriptional shifts in the hypersaline South Bay Salt Works. Commun Biol 2025; 8:450. [PMID: 40097557 PMCID: PMC11914471 DOI: 10.1038/s42003-025-07855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
The transition from day to night brings sweeping change to both environments and the organisms within them. Diel shifts in gene expression have been documented across all domains of life but remain understudied in microbial communities, particularly those in extreme environments where small changes may have rippling effects on resource availability. In hypersaline environments, many prominent taxa are photoheterotrophs that rely on organic carbon for growth but can also generate significant ATP via light-powered rhodopsins. Previous research demonstrated a significant response to light intensity shifts in the model halophile Halobacterium salinarum, but these cycles have rarely been explored in situ. Here, we examined genome-resolved differential expression in a hypersaline saltern (water activity (aw) ≅ 0.83, total dissolved solids = 250.7 g L-1) throughout a 24-h period. We found increased transcription of genes related to phototrophy and anabolic metabolic processes during the day, while genes related to aerobic respiration and oxidative stress were upregulated at night. Substantiating these results with a chemostat culture of the environmentally abundant halophilic bacterium Salinibacter ruber revealed similar transcriptional upregulation of genes associated with aerobic respiration under dark conditions. These results describe the potential for light-driven changes in oxygen use across both a natural hypersaline environment and a pure culture.
Collapse
Affiliation(s)
| | - Benjamin Klempay
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Jeff S Bowman
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Luke Fisher
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | | | | | | | | | - Avishek Dutta
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
- University of Georgia, Athens, GA, USA
| | | | | | | | | |
Collapse
|
2
|
Scelfo G, Serrano-Tari P, Raffaelli R, Vicari F, Oller I, Cipollina A, Tamburini A, Micale G. The Operational Performance of an Ultrafiltration Pilot Unit for the Treatment of Ultra-Concentrated Brines. MEMBRANES 2024; 14:276. [PMID: 39728726 DOI: 10.3390/membranes14120276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
The valorization of ultra-concentrated seawater brines, named bitterns, requires preliminary purification processes, such as membrane filtration, before they can be fully exploited. This study investigates the performance of an ultrafiltration pilot plant aimed at separating organic matter and large particles from real bitterns. An empirical model for the bittern viscosity was developed to better characterize the membrane. Distinct variations in permeability, fouling resistance and rejection coefficient were observed under operational pressures ranging from 2 to 4 bar. Working at low pressure (2 bar), the pilot plant achieves permeability and rejection coefficient values of 17 L/m2hbar and 95%, respectively. Foulant behavior was characterized by determining a "fouling resistance", obtaining an average value of 1013 m-1. Tests with three distinct bittern samples were conducted to assess the influence of chemical composition and organic matter content on membrane permeability and fouling characteristics. The collected data enabled a comprehensive characterization of the ultrafiltration pilot unit working with this particular saline feed solution, which has very high technical-economic potential.
Collapse
Affiliation(s)
- Giuseppe Scelfo
- Department of Engineering, Università degli Studi di Palermo, 90128 Palermo, Italy
- ResourSEAs SrL, 90141 Palermo, Italy
| | - Paula Serrano-Tari
- CIESOL (Centro de Investigaciones de la Energía Solar), Join Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
- Plataforma Solar de Almería-CIEMAT, 04200 Tabernas, Spain
| | - Ritamaria Raffaelli
- Department of Engineering, Università degli Studi di Palermo, 90128 Palermo, Italy
| | | | - Isabel Oller
- CIESOL (Centro de Investigaciones de la Energía Solar), Join Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
- Plataforma Solar de Almería-CIEMAT, 04200 Tabernas, Spain
| | - Andrea Cipollina
- Department of Engineering, Università degli Studi di Palermo, 90128 Palermo, Italy
| | - Alessandro Tamburini
- Department of Engineering, Università degli Studi di Palermo, 90128 Palermo, Italy
| | - Giorgio Micale
- Department of Engineering, Università degli Studi di Palermo, 90128 Palermo, Italy
| |
Collapse
|
3
|
McKaig JM, Kim M, Carr CE. Translation as a Biosignature. ASTROBIOLOGY 2024; 24:1257-1274. [PMID: 39611974 DOI: 10.1089/ast.2023.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Life on Earth relies on mechanisms to store heritable information and translate this information into cellular machinery required for biological activity. In all known life, storage, regulation, and translation are provided by DNA, RNA, and ribosomes. Life beyond Earth, even if ancestrally or chemically distinct from life as we know it, may utilize similar structures: it has been proposed that charged linear polymers analogous to nucleic acids may be responsible for storage and regulation of genetic information in nonterran biochemical systems. We further propose that a ribosome-like structure may also exist in such a system, due to the evolutionary advantages of separating heritability from cellular machinery. In this study, we use a solid-state nanopore to detect DNA, RNA, and ribosomes, and we demonstrate that machine learning can distinguish between biomolecule samples and accurately classify new data. This work is intended to serve as a proof of principal that such biosignatures (i.e., informational polymers or translation apparatuses) could be detected, for example, as part of future missions targeting extant life on Ocean Worlds. A negative detection does not imply the absence of life; however, the detection of ribosome-like structures could provide a robust and sensitive method to seek extant life in combination with other methods. Key Words: RNA world-Darwinian evolution-Nucleic acids-Agnostic life detection. Astrobiology 24, 1257-1274.
Collapse
Affiliation(s)
- Jordan M McKaig
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - MinGyu Kim
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Christopher E Carr
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Davila Aleman FD, Bautista MA, McCalder J, Jobin K, Murphy SMC, Else B, Hubert CRJ. Novel oil-associated bacteria in Arctic seawater exposed to different nutrient biostimulation regimes. Environ Microbiol 2024; 26:e16688. [PMID: 39414575 DOI: 10.1111/1462-2920.16688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 10/18/2024]
Abstract
The Arctic Ocean is an oligotrophic ecosystem facing escalating threats of oil spills as ship traffic increases owing to climate change-induced sea ice retreat. Biostimulation is an oil spill mitigation strategy that involves introducing bioavailable nutrients to enhance crude oil biodegradation by endemic oil-degrading microbes. For bioremediation to offer a viable response for future oil spill mitigation in extreme Arctic conditions, a better understanding of the effects of nutrient addition on Arctic marine microorganisms is needed. Controlled experiments tracking microbial populations revealed a significant decline in community diversity along with changes in microbial community composition. Notably, differential abundance analysis highlighted the significant enrichment of the unexpected genera Lacinutrix, Halarcobacter and Candidatus Pseudothioglobus. These groups are not normally associated with hydrocarbon biodegradation, despite closer inspection of genomes from closely related isolates confirming the potential for hydrocarbon metabolism. Co-occurrence analysis further revealed significant associations between these genera and well-known hydrocarbon-degrading bacteria, suggesting potential synergistic interactions during oil biodegradation. While these findings broaden our understanding of how biostimulation promotes enrichment of endemic hydrocarbon-degrading genera, further research is needed to fully assess the suitability of nutrient addition as a stand-alone oil spill mitigation strategy in this sensitive and remote polar marine ecosystem.
Collapse
Affiliation(s)
| | - María A Bautista
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Janine McCalder
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Kaiden Jobin
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Sean M C Murphy
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Brent Else
- Department of Geography, University of Calgary, Calgary, Alberta, Canada
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Oren A. Novel insights into the diversity of halophilic microorganisms and their functioning in hypersaline ecosystems. NPJ BIODIVERSITY 2024; 3:18. [PMID: 39242694 PMCID: PMC11332174 DOI: 10.1038/s44185-024-00050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/25/2024] [Indexed: 09/09/2024]
Abstract
Our understanding of the microbial diversity inhabiting hypersaline environments, here defined as containing >100-150 g/L salts, has greatly increased in the past five years. Halophiles are found in each of the three domains of life. Many novel types have been cultivated, and metagenomics and other cultivation-independent approaches have revealed the existence of many previously unrecognized lineages. Syntrophic interactions between different phylogenetic lineages have been discovered, such as the symbiosis between members of the archaeal class Halobacteria and the 'Candidatus Nanohalarchaeota'. Metagenomics techniques also have shed light on the biogeography of halophiles, especially of the genera Salinibacter (Bacteria) and Haloquadratum and Halorubrum (Archaea). Exploration of the microbiome of hypersaline lakes led to the discovery of novel types of metabolism previously unknown to occur at high salt concentrations. Studies of environments with high concentrations of chaotropic ions such as magnesium, calcium, and lithium have refined our understanding of the limits of life.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel.
| |
Collapse
|
6
|
Pozarycki C, Seaton KM, C Vincent E, Novak Sanders C, Nuñez N, Castillo M, Ingall E, Klempay B, Pontefract A, Fisher LA, Paris ER, Buessecker S, Alansson NB, Carr CE, Doran PT, Bowman JS, Schmidt BE, Stockton AM. Biosignature Molecules Accumulate and Persist in Evaporitic Brines: Implications for Planetary Exploration. ASTROBIOLOGY 2024; 24:795-812. [PMID: 39159437 DOI: 10.1089/ast.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The abundance of potentially habitable hypersaline environments in our solar system compels us to understand the impacts of high-salt matrices and brine dynamics on biosignature detection efforts. We identified and quantified organic compounds in brines from South Bay Salt Works (SBSW), where evapoconcentration of ocean water enables exploration of the impact of NaCl- and MgCl2-dominated brines on the detection of potential biosignature molecules. In SBSW, organic biosignature abundance and distribution are likely influenced by evapoconcentration, osmolyte accumulation, and preservation effects. Bioluminescence assays show that adenosine triphosphate (ATP) concentrations are higher in NaCl-rich, low water activity (aw) samples (<0.85) from SBSW. This is consistent with the accumulation and preservation of ATP at low aw as described in past laboratory studies. The water-soluble small organic molecule inventory was determined by using microchip capillary electrophoresis paired with high-resolution mass spectrometry (µCE-HRMS). We analyzed the relative distribution of proteinogenic amino acids with a recently developed quantitative method using CE-separation and laser-induced fluorescence (LIF) detection of amino acids in hypersaline brines. Salinity trends for dissolved free amino acids were consistent with amino acid residue abundance determined from the proteome of the microbial community predicted from metagenomic data. This highlights a tangible connection up and down the "-omics" ladder across changing geochemical conditions. The detection of water-soluble organic compounds, specifically proteinogenic amino acids at high abundance (>7 mM) in concentrated brines, demonstrates that potential organic biomarkers accumulate at hypersaline sites and suggests the possibility of long-term preservation. The detection of such molecules in high abundance when using diverse analytical tools appropriate for spacecraft suggests that life detection within hypersaline environments, such as evaporates on Mars and the surface or subsurface brines of ocean world Europa, is plausible and argues such environments should be a high priority for future exploration. Key Words: Salts-Analytical chemistry-Amino acids-Biosignatures-Capillary electrophoresis-Preservation. Astrobiology 24, 795-812.
Collapse
Affiliation(s)
- Chad Pozarycki
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kenneth M Seaton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Emily C Vincent
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Carlie Novak Sanders
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nickie Nuñez
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mariah Castillo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ellery Ingall
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Benjamin Klempay
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | | | - Luke A Fisher
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | - Emily R Paris
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Steffen Buessecker
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Nikolas B Alansson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Christopher E Carr
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter T Doran
- Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jeff S Bowman
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | - Britney E Schmidt
- Departments of Astronomy and Earth & Atmospheric Sciences, Cornell University, Ithaca, New York, USA
| | - Amanda M Stockton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Paris ER, Arandia-Gorostidi N, Klempay B, Bowman JS, Pontefract A, Elbon CE, Glass JB, Ingall ED, Doran PT, Som SM, Schmidt BE, Dekas AE. Single-cell analysis in hypersaline brines predicts a water-activity limit of microbial anabolic activity. SCIENCE ADVANCES 2023; 9:eadj3594. [PMID: 38134283 PMCID: PMC10745694 DOI: 10.1126/sciadv.adj3594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Hypersaline brines provide excellent opportunities to study extreme microbial life. Here, we investigated anabolic activity in nearly 6000 individual cells from solar saltern sites with water activities (aw) ranging from 0.982 to 0.409 (seawater to extreme brine). Average anabolic activity decreased exponentially with aw, with nuanced trends evident at the single-cell level: The proportion of active cells remained high (>50%) even after NaCl saturation, and subsets of cells spiked in activity as aw decreased. Intracommunity heterogeneity in activity increased as seawater transitioned to brine, suggesting increased phenotypic heterogeneity with increased physiological stress. No microbial activity was detected in the 0.409-aw brine (an MgCl2-dominated site) despite the presence of cell-like structures. Extrapolating our data, we predict an aw limit for detectable anabolic activity of 0.540, which is beyond the currently accepted limit of life based on cell division. This work demonstrates the utility of single-cell, metabolism-based techniques for detecting active life and expands the potential habitable space on Earth and beyond.
Collapse
Affiliation(s)
- Emily R. Paris
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
| | | | - Benjamin Klempay
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, USA
| | - Jeff S. Bowman
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, USA
| | | | - Claire E. Elbon
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jennifer B. Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ellery D. Ingall
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Peter T. Doran
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sanjoy M. Som
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Britney E. Schmidt
- Departments of Astronomy and Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Anne E. Dekas
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Seaton KM, Pozarycki CI, Nuñez N, Stockton AM. A Robust Capillary Electrophoresis with Laser-Induced Fluorescence Detection (CE-LIF) Method for Quantitative Compositional Analysis of Trace Amino Acids in Hypersaline Samples. ACS EARTH & SPACE CHEMISTRY 2023; 7:2214-2221. [PMID: 38026810 PMCID: PMC10658621 DOI: 10.1021/acsearthspacechem.3c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023]
Abstract
The search for life in our solar system can be enabled by the characterization of extreme environments representing conditions expected on other planets within our solar system. Molecular abundances observed in these environments help establish instrument design requirements, including limits of detection and pH/salt tolerance, and may be used for validation of proposed planetary science instrumentation. Here, we optimize capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) separations for low limit of detection quantitative compositional analysis of amino acids in hypersaline samples using carboxyfluorescein succinimidyl ester (CFSE) as the amine-reactive fluorescent probe. Two methods were optimized for identification and quantification of proteinogenic amino acids, those with and those without acidic side chains, with limits of detection as low as 250 pM, improving on previous CFSE-amino acid CE-LIF methods by an order of magnitude. The resilience of the method to samples with high concentrations of Mg2+ (>4 M diluted to >0.4 M for analysis) is demonstrated on a sample collected from the salt harvesting facility South Bay Salt Works in San Diego, CA, demonstrating the highest Mg2+ tolerance for CE-LIF methods used in amino acid analyses to date. This advancement enables the rapid and robust analysis of trace amino acids and the search for biosignatures in hypersaline systems.
Collapse
Affiliation(s)
- K. Marshall Seaton
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chad I. Pozarycki
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nickie Nuñez
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Amanda M. Stockton
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | | |
Collapse
|
9
|
Buffo JJ, Brown EK, Pontefract A, Schmidt BE, Klempay B, Lawrence J, Bowman J, Grantham M, Glass JB, Plattner T, Chivers C, Doran P. The Bioburden and Ionic Composition of Hypersaline Lake Ices: Novel Habitats on Earth and Their Astrobiological Implications. ASTROBIOLOGY 2022; 22:962-980. [PMID: 35671513 DOI: 10.1089/ast.2021.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We present thermophysical, biological, and chemical observations of ice and brine samples from five compositionally diverse hypersaline lakes in British Columbia's interior plateau. Possessing a spectrum of magnesium, sodium, sulfate, carbonate, and chloride salts, these low-temperature high-salinity lakes are analogs for planetary ice-brine environments, including the ice shells of Europa and Enceladus and ice-brine systems on Mars. As such, understanding the thermodynamics and biogeochemistry of these systems can provide insights into the evolution, habitability, and detectability of high-priority astrobiology targets. We show that biomass is typically concentrated in a layer near the base of the ice cover, but that chemical and biological impurities are present throughout the ice. Coupling bioburden, ionic concentration, and seasonal temperature measurements, we demonstrate that impurity entrainment in the ice is directly correlated to ice formation rate and parent fluid composition. We highlight unique phenomena, including brine supercooling, salt hydrate precipitation, and internal brine layers in the ice cover, important processes to be considered for planetary ice-brine environments. These systems can be leveraged to constrain the distribution, longevity, and habitability of low-temperature solar system brines-relevant to interpreting spacecraft data and planning future missions in the lens of both planetary exploration and planetary protection.
Collapse
Affiliation(s)
- Jacob J Buffo
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Emma K Brown
- School of Earth and Space Exploration, Arizona State University, Pheonix, AZ, USA
| | | | | | | | - Justin Lawrence
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jeff Bowman
- Scripps Institution of Oceanography, La Jolla, CA, USA
| | - Meg Grantham
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jennifer B Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Taylor Plattner
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Chase Chivers
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter Doran
- Department of Geology and Geophysics, Louisiung State University, Baton Rouge, LA, USA
| |
Collapse
|
10
|
Abstract
Microbial taxonomic marker gene studies using 16S rRNA gene amplicon sequencing provide an understanding of microbial community structure and diversity; however, it can be difficult to infer the functionality of microbes in the ecosystem from these data. Here, we show how to predict metabolism from phylogeny using the paprica pipeline. This approach allows resolution at the strain and species level for select regions on the prokaryotic phylogenetic tree and provides an estimate of gene and metabolic pathway abundance. For complete details on the use and execution of this protocol, please refer to Erazo and Bowman (2021).
Collapse
Affiliation(s)
- Natalia G. Erazo
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
- Center for Marine Biodiversity and Conservation, UC San Diego, La Jolla, CA, USA
- Corresponding author
| | - Avishek Dutta
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Jeff S. Bowman
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
- Center for Marine Biodiversity and Conservation, UC San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
11
|
Dekas AE. Quantifying Microbial Activity In Situ: the Link between Cells and Cycles. mSystems 2021; 6:e0075821. [PMID: 34463583 DOI: 10.1128/msystems.00758-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metagenomic sequencing of environmental samples has dramatically expanded our knowledge of microbial taxonomic and metabolic diversity and suggests metabolic interdependence is widespread. However, translating these insights into knowledge of ecosystem function and, therefore, implications for local and global chemistry, remains a challenge. In this commentary, I argue that making direct measurements of microbial activity in situ is an essential step to confirm gene-based hypotheses of microbial physiology and bridge advances in microbial ecology with a predicative understanding of global chemistry and climate. Making these measurements across a range of spatial scales and experimentally manipulated conditions contributes to a process-based understanding and, therefore, more robust predictions of how activity will respond to changing environmental conditions. I discuss recent advancements in quantifying microbial activity in situ and highlight several lines of research in marine microbiology that leverage complementary genomic and isotopic methods to connect microbes and global chemistry.
Collapse
Affiliation(s)
- Anne E Dekas
- Earth System Science Department, Stanford University, Stanford, California, USA
| |
Collapse
|
12
|
Hallsworth JE, Mancinelli RL, Conley CA, Dallas TD, Rinaldi T, Davila AF, Benison KC, Rapoport A, Cavalazzi B, Selbmann L, Changela H, Westall F, Yakimov MM, Amils R, Madigan MT. Astrobiology of life on Earth. Environ Microbiol 2021; 23:3335-3344. [PMID: 33817931 DOI: 10.1111/1462-2920.15499] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/29/2022]
Abstract
Astrobiology is mistakenly regarded by some as a field confined to studies of life beyond Earth. Here, we consider life on Earth through an astrobiological lens. Whereas classical studies of microbiology historically focused on various anthropocentric sub-fields (such as fermented foods or commensals and pathogens of crop plants, livestock and humans), addressing key biological questions via astrobiological approaches can further our understanding of all life on Earth. We highlight potential implications of this approach through the articles in this Environmental Microbiology special issue 'Ecophysiology of Extremophiles'. They report on the microbiology of places/processes including low-temperature environments and chemically diverse saline- and hypersaline habitats; aspects of sulphur metabolism in hypersaline lakes, dysoxic marine waters, and thermal acidic springs; biology of extremophile viruses; the survival of terrestrial extremophiles on the surface of Mars; biological soils crusts and rock-associated microbes of deserts; subsurface and deep biosphere, including a salticle formed within Triassic halite; and interactions of microbes with igneous and sedimentary rocks. These studies, some of which we highlight here, contribute to our understanding of the spatiotemporal reach of Earth'sfunctional biosphere, and the tenacity of terrestrial life. Their findings will help set the stage for future work focused on the constraints for life, and how organisms adapt and evolve to circumvent these constraints.
Collapse
Affiliation(s)
- John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Rocco L Mancinelli
- Bay Area Environmental Research Institute, NASA Ames Research Center, Mountain View, CA, 94035, USA
| | | | - Tiffany D Dallas
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Teresa Rinaldi
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, 00185, Italy
| | | | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV, 26506-6300, USA
| | - Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, Riga, LV-1004, Latvia
| | - Barbara Cavalazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, 40126, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.,Italian Antarctic National Museum (MNA), Mycological Section, Genoa, 16128, Italy
| | - Hitesh Changela
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.,Department of Earth and Planetary Science, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Frances Westall
- CNRS, Ctr Biophys Mol UPR 4301, Rue Charles Sadron, CS 80054, Orleans, F-45071, France
| | - Michail M Yakimov
- Institute of Marine Biological Resources and Biotechnology, IRBIM-CNR, Messina, 98122, Italy
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (CBMSO, CSICUAM), Cantoblanco, Madrid, 28049, Spain.,Centro de Astrobiología (CAB, INTA-CSIC), Torrejón de Ardoz, 28055, Spain
| | - Michael T Madigan
- School of Biological Sciences, Department of Microbiology, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|