1
|
Ma J, Liu J, Shi Y, Xie X, Chai A, Xiang S, Sun X, Li L, Li B, Fan T. Coating Seeds with Paenibacillus polymyxa ZF129 Microcapsule Suspension Enhanced Control Effect on Fusarium Root Rot and Promoted Seedling Growth in Cucumber. BIOLOGY 2025; 14:375. [PMID: 40282240 PMCID: PMC12025279 DOI: 10.3390/biology14040375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Fusarium root rot, a destructive soil-borne fungal disease, necessitates eco-friendly biocontrol strategies. This study developed a microbial seed-coating approach using the antagonistic strain Paenibacillus polymyxa ZF129, formulated into a microencapsulated powder (108 CFU/g) and a suspension (CS-ZF129). CS-ZF129 application enhanced cucumber resistance, achieving 46.30 ± 0.02% disease suppression while promoting root growth. The maximum increase in the fresh weight of the root in the promotion of rectangular growth was 47.16%. The colonization dynamics of ZF129 in the rhizosphere were systematically tracked, revealing its antagonistic correlation with Fusarium proliferation. An enzymatic activity analysis further uncovered the underlying regulatory mechanisms, demonstrating induced defense responses through pathogenesis-related protein activation. These findings highlight ZF129's dual functionality as a biocontrol agent and a plant growth promoter, offering a sustainable strategy against soil-borne pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Baoju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.M.); (J.L.)
| | - Tengfei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.M.); (J.L.)
| |
Collapse
|
2
|
Song Y, Wu Y, Chen L, Ruan L, Wan M, Liu B, He J, Zhang B. Paenibacillus mesotrionivorans sp. nov., a Mesotrione-Degrading Strain Isolated from Soil. Curr Microbiol 2025; 82:108. [PMID: 39890653 DOI: 10.1007/s00284-025-04086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
A Gram-stain-positive, facultatively anaerobic, motile with peritrichous flagella, and rod-shaped bacterium, designated as P15T, was isolated from an agricultural soil sample collected in Jiangxi Province, PR China. Strain P15T completely degraded 100 mg/L of mesotrione, a herbicide, within 48 h of incubation. Strain P15T grew at 15-42 °C (optimum 30 °C), pH 6.0-9.0 (optimum 7.0), and 0-4.0% (w/v) NaCl (optimum 1.0%). Strain P15T exhibited less than 93.3% 16S rRNA gene sequence similarity with type strains of genus Paenibacillus. In the phylogenetic tree based on 16S rRNA gene sequences, strain P15T was clustered in genus Paenibacillus and formed a subclade with P. cavernae C4-5T, P. contaminans CKOBP-6T, and P. doosanensis CAU 1005T. The major cellular fatty acids (≥ 5% of the total) were anteiso-C15:0, iso-C16:0, C14:0, C16:0, and iso-C14:0. The predominant respiratory quinone was MK-7. The major polar lipids were diphosphatidylglycerol, phosphatidylglycero, phosphatidylethanolamine, one unidentified glycolipid, one unidentified aminophosphoglycolipid, two unidentified aminophospholipids, two unidentified phospholipid, and two unidentified lipids. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid. The DNA G + C content was 53.9 mol%. Based on the phylogenetic, phenotypic, and chemotaxonomic characteristics, strain P15T represents a novel species within genus Paenibacillus, for which the name Paenibacillus mesotrionivorans sp. nov is proposed, with strain P15T (= MCCC 1K09191T = KCTC 43705T) as the type strain.
Collapse
Affiliation(s)
- Ye Song
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yan Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Leyao Chen
- School of Stomatology, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Luyao Ruan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Minglai Wan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bin Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Jian He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China.
- Agricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu Province, Nanjing, Jiangsu, 210095, People's Republic of China.
- National Collection of Agricultural Environmental Microbes (Jiangsu), Nanjing, Jiangsu, 210095, People's Republic of China.
| | - Baolong Zhang
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
3
|
Zheng T, Li M, Kong Z, Ji L, Fu X, Dai L, Kan J, Men Q, Wang H, Du B, Liu K, Mei X, Wang C. Identification, Genome Characterization, and Growth Optimization of Paenibacillus peoriae MHJL1 for Biocontrol and Growth Promotion of Cotton Seedlings. Microorganisms 2025; 13:261. [PMID: 40005628 PMCID: PMC11857793 DOI: 10.3390/microorganisms13020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Fusarium and verticillium wilt are the primary diseases affecting cotton plants, significantly reducing both the yield and quality of cotton. Paenibacillus spp. are crucial biocontrol strains for controlling plant diseases. In this study, Paenibacillus peoriae MHJL1, which could prevent the pathogenic fungi of fusarium and verticillium wilt and promote cotton growth, was isolated from the rhizosphere soil of cotton plants. Whole-genome analysis of strain MHJL1 identified 16 gene clusters for secondary metabolite synthesis, including fusaricidins with potent antifungal properties. By optimizing the fermentation process, the cell and spore numbers of MHJL1 were increased to 2.14 × 108 CFU/mL and 8.66 × 108 CFU/mL, respectively. Moreover, the antifungal ability of MHJL1 was also increased by 31.48%. In pot experiments conducted with healthy soil, the control rates for MHJL1 against fusarium and verticillium wilt were found to be 44.83% and 58.27%, respectively; in experiments using continuously cropped soil, the control rates were 55.22% against fusarium wilt and 48.46% against verticillium wilt. Our findings provide valuable insights for the biocontrol application and fermentation of P. peoriae MHJL1, while also contributing a new resource for the development of microbial agents.
Collapse
Affiliation(s)
- Tongtong Zheng
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia l Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (M.L.); (Z.K.); (L.D.); (B.D.); (K.L.)
| | - Min Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia l Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (M.L.); (Z.K.); (L.D.); (B.D.); (K.L.)
| | - Zhengnan Kong
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia l Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (M.L.); (Z.K.); (L.D.); (B.D.); (K.L.)
| | - Lei Ji
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (L.J.); (X.F.)
| | - Xiaowen Fu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (L.J.); (X.F.)
| | - Li Dai
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia l Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (M.L.); (Z.K.); (L.D.); (B.D.); (K.L.)
| | - Jizhen Kan
- Juxian Agricultural Technical Service Center, Rizhao Academy of Agricultural Science, Rizhao 276800, China; (J.K.); (Q.M.)
| | - Qingyong Men
- Juxian Agricultural Technical Service Center, Rizhao Academy of Agricultural Science, Rizhao 276800, China; (J.K.); (Q.M.)
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China;
| | - Binghai Du
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia l Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (M.L.); (Z.K.); (L.D.); (B.D.); (K.L.)
| | - Kai Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia l Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (M.L.); (Z.K.); (L.D.); (B.D.); (K.L.)
| | - Xiangui Mei
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia l Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (M.L.); (Z.K.); (L.D.); (B.D.); (K.L.)
| | - Chengqiang Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia l Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (M.L.); (Z.K.); (L.D.); (B.D.); (K.L.)
| |
Collapse
|
4
|
Dong Y, Gong J, Yang L, Jiang Q, Wen C, Zhang J, Yang R, Wang Y, Dai Y, Gao G, Li S, Cao Y, Ding W. Superiority of native seed core microbiomes in the suppression of bacterial wilt disease. Front Microbiol 2025; 15:1506059. [PMID: 39881988 PMCID: PMC11778171 DOI: 10.3389/fmicb.2024.1506059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Native endophytic microorganisms in tobacco seeds are closely related to their resistance to Ralstonia solanacearum (R. solanacearum) infections. However, the role of the native seed core microbiome in the suppression of bacterial wilt disease (BWD) remains underexplored. Methods The characteristics of endophytic bacterial communities in both resistant and susceptible tobacco varieties were characterized using high-throughput sequencing technology. Results This study found Paenibacillus as a potential microbial antagonist against BWD based on its significantly greater presence in BWD-resistant tobacco varieties, with a relative abundance that was 83.10% greater in the seeds of resistant tobacco than in those of susceptible varieties. Furthermore, a Paenibacillus strain identified as Paenibacillus odorifer 6036-R2A-26 (P. odorifer 26) was isolated from the seeds of the resistant variety. Following irrigation treatment with P. odorifer 26, the BWD index was reduced by 51.08%. Additionally, this strain exhibited significant growth-promoting effects on tobacco. It significantly increased the fresh weight of the tobacco plants by 30.26% in terms of aboveground weight, 37.75% in terms of underground weight, and 33.97% in terms of aboveground dry weight. This study highlights the critical role of Paenibacillus in tobacco seeds in the suppression of BWD, which may result from its antagonistic and growth-promoting properties. Discussion The results of this study revealed differences in the structural characteristics of endophytic bacterial communities between resistant and susceptible tobacco varieties, with groups such as Paenibacillus potentially playing significant roles in resisting BWD. These findings highlight the superiority of seed endophytic microorganisms. In the context of declining plant disease resistance and the spread of bacterial wilt, core endophytic microorganisms in seeds may emerge as a viable option for enhancing the productivity of agricultural ecosystems.
Collapse
Affiliation(s)
- Yanling Dong
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jie Gong
- Agricultural and Rural Affairs Committee of Fuling District, Chongqing, China
| | - Lei Yang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Qipeng Jiang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Chengzhi Wen
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jidan Zhang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Ruiyu Yang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yao Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yuhao Dai
- College of Plant Protection, Southwest University, Chongqing, China
| | - Gui Gao
- Qianxinan Tobacco Branch of Guizhou Tobacco Company, Xingyi, China
| | - Shili Li
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yi Cao
- Guizhou Academy of Tobacco Science, Guiyang, China
| | - Wei Ding
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Yuan P, Chen Z, Xu M, Cai W, Liu Z, Sun D. Microbial cell factories using Paenibacillus: status and perspectives. Crit Rev Biotechnol 2024; 44:1386-1402. [PMID: 38105503 DOI: 10.1080/07388551.2023.2289342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/03/2023] [Accepted: 04/22/2023] [Indexed: 12/19/2023]
Abstract
Considered a "Generally Recognized As Safe" (GRAS) bacterium, the plant growth-promoting rhizobacterium Paenibacillus has been widely applied in: agriculture, medicine, industry, and environmental remediation. Paenibacillus species not only accelerate plant growth and degrade toxic substances in wastewater and soil but also produce industrially-relevant enzymes and antimicrobial peptides. Due to a lack of genetic manipulation tools and methods, exploitation of the bioresources of naturally isolated Paenibacillus species has long been limited. Genetic manipulation tools and methods continue to improve in Paenibacillus, such as shuttle plasmids, promoters, and genetic tools of CRISPR. Furthermore, genetic transformation systems develop gradually, including: penicillin-mediated transformation, electroporation, and magnesium amino acid-mediated transformation. As genetic manipulation methods of homologous recombination and CRISPR-mediated editing system have developed gradually, Paenibacillus has come to be regarded as a promising microbial chassis for biomanufacturing, expanding its application scope, such as: industrial enzymes, bioremediation and bioadsorption, surfactants, and antibacterial agents. In this review, we describe the applications of Paenibacillus bioproducts, and then discuss recent advances and future challenges in the development of genetic manipulation systems in this genus. This work highlights the potential of Paenibacillus as a new microbial chassis for mining bioresources.
Collapse
Affiliation(s)
- Panhong Yuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Ziyan Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Mengtao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Wenfeng Cai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zhizhi Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Dobrzyński J, Naziębło A. Paenibacillus as a Biocontrol Agent for Fungal Phytopathogens: Is P. polymyxa the Only One Worth Attention? MICROBIAL ECOLOGY 2024; 87:134. [PMID: 39480531 PMCID: PMC11527970 DOI: 10.1007/s00248-024-02450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024]
Abstract
Control of fungal phytopathogens is a significant challenge in modern agriculture. The widespread use of chemical fungicides to control these pathogens often leads to environmental and food contamination. An eco-friendly alternative that can help reduce reliance on these chemicals is plant growth-promoting bacteria (PGPB), particularly those of the genus Paenibacillus, which appear to be highly effective. The review aims to summarize the existing knowledge on the potential of Paenibacillus spp. as fungal biocontrol agents, identify knowledge gaps, and answer whether other species of the genus Paenibacillus, in addition to Paenibacillus polymyxa, can also be effective biocontrol agents. Paenibacillus spp. can combat plant phytopathogens through various mechanisms, including the production of lipopeptides (such as fusaricidin, paenimyxin, and pelgipeptin), the induction of systemic resistance (ISR), hydrolytic enzymes (chitinase, cellulase, and glucanase), and volatile organic compounds. These properties enable Paenibacillus strains to suppress the growth of fungi such as Fusarium oxysporum, F. solani, Rhizoctonia solani, Botrytis cinerea, or Colletotrichum gloeosporioides. Notably, several strains of Paenibacillus, including P. polymyxa, P. illinoisensis KJA-424, P. lentimorbus B-30488, and P. elgii JCK1400, have demonstrated efficacy in controlling fungal diseases in plants. Importantly, many formulations with Paenibacillus strains have already been patented, and some are commercially available, but most of them contain only P. polymyxa. Nevertheless, considering the data presented in this review, we believe that other strains from the Paenibacillus genus (besides P. polymyxa) will also be commercialized and used in plant protection in the future. Importantly, there is still limited information regarding their impact on the native microbiota, particularly from the metataxonomic and metagenomic perspectives. Expanding knowledge in this area could enhance the effectiveness of biocontrol agents containing Paenibacillus spp., ensuring safe and sustainable use of biological fungicides.
Collapse
Affiliation(s)
- Jakub Dobrzyński
- Institute of Technology and Life Sciences - National Research Institute, Al. Hrabska 3, 05-090, Raszyn, Poland.
| | - Aleksandra Naziębło
- Institute of Technology and Life Sciences - National Research Institute, Al. Hrabska 3, 05-090, Raszyn, Poland.
| |
Collapse
|
7
|
Ravagnan G, Schmid J. Promising non-model microbial cell factories obtained by genome reduction. Front Bioeng Biotechnol 2024; 12:1427248. [PMID: 39161352 PMCID: PMC11330790 DOI: 10.3389/fbioe.2024.1427248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 08/21/2024] Open
Abstract
The development of sustainable processes is the most important basis to realize the shift from the fossil-fuel based industry to bio-based production. Non-model microbes represent a great resource due to their advantageous traits and unique repertoire of bioproducts. However, most of these microbes require modifications to improve their growth and production capacities as well as robustness in terms of genetic stability. For this, genome reduction is a valuable and powerful approach to meet industry requirements and to design highly efficient production strains. Here, we provide an overview of various genome reduction approaches in prokaryotic microorganisms, with a focus on non-model organisms, and highlight the example of a successful genome-reduced model organism chassis. Furthermore, we discuss the advances and challenges of promising non-model microbial chassis.
Collapse
Affiliation(s)
| | - Jochen Schmid
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
8
|
Wallner A, Antonielli L, Mesguida O, Rey P, Compant S. Genomic diversity in Paenibacillus polymyxa: unveiling distinct species groups and functional variability. BMC Genomics 2024; 25:720. [PMID: 39054421 PMCID: PMC11271205 DOI: 10.1186/s12864-024-10610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Paenibacillus polymyxa is a bacterial species of high interest, as suggested by the increased number of publications on its functions in the past years. Accordingly, the number of described strains and sequenced genomes is also on the rise. While functional diversity of P. polymyxa has been suggested before, the available genomic data is now sufficient for robust comparative genomics analyses. RESULTS Using 157 genomes, we found significant disparities among strains currently affiliated to P. polymyxa. Multiple taxonomic groups were identified with conserved predicted functions putatively impacting their respective ecology. As strains of this species have been reported to exhibit considerable potential in agriculture, medicine, and bioremediation, it is preferable to clarify their taxonomic organization to facilitate reliable and durable approval as active ingredients. CONCLUSIONS Strains currently affiliated to P. polymyxa can be separated into two major species groups with differential potential in nitrogen fixation, plant interaction, secondary metabolism, and antimicrobial resistance, as inferred from genomic data.
Collapse
Affiliation(s)
- Adrian Wallner
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology, Konrad Lorenz Str. 24, Tulln, 3430, Austria.
| | - Livio Antonielli
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology, Konrad Lorenz Str. 24, Tulln, 3430, Austria
| | - Ouiza Mesguida
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l'Adour, Pau, 64000, France
- GreenCell, Biopôle Clermont-Limagne, Saint Beauzire, 63360, France
| | - Patrice Rey
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l'Adour, Pau, 64000, France
| | - Stéphane Compant
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology, Konrad Lorenz Str. 24, Tulln, 3430, Austria
| |
Collapse
|
9
|
Zander M, Schmid J, Kabisch J. Implementation of Spore Display in Paenibacillus polymyxa with Different Hydrolytic Enzymes. Microorganisms 2024; 12:1438. [PMID: 39065206 PMCID: PMC11278568 DOI: 10.3390/microorganisms12071438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Biotechnological processes are essential for producing climate-friendly high-value chemicals or pharmaceutical compounds, which can include steps catalyzed by enzymes. Therefore, establishing new, robust, and cheap enzyme production processes is desirable. One possible way to enhance processes is through the use of the spore display method. Spore display can present heterologous proteins on the surface of bacterial spores, offering numerous advantages in a range of biotechnological applications. This study demonstrates the implementation of the spore display method in Paenibacillus polymyxa, achieved by modifying the spore surface, incorporating an anchoring protein, and attaching green fluorescent protein to it, allowing the visualization of fluorescent spores. Following the initial experiment, a native lipase (Lip3), a heterologous lipase (LipA) from Bacillus subtilis, a native esterase (PnbA) from P. polymyxa, and a lipoyl synthase were expressed during sporulation and displayed on the spore surface. The activity profiles were determined in the temperature range from 4 °C to 70 °C. The PnbA reached its optimum at 4 °C, whereas the LipA from B. subtilis showed 4.4-fold higher activity at 42 °C compared to the control. Furthermore, we explored a possible new technique for the purification of enzymes with the TEV cleavage site between the anchor and the protein of interest. Finally, we showed a not-yet-described side activity of the lipoyl synthase over a wide temperature range.
Collapse
Affiliation(s)
- Maximilian Zander
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstrasse 3, 48149 Muenster, Germany
| | - Jochen Schmid
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstrasse 3, 48149 Muenster, Germany
| | - Johannes Kabisch
- Department of Biotechnology and Food Science, NTNU Trondheim, Sem Sælandsvei 6/8, 7491 Trondheim, Norway
| |
Collapse
|
10
|
Parente E, Ricciardi A. A Comprehensive View of Food Microbiota: Introducing FoodMicrobionet v5. Foods 2024; 13:1689. [PMID: 38890917 PMCID: PMC11171936 DOI: 10.3390/foods13111689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Amplicon-targeted metagenomics is now the standard approach for the study of the composition and dynamics of food microbial communities. Hundreds of papers on this subject have been published in scientific journals and the information is dispersed in a variety of sources, while raw sequences and their metadata are available in public repositories for some, but not all, of the published studies. A limited number of web resources and databases allow scientists to access this wealth of information but their level of annotation on studies and samples varies. Here, we report on the release of FoodMicrobionet v5, a comprehensive database of metataxonomic studies on bacterial and fungal communities of foods. The current version of the database includes 251 published studies (11 focusing on fungal microbiota, 230 on bacterial microbiota, and 10 providing data for both bacterial and fungal microbiota) and 14,035 samples with data on bacteria and 1114 samples with data on fungi. The new structure of the database is compatible with interactive apps and scripts developed for previous versions and allows scientists, R&D personnel in industries and regulators to access a wealth of information on food microbial communities.
Collapse
Affiliation(s)
- Eugenio Parente
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy;
| | | |
Collapse
|
11
|
Wang C, Pei J, Li H, Zhu X, Zhang Y, Wang Y, Li W, Wang Z, Liu K, Du B, Jiang J, Zhao D. Mechanisms on salt tolerant of Paenibacillus polymyxa SC2 and its growth-promoting effects on maize seedlings under saline conditions. Microbiol Res 2024; 282:127639. [PMID: 38354626 DOI: 10.1016/j.micres.2024.127639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Soil salinity negatively affects microbial communities, soil fertility, and agricultural productivity and has become a major agricultural problem worldwide. Plant growth-promoting rhizobacteria (PGPR) with salt tolerance can benefit plant growth under saline conditions and diminish the negative effects of salt stress on plants. In this study, we aimed to understand the salt-tolerance mechanism of Paenibacillus polymyxa at the genetic and metabolic levels and elucidate the mechanism of strain SC2 in promoting maize growth under saline conditions. Under salt stress, we found that strain SC2 promoted maize seedling growth, which was accompanied by a significant upregulation of genes encoding for the biosynthesis of peptidoglycan, polysaccharide, and fatty acid, the metabolism of purine and pyrimidine, and the transport of osmoprotectants such as trehalose, glycine betaine, and K+ in strain SC2. To further enhance the salt resistance of strain SC2, three mutants (SC2-11, SC2-13, and SC2-14) with higher capacities for salt resistance and exopolysaccharide synthesis were obtained via atmospheric and room-temperature plasma mutagenesis. In saline-alkaline soil, the mutants showed better promoting effect on maize seedlings than wild-type SC2. The fresh weight of maize seedlings was increased by 68.10% after treatment with SC2-11 compared with that of the control group. The transcriptome analysis of maize roots demonstrated that SC2 and SC2-11 could induce the upregulation of genes related to the plant hormone signal transduction, starch and sucrose metabolism, reactive oxygen species scavenging, and auxin and ethylene signaling under saline-alkaline stress. In addition, various transcription factors, such as zinc finger proteins, ethylene-responsive-element-binding protein, WRKY, myeloblastosis proteins, basic helix-loop-helix proteins, and NAC proteins, were up-regulated in response to abiotic stress. Moreover, the microbial community composition of maize rhizosphere soil after inoculating with strain SC2 was varied from the one after inoculating with mutant SC2-11. Our results provide new insights into the various genes involved in the salt resistance of strain SC2 and a theoretical basis for utilizing P. polymyxa in saline-alkaline environments.
Collapse
Affiliation(s)
- Chengqiang Wang
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China.
| | - Jian Pei
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Hui Li
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Xiuling Zhu
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Yanan Zhang
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Yanjun Wang
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenjie Li
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Zhongyue Wang
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Kai Liu
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Binghai Du
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Dongying Zhao
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China; College of Life Sciences, Dezhou University, Dezhou 253023, China.
| |
Collapse
|
12
|
Li Z, Lin Y, Song F, Zheng R, Huang Q. Isolation and characterization of Paenibacillus peoriae JC-3jx from Dendrobium nobile. Biotechniques 2024; 76:192-202. [PMID: 38469872 DOI: 10.2144/btn-2023-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Dendrobium is a rich source of high-value natural components. Endophytic fungi are well studied, yet bacteria research is limited. In this study, endophytic bacteria from Dendrobium nobile were isolated using an improved method, showing inhibition of pathogens and growth promotion. JC-3jx, identified as Paenibacillus peoriae, exhibited significant inhibitory activity against tested fungi and bacteria, including Escherichia coli. JC-3jx also promoted corn seed rooting and Dendrobium growth, highlighting its excellent biocontrol and growth-promoting potential.
Collapse
Affiliation(s)
- ZhiPing Li
- Department of Health Food, Fujian Vocational College of Bioengineering, Fuzhou, 350000, PR China
| | - Yuan Lin
- Department of Health Food, Fujian Vocational College of Bioengineering, Fuzhou, 350000, PR China
| | - FeiFei Song
- Department of Health Food, Fujian Vocational College of Bioengineering, Fuzhou, 350000, PR China
| | - RuoNan Zheng
- Department of Health Food, Fujian Vocational College of Bioengineering, Fuzhou, 350000, PR China
| | - QinGeng Huang
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350108, PR China
- Qingyuan One Alive Institute of Biological Research Co., Ltd, Qingyuan, 500112, PR China
| |
Collapse
|
13
|
Hancock AM, Datta SS. Interplay between environmental yielding and dynamic forcing modulates bacterial growth. Biophys J 2024; 123:957-967. [PMID: 38454600 PMCID: PMC11052696 DOI: 10.1016/j.bpj.2024.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Many bacterial habitats-ranging from gels and tissues in the body to cell-secreted exopolysaccharides in biofilms-are rheologically complex, undergo dynamic external forcing, and have unevenly distributed nutrients. How do these features jointly influence how the resident cells grow and proliferate? Here, we address this question by studying the growth of Escherichia coli dispersed in granular hydrogel matrices with defined and highly tunable structural and rheological properties, under different amounts of external forcing imposed by mechanical shaking, and in both aerobic and anaerobic conditions. Our experiments establish a general principle: that the balance between the yield stress of the environment that the cells inhabit, σy, and the external stress imposed on the environment, σ, modulates bacterial growth by altering transport of essential nutrients to the cells. In particular, when σy<σ, the environment is easily fluidized and mixed over large scales, providing nutrients to the cells and sustaining complete cellular growth. By contrast, when σy>σ, the elasticity of the environment suppresses large-scale fluid mixing, limiting nutrient availability and arresting cellular growth. Our work thus reveals a new mechanism, beyond effects that change cellular behavior via local forcing, by which the rheology of the environment may modulate microbial physiology in diverse natural and industrial settings.
Collapse
Affiliation(s)
- Anna M Hancock
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Sujit S Datta
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey.
| |
Collapse
|
14
|
Huang XY, Ye XP, Hu YY, Tang ZX, Zhang T, Zhou H, Zhou T, Bai XL, Pi EX, Xie BH, Shi LE. Exopolysaccharides of Paenibacillus polymyxa: A review. Int J Biol Macromol 2024; 261:129663. [PMID: 38278396 DOI: 10.1016/j.ijbiomac.2024.129663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/30/2023] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Paenibacillus polymyxa (P. polymyxa) is a member of the genus Paenibacillus, which is a rod-shaped, spore-forming gram-positive bacterium. P. polymyxa is a source of many metabolically active substances, including polypeptides, volatile organic compounds, phytohormone, hydrolytic enzymes, exopolysaccharide (EPS), etc. Due to the wide range of compounds that it produces, P. polymyxa has been extensively studied as a plant growth promoting bacterium which provides a direct benefit to plants through the improvement of N fixation from the atmosphere and enhancement of the solubilization of phosphorus and the uptake of iron in the soil, and phytohormones production. Among the metabolites from P. polymyxa, EPS exhibits many activities, for example, antioxidant, immunomodulating, anti-tumor and many others. EPS has various applications in food, agriculture, environmental protection. Particularly, in the field of sustainable agriculture, P. polymyxa EPS can be served as a biofilm to colonize microbes, and also can act as a nutrient sink on the roots of plants in the rhizosphere. Therefore, this paper would provide a comprehensive review of the advancements of diverse aspects of EPS from P. polymyxa, including the production, extraction, structure, biosynthesis, bioactivity and applications, etc. It would provide a direction for future research on P. polymyxa EPS.
Collapse
Affiliation(s)
- Xuan-Ya Huang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xin-Pei Ye
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yan-Yu Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhen-Xing Tang
- School of Culinary Art, Tourism College of Zhejiang, Hangzhou, Zhejiang 311231, China
| | - Tian Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hai Zhou
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ting Zhou
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xue-Lian Bai
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Er-Xu Pi
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Bing-Hua Xie
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Lu-E Shi
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
15
|
Dal’Rio I, Lopes EDS, Santaren KCF, Rosado AS, Seldin L. Co-inoculation of the endophytes Bacillus thuringiensis CAPE95 and Paenibacillus polymyxa CAPE238 promotes Tropaeolum majus L. growth and enhances its root bacterial diversity. Front Microbiol 2024; 15:1356891. [PMID: 38585693 PMCID: PMC10996857 DOI: 10.3389/fmicb.2024.1356891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/12/2024] [Indexed: 04/09/2024] Open
Abstract
Tropaeolum majus L. is a versatile edible plant that is widely explored due to its medicinal properties and as a key element in intercropping systems. Its growth could be improved by the use of biofertilizers that can enhance nutrient uptake by the plant or provide tolerance to different abiotic and biotic stresses. In a previous study, 101 endophytes isolated from T. majus roots showed more than three plant growth-promoting (PGP) features in vitro, such as phosphate mineralization/solubilization, production of siderophores, antimicrobial substances and indole-related compounds, and presence of the nifH gene. To provide sustainable alternatives for biofertilization, the genomes of two promising endophytes-CAPE95 and CAPE238-were sequenced to uncover metabolic pathways related to biofertilization. Greenhouse experiments were conducted with 216 seeds and 60 seedlings, half co-inoculated with the endophytes (treatment) and half inoculated with 1X PBS (control), and the impact of the co-inoculation on the plant's bacteriome was accessed through 16S rRNA gene metabarcoding. The strains CAPE95 and CAPE238 were taxonomically assigned as Bacillus thuringiensis and Paenibacillus polymyxa, respectively. Metabolic pathways related to the enhancement of nutrient availability (nitrogen fixation, sulfate-sulfur assimilation), biosynthesis of phytohormones (indole-3-acetic acid precursors) and antimicrobial substances (bacilysin, paenibacillin) were found in their genomes. The in vivo experiments showed that treated seeds exhibited faster germination, with a 20.3% higher germination index than the control on the eleventh day of the experiment. Additionally, treated seedlings showed significantly higher plant height and leaf diameters (p < 0.05). The bacterial community of the treated plants was significantly different from that of the control plants (p < 0.001) and showed a higher richness and diversity of species (Chao and Shannon indexes, p < 0.001). A higher relative abundance of potential synergistic PGP bacteria was also shown in the bacteriome of the treated plants, such as Lysinibacillus and Geobacter. For the first time, co-inoculation of B. thuringiensis and P. polymyxa was shown to have great potential for application as a biofertilizer to T. majus plants. The bacterial consortium used here could also be explored in other plant species in the future.
Collapse
Affiliation(s)
- Isabella Dal’Rio
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Bioscience, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Eliene dos Santos Lopes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Alexandre Soares Rosado
- Bioscience, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lucy Seldin
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Fenibo EO, Nkuna R, Matambo T. Impact of artisanal refining activities on bacterial diversity in a Niger Delta fallow land. Sci Rep 2024; 14:3866. [PMID: 38365802 PMCID: PMC10873323 DOI: 10.1038/s41598-024-53147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/29/2024] [Indexed: 02/18/2024] Open
Abstract
Hydrocarbon pollution is a major ecological problem facing oil-producing countries, especially in the Niger Delta region of Nigeria. In this study, a site that had been previously polluted by artisanal refining activity was investigated using 16S rRNA Illumina high-throughput sequencing technology and bioinformatics tools. These were used to investigate the bacterial diversity in soil with varying degrees of contamination, determined with a gas chromatography-flame ionization detector (GC-FID). Soil samples were collected from a heavily polluted (HP), mildly polluted (MP), and unpolluted (control sample, CS) portion of the study site. DNA was extracted using the Zymo Research (ZR) Fungi/Bacteria DNA MiniPrep kit, followed by PCR amplification and agarose gel electrophoresis. The microbiome was characterized based on the V3 and V4 hypervariable regions of the 16S rRNA gene. QIIME (Quantitative Insights Into Microbial Ecology) 2 software was used to analyse the sequence data. The final data set covered 20,640 demultiplexed high-quality reads and a total of 160 filtered bacterial OTUs. Proteobacteria dominated samples HP and CS, while Actinobacteria dominated sample MP. Denitratisoma, Pseudorhodoplanes, and Spirilospora were the leading genera in samples HP, CS, and MP respectively. Diversity analysis indicated that CS [with 25.98 ppm of total petroleum hydrocarbon (TPH)] is more diverse than HP (with 490,630 ppm of TPH) and MP (with 5398 ppm of TPH). A functional prediction study revealed that six functional modules dominated the dataset, with metabolism covering up to 70%, and 11 metabolic pathways. This study demonstrates that a higher hydrocarbon concentration in soil adversely impacts microbial diversity, creating a narrow bacterial diversity dominated by hydrocarbon-degrading species, in addition to the obvious land and ecosystem degradation caused by artisanal refining activities. Overall, the artisanal refining business is significantly driving ecosystem services losses in the Niger Delta, which calls for urgent intervention, with focus on bioremediation.
Collapse
Affiliation(s)
- Emmanuel Oliver Fenibo
- World Bank Africa Centre of Excellence for Oilfield Chemical Research, University of Port Harcourt, Choba, Rivers State, Nigeria.
| | - Rosina Nkuna
- Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark 1900, Gauteng, South Africa
- Centre for Competence in Environmental Biotechnology, College of Animal and Environmental Science, University of South Africa, Florida Science Campus, Roodepoort, South Africa
| | - Tonderayi Matambo
- Centre for Competence in Environmental Biotechnology, College of Animal and Environmental Science, University of South Africa, Florida Science Campus, Roodepoort, South Africa
| |
Collapse
|
17
|
Wang J, Yu Y, Raheem A, Guo Y, Ma Q, Lu D. The distribution characteristics of aerosol bacteria in different types of sheepfolds. Front Vet Sci 2024; 11:1348850. [PMID: 38420208 PMCID: PMC10900508 DOI: 10.3389/fvets.2024.1348850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
With the development of modern sheep raising technology, the increasing density of animals in sheep house leads to the accumulation of microbial aerosols in sheep house. It is an important prerequisite to grasp the characteristics of bacteria in aerosols in sheep house to solve the problems of air pollution and disease prevention and control in sheep house. In this study, the microorganisms present in the air of sheep houses were investigated to gain insights into the structure of bacterial communities and the prevalence of pathogenic bacteria. Samples from six sheep pens in each of three sheep farms, totaling 18, were collected in August 2022 from Ningxia province, China. A high-volume air sampler was utilized for aerosol collection within the sheep housing followed by DNA extraction for 16S rRNA sequencing. Employing high-throughput 16S rRNA sequencing technology, we conducted an in-depth analysis of microbial populations in various sheep pen air samples, enabling us to assess the community composition and diversity. The results revealed a total of 11,207 operational taxonomic units (OTUs) within the bacterial population across the air samples, encompassing 152 phyla, 298 classes, 517 orders, 853 families, 910 genera, and 482 species. Alpha diversity and beta diversity analysis indicated that differences in species diversity, evenness and coverage between different samples. At the bacterial phylum level, the dominant bacterial groups are Firmicutes, Proteobacteria, and Actinobacteria, among which Firmicutes (97.90-98.43%) is the highest. At the bacterial genus level, bacillus, Bacteroides, Fusobacterium, etc. had higher abundance, with Bacillus (85.47-89.87%) being the highest. Through an in-depth analysis of microbial diversity and a meticulous examination of pathogenic bacteria with high abundance in diverse sheep house air samples, the study provided valuable insights into the microbial diversity, abundance, and distinctive features of prevalent pathogenic bacteria in sheep house air. These findings serve as a foundation for guiding effective disease prevention and control strategies within sheep farming environments.
Collapse
Affiliation(s)
- Jiandong Wang
- Institute of Animal Science, NingXia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Youli Yu
- Institute of Animal Science, NingXia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Abdul Raheem
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yanan Guo
- Institute of Animal Science, NingXia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Qing Ma
- Institute of Animal Science, NingXia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Lebano I, Fracchetti F, Vigni ML, Mejia JF, Felis G, Lampis S. MALDI-TOF as a powerful tool for identifying and differentiating closely related microorganisms: the strange case of three reference strains of Paenibacillus polymyxa. Sci Rep 2024; 14:2585. [PMID: 38297004 PMCID: PMC10831075 DOI: 10.1038/s41598-023-50010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/14/2023] [Indexed: 02/02/2024] Open
Abstract
Accurate identification and typing of microbes are crucial steps in gaining an awareness of the biological heterogeneity and reliability of microbial material within any proprietary or public collection. Paenibacillus polymyxa is a bacterial species of great agricultural and industrial importance due to its plant growth-promoting activities and production of several relevant secondary metabolites. In recent years, matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) has been widely used as an alternative rapid tool for identifying, typing, and differentiating closely related strains. In this study, we investigated the diversity of three P. polymyxa strains. The mass spectra of ATCC 842T, DSM 292, and DSM 365 were obtained, analysed, and compared to select discriminant peaks using ClinProTools software and generate classification models. MALDI-TOF MS analysis showed inconsistent results in identifying DSM 292 and DSM 365 as belonging to P. polimixa species, and comparative analysis of mass spectra revealed the presence of highly discriminatory biomarkers among the three strains. 16S rRNA sequencing and Average Nucleotide Identity (ANI) confirmed the discrepancies found in the proteomic analysis. The case study presented here suggests the enormous potential of the proteomic-based approach, combined with statistical tools, to predict and explore differences between closely related strains in large microbial datasets.
Collapse
Affiliation(s)
- Ilaria Lebano
- Syngenta Biologicals (Valagro SpA), 66041, Atessa, CH, Italy.
| | | | - Mario Li Vigni
- Syngenta Biologicals (Valagro SpA), 66041, Atessa, CH, Italy
| | | | - Giovanna Felis
- Department of Biotechnology and VUCC-DBT Verona University Culture Collection, University of Verona, 37154, Verona, VR, Italy
| | - Silvia Lampis
- Department of Biotechnology and VUCC-DBT Verona University Culture Collection, University of Verona, 37154, Verona, VR, Italy.
| |
Collapse
|
19
|
Cui Y, Zhao D, Liu K, Mei X, Sun S, Du B, Ding Y. Abh, AbrB3, and Spo0A play distinct regulatory roles during polymyxin synthesis in Paenibacillus polymyxa SC2. Microbiol Spectr 2024; 12:e0229323. [PMID: 38054717 PMCID: PMC10782996 DOI: 10.1128/spectrum.02293-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Polymyxins are considered the last line of defense against multidrug-resistant bacteria. The regulatory mechanism of polymyxin synthesis is poorly studied in Paenibacillus polymyxa. In this study, we found that Abh and AbrB3 negatively regulated, whereas Spo0A positively regulated polymyxin synthesis in P. polymyxa SC2. In addition, a regulatory relationship between Abh, AbrB3, and Spo0A was revealed, which regulate polymyxin synthesis via multiple regulatory mechanisms in P. polymyxa.
Collapse
Affiliation(s)
- Yanru Cui
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Dongying Zhao
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Kai Liu
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Xiangui Mei
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Shanshan Sun
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Binghai Du
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Yanqin Ding
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
20
|
Wendisch VF, Brito LF, Passaglia LM. Genome-based analyses to learn from and about Paenibacillus sonchi genomovar Riograndensis SBR5T. Genet Mol Biol 2024; 46:e20230115. [PMID: 38224489 PMCID: PMC10789242 DOI: 10.1590/1678-4685-gmb-2023-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024] Open
Abstract
Paenibacillus sonchi genomovar Riograndensis SBR5T is a plant growth-promoting rhizobacterium (PGPR) isolated in the Brazilian state of Rio Grande do Sul from the rhizosphere of Triticum aestivum. It fixes nitrogen, produces siderophores as well as the phytohormone indole-3-acetic acid, solubilizes phosphate and displays antagonist activity against Listeria monocytogenes and Pectobacterium carotovorum. Comprehensive omics analysis and the development of genetic tools are key to characterizing and engineering such non-model microorganisms. Therefore, the complete genome of SBR5T was sequenced, and shown to encode 6,705 proteins, 87 tRNAs, and 27 rRNAs and it enabled a landscape transcriptome analysis that unveiled conserved transcriptional and translational patterns and characterized operon structures and riboswitches. The pangenome of P. sonchi species is open with a stable core pangenome. At the same time, the analysis of genes coding for nitrogenases revealed that the trait of nitrogen fixation is sparse within the Paenibacillaceae family and the presence of Fe-only nitrogenase in the P. sonchi group was exclusive to SBR5T. The development of genetic tools for SBR5T enabled genetic transformation, plasmid construction for constitutive and inducible gene expression, and gene repression using the CRISPRi system. Altogether, the work with P. sonchi can guide the study of non-model bacteria with economic potential.
Collapse
Affiliation(s)
- Volker F. Wendisch
- Bielefeld University, Faculty of Biology, Genetics of Prokaryotes, Bielefeld, Germany
- Bielefeld University, Center for Biotechnology (CeBiTec), Bielefeld, Germany
| | - Luciana F. Brito
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, Trondheim, Norway
| | - Luciane M.P. Passaglia
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Yang X, Tan AJ, Zheng MM, Feng D, Mao K, Yang GL. Physiological response, microbial diversity characterization, and endophytic bacteria isolation of duckweed under cadmium stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166056. [PMID: 37558073 DOI: 10.1016/j.scitotenv.2023.166056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/17/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Duckweed is a cadmium (Cd) hyperaccumulator. However, its enrichment characteristics and physiological responses to Cd have not been systematically studied. The physiological responses, enrichment characteristics, diversity of endophytic bacterial communities, and isolation of Cd-resistant endophytes in duckweed (Lemna minor 0014) were studied for different durations and Cd concentrations. The results indicated that peroxidase (POD) and catalase (CAT) activities decreased while superoxide dismutase activity first increased and then decreased with increasing Cd stress duration. POD activities, CAT activities, and O2- increased as Cd concentrations increased. Malondialdehyde content and Cd accumulation in duckweed increased with increasing concentrations and time. This endophytic diversity study identified 488 operational taxonomic units, with the dominant groups being Proteobacteria, Firmicutes, and Actinobacteria. Paenibacillus sp. Y11, a strain tolerant to high concentrations of Cd and capable of significantly promoting duckweed growth, was isolated from the plant. Our study revealed the effects of heavy metals on aquatic plants, providing a theoretical basis for the application of duckweed in water pollution.
Collapse
Affiliation(s)
- Xiao Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Ai-Juan Tan
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Meng-Meng Zheng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Dan Feng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Kang Mao
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China
| | - Gui-Li Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China.
| |
Collapse
|
22
|
Hofmann D, Thiele B, Siebers M, Rahmati M, Schütz V, Jeong S, Cui J, Bigler L, Held F, Wu B, Babic N, Kovacic F, Hamacher J, Hölzl G, Dörmann P, Schulz M. Implications of Below-Ground Allelopathic Interactions of Camelina sativa and Microorganisms for Phosphate Availability and Habitat Maintenance. PLANTS (BASEL, SWITZERLAND) 2023; 12:2815. [PMID: 37570969 PMCID: PMC10421311 DOI: 10.3390/plants12152815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Toxic breakdown products of young Camelina sativa (L.) Crantz, glucosinolates can eliminate microorganisms in the soil. Since microorganisms are essential for phosphate cycling, only insensitive microorganisms with phosphate-solubilizing activity can improve C. sativa's phosphate supply. In this study, 33P-labeled phosphate, inductively coupled plasma mass spectrometry and pot experiments unveiled that not only Trichoderma viride and Pseudomonas laurentiana used as phosphate-solubilizing inoculants, but also intrinsic soil microorganisms, including Penicillium aurantiogriseum, and the assemblies of root-colonizing microorganisms solubilized as well phosphate from apatite, trigger off competitive behavior between the organisms. Driving factors in the competitiveness are plant and microbial secondary metabolites, while glucosinolates of Camelina and their breakdown products are regarded as key compounds that inhibit the pathogen P. aurantiogriseum, but also seem to impede root colonization of T. viride. On the other hand, fungal diketopiperazine combined with glucosinolates is fatal to Camelina. The results may contribute to explain the contradictory effects of phosphate-solubilizing microorganisms when used as biofertilizers. Further studies will elucidate impacts of released secondary metabolites on coexisting microorganisms and plants under different environmental conditions.
Collapse
Affiliation(s)
- Diana Hofmann
- IBG-3: Agrosphäre, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (D.H.); (B.T.); (M.R.); (B.W.)
| | - Björn Thiele
- IBG-3: Agrosphäre, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (D.H.); (B.T.); (M.R.); (B.W.)
| | - Meike Siebers
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (V.S.); (G.H.); (P.D.)
| | - Mehdi Rahmati
- IBG-3: Agrosphäre, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (D.H.); (B.T.); (M.R.); (B.W.)
- Department of Soil Science and Engineering, University of Maragheh, Maragheh 83111-55181, Iran
| | - Vadim Schütz
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (V.S.); (G.H.); (P.D.)
| | - Seungwoo Jeong
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (V.S.); (G.H.); (P.D.)
| | - Jiaxin Cui
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (V.S.); (G.H.); (P.D.)
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland; (L.B.); (F.H.)
| | - Federico Held
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland; (L.B.); (F.H.)
| | - Bei Wu
- IBG-3: Agrosphäre, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (D.H.); (B.T.); (M.R.); (B.W.)
| | - Nikolina Babic
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University of Düsseldorf and Forschungszentrum Jülich GmbH, 52428 Jülich, Germany (F.K.)
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University of Düsseldorf and Forschungszentrum Jülich GmbH, 52428 Jülich, Germany (F.K.)
| | - Joachim Hamacher
- Plant Diseases and Crop Protection, Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany;
| | - Georg Hölzl
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (V.S.); (G.H.); (P.D.)
| | - Peter Dörmann
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (V.S.); (G.H.); (P.D.)
| | - Margot Schulz
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (V.S.); (G.H.); (P.D.)
| |
Collapse
|
23
|
Singh RP, Kumari K, Sharma PK, Ma Y. Characterization and in-depth genome analysis of a halotolerant probiotic bacterium Paenibacillus sp. S-12, a multifarious bacterium isolated from Rauvolfia serpentina. BMC Microbiol 2023; 23:192. [PMID: 37464310 PMCID: PMC10353221 DOI: 10.1186/s12866-023-02939-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Members of Paenibacillus genus from diverse habitats have attracted great attention due to their multifarious properties. Considering that members of this genus are mostly free-living in soil, we characterized the genome of a halotolerant environmental isolate belonging to the genus Paenibacillus. The genome mining unravelled the presence of CAZymes, probiotic, and stress-protected genes that suggested strain S-12 for industrial and agricultural purposes. RESULTS Molecular identification by 16 S rRNA gene sequencing showed its closest match to other Paenibacillus species. The complete genome size of S-12 was 5.69 Mb, with a GC-content 46.5%. The genome analysis of S-12 unravelled the presence of an open reading frame (ORF) encoding the functions related to environmental stress tolerance, adhesion processes, multidrug efflux systems, and heavy metal resistance. Genome annotation identified the various genes for chemotaxis, flagellar motility, and biofilm production, illustrating its strong colonization ability. CONCLUSION The current findings provides the in-depth investigation of a probiotic Paenibacillus bacterium that possessed various genome features that enable the bacterium to survive under diverse conditions. The strain shows the strong ability for probiotic application purposes.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India.
| | - Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD-20742, USA
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
24
|
Ju JH, Jo MH, Heo SY, Kim MS, Kim CH, Paul NC, Sang H, Oh BR. Production of highly pure R,R-2,3-butanediol for biological plant growth promoting agent using carbon feeding control of Paenibacillus polymyxa MDBDO. Microb Cell Fact 2023; 22:121. [PMID: 37407951 DOI: 10.1186/s12934-023-02133-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/24/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Chemical fertilizers have greatly contributed to the development of agriculture, but alternative fertilizers are needed for the sustainable development of agriculture. 2,3-butanediol (2,3-BDO) is a promising biological plant growth promoter. RESULTS In this study, we attempted to develop an effective strategy for the biological production of highly pure R,R-2,3-butanediol (R,R-2,3-BDO) by Paenibacillus polymyxa fermentation. First, gamma-ray mutagenesis was performed to obtain P. polymyxa MDBDO, a strain that grew faster than the parent strain and had high production of R,R-2,3-BDO. The activities of R,R-2,3-butanediol dehydrogenase and diacetyl reductase of the mutant strain were increased by 33% and decreased by 60%, respectively. In addition, it was confirmed that the carbon source depletion of the fermentation broth affects the purity of R,R-2,3-BDO through batch fermentation. Fed-batch fermentation using controlled carbon feeding led to production of 77.3 g/L of R,R-2,3-BDO with high optical purity (> 99% of C4 products) at 48 h. Additionally, fed-batch culture using corn steep liquor as an alternative nitrogen source led to production of 70.3 g/L of R,R-2,3-BDO at 60 h. The fed-batch fermentation broth of P. polymyxa MDBDO, which contained highly pure R,R-2,3-BDO, significantly stimulated the growth of soybean and strawberry seedlings. CONCLUSIONS This study suggests that P. polymyxa MDBDO has potential for use in biological plant growth promoting agent applications. In addition, our fermentation strategy demonstrated that high-purity R,R-2,3-BDO can be produced at high concentrations using P. polymyxa.
Collapse
Affiliation(s)
- Jung-Hyun Ju
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Min-Ho Jo
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Sun-Yeon Heo
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Min-Soo Kim
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Chul-Ho Kim
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Narayan Chandra Paul
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Baek-Rock Oh
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea.
| |
Collapse
|
25
|
Li X, Ma S, Meng Y, Wei W, Peng C, Ling C, Fan S, Liu Z. Characterization of Antagonistic Bacteria Paenibacillus polymyxa ZYPP18 and the Effects on Plant Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:2504. [PMID: 37447065 DOI: 10.3390/plants12132504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Paenibacillus polymyxa is a plant growth-promoting rhizobacteria (PGPR) that has significant biocontrol properties. Wheat sheath blight caused by Rhizoctonia cerealis is a significant soil-borne disease of wheat that causes significant losses in wheat production, and the biological control against the disease has received extensive attention. P. polymyxa ZYPP18 was identified using morphological and molecular characterization. An antagonistic activity experiment verified that ZYPP18 inhibits the growth of R. cerealis on artificial growth media. A detached leaf assay verified that ZYPP18 inhibits the expansion of wheat sheath blight on the detached leaf. ZYPP18 has been found to possess plant growth-promoting properties, as well as the ability to solubilize phosphate and generate indole-3-acetic acid. Results from hydroponic experiments showed that wheat seedlings treated with ZYPP18 grew faster. Additionally, pot experiments and field experiments demonstrated that ZYPP18 effectively controls the occurrence of wheat sheath blight. ZYPP18 reduced the incidence of wheat sheath blight in wheat seedlings by 37.37% and 37.90%, respectively. The control effect of ZYPP18 on wheat sheath blight was 56.30% and 65.57%, respectively. These findings provide evidence that P. polymyxa ZYPP18 is an effective biological factor that can control disease and promote plant growth.
Collapse
Affiliation(s)
- Xiangying Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Sujing Ma
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yuan Meng
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Wei Wei
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Chen Peng
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Chunli Ling
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Susu Fan
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Zhenyu Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
26
|
Nguyen NH. Fungal Hyphosphere Microbiomes Are Distinct from Surrounding Substrates and Show Consistent Association Patterns. Microbiol Spectr 2023; 11:e0470822. [PMID: 36939352 PMCID: PMC10100729 DOI: 10.1128/spectrum.04708-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/22/2023] [Indexed: 03/21/2023] Open
Abstract
Mat-forming fungi are common in forest and grassland soils across the world, where their activity contributes to important soil ecological processes. These fungi maintain dominance through aggressive and abundant hyphae that modify their internal physical and chemical environments and through these modifications select for what appears to be a suite of mycophilic bacteria. Here, the bacteria associated with the fungal mats of Leucopaxillus gentianeus and Leucopaxillus albissimus from western North America are compared to adjacent nonmat substrates. Within the mats, the bacterial richness and diversity were significantly reduced, and the community composition was significantly different. The bacterial community structure between the two fungal hosts was marginally significant and indicated a shared set of bacterial associates. The genera Burkholderia, Streptomyces, Bacillus, Paenibacillus, and Mycobacterium were significantly abundant within the fungal mats and represent core members of these hypha-rich environments. Comparison with the literature from fungal mat studies worldwide showed that these genera are common and often significantly found within fungal mats, further reinforcing the concept of a mycophilic bacterial guild. These genera are incorporated into a synthesis discussion in the context of our current understanding of the nature of fungal-bacterial interactions and the potential outcomes of these interactions in soil nutrient cycling, plant productivity, and human health. IMPORTANCE Fungi and bacteria are the most abundant and diverse organisms in soils (perhaps more so than any other habitat on earth), and together these microorganisms contribute to broad soil ecosystem processes. There is a suite of bacteria that appears consistently within the physical space called the hyphosphere, the area of influence surrounding fungal hyphae. How these bacteria are selected for, how they are maintained, and what broader ecological functions they perform are subjects of interest in this relatively new field-the cross-kingdom interactions between fungi and bacteria. Understanding their cooccurrence and their interactions can open new realms of understanding in soil ecological processes with global consequences.
Collapse
Affiliation(s)
- Nhu H. Nguyen
- University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi, USA
| |
Collapse
|
27
|
Biological activity of silver nanoparticles synthesized with Paenibacillus polymyxa exopolysaccharides. Enzyme Microb Technol 2023; 164:110174. [PMID: 36508942 DOI: 10.1016/j.enzmictec.2022.110174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Recently, there has been increased interest in the synthesis of nanoparticles by using natural polysaccharides. These polysaccharides are eco-friendly, nontoxic, and cheap to prepare. On the other hand, the attention in hydrocolloids and films has significantly enhanced, and their application is very promising in the food, pharmaceutical, perfumery and cosmetics, oil, paper, and textile industries. In this context, the present study is aimed to prepare silver nanoparticles by using viscous and superviscous exopolysaccharides of the rhizobacterium Paenibacillus polymyxa strains, CCM 1465 and 88A, and examined the properties of the resultant nanoparticles. We examined the synthesis and properties of silver nanoparticles under variable synthetic conditions by using exopolysaccharides of the rhizobacteria Paenibacillus polymyxa CCM 1465 and 88A. To prepare nanoparticles, we used different combinations of exopolysaccharide and silver nitrate concentrations: 1-10 mg/mL and 1-40 mM, respectively. The resulting solutions were alkalinized from pH 7.5-12 and heated for 15, 30, and 60 min to determine the optimal synthetic conditions. We found that the exopolysaccharides of strains CCM 1465 and 88A reduced silver ions and acted as nanoparticle stabilizers. The prepared spherical, oval, and triangular particles were stable and ranged in size from 2 to 40 nm, depending on the strain and on the experimental conditions. The nanoparticles showed antibacterial and antifungal activity against Escherichia coli K-12, Pseudomonas aeruginosa 50.3, Bacillus subtilis 26-D, and Fusarium oxysporum. In addition, the nanoparticles were active against SK-MEL-2 human melanoma cells. This finding shows the promise of further research on the exopolysaccharides of P. polymyxa 1465 and 88А in different fields of science, including medicine.
Collapse
|
28
|
Wang X, Yu Z, Shen G, Cheng H, Tao S. Distribution of microbial communities in seasonally frozen soil layers on the Tibetan Plateau and the driving environmental factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1919-1937. [PMID: 35925461 DOI: 10.1007/s11356-022-22283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Large stocks of carbon and nitrogen stored in permafrost regions can potentially feed back to global biogeochemical cycles under climate warming. To understand the response of microbial communities to environmental changes, this study investigated the spatial distribution of bacterial communities in the upper layers (0-10, 10-20, and 20-30 cm) of seasonally frozen soil on the Tibetan Plateau and their relationships with the environmental factors. A total of 135 soil samples were collected from the soils at depths of 0-10, 10-20, and 20-30 cm in the Lhasa River and Nyang River basins, and the diversity and composition of bacterial communities in them were identified by high-throughput 16S rRNA gene sequencing. Bacterial diversity changed significantly with soil depth in the Nyang River basin (p < 0.001), while no obvious change was found in the Lhasa River basin. The whole bacterial composition exhibited small variations across different soil layers (p > 0.05). The relative abundance of aerobic bacteria, Sphingomonas and Arthrobacter, decreased with soil depth, while that of the other aerobic, facultative anaerobic, and anaerobic bacteria did not exhibit this trend. Soil pH was the key driving edaphic factor of the whole bacterial composition in all three depth layers, while vegetation also had an important influence on bacterial composition. Arthrobacter, Bradyrhizobium, and Bacillus had obvious correlations with soil nutrients or vegetation, while the other species were not significantly correlated with any environmental factors. Structural equation modeling revealed that vegetation and mean annual temperature had a key direct impact on the bacterial diversity and composition, respectively. Climate also indirectly affected bacterial communities, mainly through shaping soil pH and vegetation. These results indicate that the soil depth has a different impact on the bacterial α-diversity, whole bacterial composition, and specific taxa in the 0-30-cm surface layers of seasonally frozen soil, which were mainly determined by various environmental factors.
Collapse
Affiliation(s)
- Xiaojie Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guofeng Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| | - Shu Tao
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
29
|
Pandey AK, Barbetti MJ, Lamichhane JR. Paenibacillus polymyxa. Trends Microbiol 2022; 31:657-659. [PMID: 36564337 DOI: 10.1016/j.tim.2022.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Abhay K Pandey
- Department of Mycology and Microbiology, Tea Research Association, North Bengal Regional R&D Center, Nagrakata 735225, West Bengal, India.
| | - Martin J Barbetti
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia; UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | | |
Collapse
|
30
|
Niza-Costa M, Rodríguez-dos Santos AS, Rebelo-Romão I, Ferrer MV, Sequero López C, Vílchez JI. Geographically Disperse, Culturable Seed-Associated Microbiota in Forage Plants of Alfalfa ( Medicago sativa L.) and Pitch Clover ( Bituminaria bituminosa L.): Characterization of Beneficial Inherited Strains as Plant Stress-Tolerance Enhancers. BIOLOGY 2022; 11:biology11121838. [PMID: 36552347 PMCID: PMC9775229 DOI: 10.3390/biology11121838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Agricultural production is being affected by increasingly harsh conditions caused by climate change. The vast majority of crops suffer growth and yield declines due to a lack of water or intense heat. Hence, commercial legume crops suffer intense losses of production (20-80%). This situation is even more noticeable in plants used as fodder for animals, such as alfalfa and pitch trefoil, since their productivity is linked not only to the number of seeds produced, but also to the vegetative growth of the plant itself. Thus, we decided to study the microbiota associated with their seeds in different locations on the Iberian Peninsula, with the aim of identifying culturable bacteria strains that have adapted to harsh environments and that can be used as biotreatments to improve plant growth and resistance to stress. As potentially inherited microbiota, they may also represent a treatment with medium- and long-term adaptative effects. Hence, isolated strains showed no clear relationship with their geographical sampling location, but had about 50% internal similarity with their model plants. Moreover, out of the 51 strains isolated, about 80% were capable of producing biofilms; around 50% produced mid/high concentrations of auxins and grew notably in ACC medium; only 15% were characterized as xerotolerant, while more than 75% were able to sporulate; and finally, 65% produced siderophores and more than 40% produced compounds to solubilize phosphates. Thus, Paenibacillus amylolyticus BB B2-A, Paenibacillus xylanexedens MS M1-C, Paenibacillus pabuli BB Oeiras A, Stenotrophomonas maltophilia MS M1-B and Enterobacter hormaechei BB B2-C strains were tested as plant bioinoculants in lentil plants (Lens culinaris Medik.), showing promising results as future treatments to improve plant growth under stressful conditions.
Collapse
Affiliation(s)
- Marla Niza-Costa
- iPlantMicro Lab, Instituto de Tecnologia Química e Biológica (ITQB)-NOVA, Oeiras, 2784-501 Lisboa, Portugal
| | | | - Inês Rebelo-Romão
- iPlantMicro Lab, Instituto de Tecnologia Química e Biológica (ITQB)-NOVA, Oeiras, 2784-501 Lisboa, Portugal
| | - María Victoria Ferrer
- iPlantMicro Lab, Instituto de Tecnologia Química e Biológica (ITQB)-NOVA, Oeiras, 2784-501 Lisboa, Portugal
| | - Cristina Sequero López
- GeoBioTec, Department of Earth Sciences, NOVA School of Sciences and Technology, Universidade NOVA de Lisboa (Campus de Caparica), 1070-312 Caparica, Portugal
| | - Juan Ignacio Vílchez
- iPlantMicro Lab, Instituto de Tecnologia Química e Biológica (ITQB)-NOVA, Oeiras, 2784-501 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
31
|
Chiu S, Hancock AM, Schofner BW, Sniezek KJ, Soto-Echevarria N, Leon G, Sivaloganathan DM, Wan X, Brynildsen MP. Causes of polymyxin treatment failure and new derivatives to fill the gap. J Antibiot (Tokyo) 2022; 75:593-609. [PMID: 36123537 DOI: 10.1038/s41429-022-00561-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022]
Abstract
Polymyxins are a class of antibiotics that were discovered in 1947 from programs searching for compounds effective in the treatment of Gram-negative infections. Produced by the Gram-positive bacterium Paenibacillus polymyxa and composed of a cyclic peptide chain with a peptide-fatty acyl tail, polymyxins exert bactericidal effects through membrane disruption. Currently, polymyxin B and colistin (polymyxin E) have been developed for clinical use, where they are reserved as "last-line" therapies for multidrug-resistant (MDR) infections. Unfortunately, the incidences of strains resistant to polymyxins have been increasing globally, and polymyxin heteroresistance has been gaining appreciation as an important clinical challenge. These phenomena, along with bacterial tolerance to this antibiotic class, constitute important contributors to polymyxin treatment failure. Here, we review polymyxins and their mechanism of action, summarize the current understanding of how polymyxin treatment fails, and discuss how the next generation of polymyxins holds promise to invigorate this antibiotic class.
Collapse
Affiliation(s)
- Selena Chiu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Anna M Hancock
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Bob W Schofner
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Katherine J Sniezek
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Gabrielle Leon
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Xuanqing Wan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
32
|
Singh RR, Wesemael WML. Endophytic Paenibacillus polymyxa LMG27872 inhibits Meloidogyne incognita parasitism, promoting tomato growth through a dose-dependent effect. FRONTIERS IN PLANT SCIENCE 2022; 13:961085. [PMID: 36186028 PMCID: PMC9516289 DOI: 10.3389/fpls.2022.961085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
The root-knot nematode, Meloidogyne incognita, is a major pest in tomato production. Paenibacillus polymyxa, which is primarily found in soil and colonizing roots, is considered a successful biocontrol organism against many pathogens. To evaluate the biocontrol capacity of P. polymyxa LMG27872 against M. incognita in tomato, experiments were conducted both in vitro and in vivo. A dose-response effect [30, 50, and 100% (108 CFU/mL)] of bacterial suspensions (BSs) on growth and tomato susceptibility to M. incognita with soil drenching as a mode of application was first evaluated. The results show that the biological efficacy of P. polymyxa LMG27872 against M. incognita parasitism in tomato was dose-dependent. A significantly reduced number of galls, egg-laying females (ELF), and second-stage juveniles (J2) were observed in BS-treated plants, in a dose-dependent manner. The effect of P. polymyxa on tomato growth was also dose-dependent. A high dose of BSs had a negative effect on growth; however, this negative effect was not observed when the BS-treated plants were challenged with M. incognita, indicating tolerance or a defense priming mechanism. In subsequent in vivo experiments, the direct effect of BSs was evaluated on J2 mortality and egg hatching of M. incognita. The effect of BS on J2 mortality was observed from 12 to 24 h, whereby M. incognita J2 was significantly inhibited by the BS treatment. The effect of P. polymyxa on M. incognita egg hatching was also dependent on the BS dose. The results show a potential of P. polymyxa LMG27872 to protect plants from nematode parasitism and its implementation in integrated nematode management suitable for organic productions.
Collapse
Affiliation(s)
- Richard Raj Singh
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wim M. L. Wesemael
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Plant Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| |
Collapse
|
33
|
Zhao Y, Xie X, Li J, Shi Y, Chai A, Fan T, Li B, Li L. Comparative Genomics Insights into a Novel Biocontrol Agent Paenibacillus peoriae Strain ZF390 against Bacterial Soft Rot. BIOLOGY 2022; 11:1172. [PMID: 36009799 PMCID: PMC9404902 DOI: 10.3390/biology11081172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
Bacterial soft rot, caused by Pectobacterium brasiliense, can infect several economically important horticultural crops. However, the management strategies available to control this disease are limited. Plant-growth-promoting rhizobacteria (PGPR) have been considered to be promising biocontrol agents. With the aim of obtaining a strain suitable for agricultural applications, 161 strains were isolated from the rhizosphere soil of healthy cucumber plants and screened through plate bioassays and greenhouse tests. Paenibacillus peoriae ZF390 exhibited an eminent control effect against soft rot disease and a broad antagonistic activity spectrum in vitro. Moreover, ZF390 showed good activities of cellulase, protease, and phosphatase and a tolerance of heavy metal. Whole-genome sequencing was performed and annotated to explore the underlying biocontrol mechanisms. Strain ZF390 consists of one 6,193,667 bp circular chromosome and three plasmids. Comparative genome analysis revealed that ZF390 involves ten gene clusters responsible for secondary metabolite antibiotic synthesis, matching its excellent biocontrol activity. Plenty of genes related to plant growth promotion, biofilm formation, and induced systemic resistance were mined to reveal the biocontrol mechanisms that might consist in strain ZF390. Overall, these findings suggest that strain ZF390 could be a potential biocontrol agent in bacterial-soft-rot management, as well as a source of antimicrobial mechanisms for further exploitation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
34
|
Protective and Curative Activities of Paenibacillus polymyxa against Zucchini yellow mosaic virus Infestation in Squash Plants. BIOLOGY 2022; 11:biology11081150. [PMID: 36009777 PMCID: PMC9405448 DOI: 10.3390/biology11081150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
The use of microbial products as natural biocontrol agents to increase a plant's systemic resistance to viral infections is a promising way to make agriculture more sustainable and less harmful to the environment. The rhizobacterium Paenibacillus polymyxa has been shown to have strong biocontrol action against plant diseases, but its antiviral activity has been little investigated. Here, the efficiency of the culture filtrate of the P. polymyxa strain SZYM (Acc# ON149452) to protect squash (Cucurbita pepo L.) plants against a Zucchini yellow mosaic virus (ZYMV, Acc# ON159933) infection was evaluated. Under greenhouse conditions, the foliar application of the culture filtrate of SZYM either in protective or curative treatment conditions enhanced squash growth, reduced disease severity, and decreased ZYMV accumulation levels in the treated plants when compared to the non-treated plants. The protective treatment group exhibited the highest inhibitory effect (80%), with significant increases in their total soluble carbohydrates, total soluble protein content, ascorbic acid content, and free radical scavenging activity. Furthermore, a considerable increase in the activities of reactive oxygen species scavenging enzymes (superoxide dismutase, polyphenol oxidase, and peroxidase) were also found. In addition, the induction of systemic resistance with a significant elevation in the transcriptional levels of polyphenolic pathway genes (CHS, PAL, and C3H) and pathogenesis-related genes (PR-1 and PR-3) was observed. Out of the 14 detected compounds in the GC-MS analysis, propanoic acid, benzenedicarboxylic acid, tetradecanoic acid, and their derivatives, as well as pyrrolo [1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) were the primary ingredient compounds in the ethyl acetate extract of the SZYM-culture filtrate. Such compounds may act as elicitor molecules that induce systemic resistance against viral infection. Consequently, P. polymyxa can be considered a powerful plant growth-promoting bacterium (PGPB) in agricultural applications as well as a source of bioactive compounds for sustainable disease management. As far as we know, this is the first time that P. polymyxa has been shown to fight viruses in plants.
Collapse
|
35
|
Shruti S, Afreen J, Rutuja A, Yasmin M. Development of miniaturized agar based assays in 96-well microplates applicable to high-throughput screening of industrially valuable microorganisms. METHODS IN MICROBIOLOGY 2022; 199:106526. [PMID: 35738492 DOI: 10.1016/j.mimet.2022.106526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022]
Abstract
High-throughput screening (HTS) is a present-day approach for assaying thousands of cultures in parallel. This miniaturization allows rapid screening of large number of microorganims capable of producing bio-based materials thereby meeting the demands of the ever evolving food, pharmaceutical and cosmetic industry. In this study, agar-based assays for phosphate solubilization, cellulose degradation and lactic acid production were developed in 96-well microplates using Biomek FXP Automated Liquid Handling system. Techno-economic analysis from this study reveals the lower overall cost per assay using HTS as compared to conventional Petri plate assays. Though automated liquid handling workstations have been used to perform liquid-based assays, there are very few studies which report their use for agar-based microplate assays. These findings thus corroborate the establishment of rapid and efficient miniaturized, qualitative agar-based screening methods for identifying microorganisms with potential for commercial application.
Collapse
Affiliation(s)
- Sinha Shruti
- Praj-Matrix - R&D Centre (Division of Praj Industries Limited), 402/403/1098, Urawade, Pirangut, Mulshi, Pune 412 115, Maharashtra, India; Department of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India.
| | - Jikare Afreen
- Praj-Matrix - R&D Centre (Division of Praj Industries Limited), 402/403/1098, Urawade, Pirangut, Mulshi, Pune 412 115, Maharashtra, India
| | - Ankulkar Rutuja
- Praj-Matrix - R&D Centre (Division of Praj Industries Limited), 402/403/1098, Urawade, Pirangut, Mulshi, Pune 412 115, Maharashtra, India
| | - Mirza Yasmin
- Praj-Matrix - R&D Centre (Division of Praj Industries Limited), 402/403/1098, Urawade, Pirangut, Mulshi, Pune 412 115, Maharashtra, India
| |
Collapse
|
36
|
Effects of Vermicompost Substrates and Coconut Fibers Used against the Background of Various Biofertilizers on the Yields of Cucumis melo L. and Solanum lycopersicum L. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Vermicompost has been promoted as a viable substrate component owing to its physicochemical properties, nutrient richness, and status as an excellent soil improver. It is considered the best organic fertilizer and is more eco-friendly than chemical fertilizers. Plant-growth-promoting microorganisms (PGPMs) are defined as plant biofertilizers that improve nutritional efficiency—that is, they transform nutrients within substrates from organic to inorganic forms, making them available for plants. The main objective of this research study is to evaluate the effects of the application of three PGPM microbial consortia on different mixtures of organic substrates based on vermicompost (V) and coconut fiber (CF) on two different horticultural crops. We performed a yield analysis and drainage nutrient tests and determined the plant nutritional status and enzymatic activity in organic substrates based on the two crops, Cucumis melo L. and Solanum lycopersicum L. A multivariate analysis of variance and principal component analysis was conducted using substrate types and PGPMs as factors. Differences (p < 0.05) in yield, dehydrogenase activity, the nutrient concentrations in a petiole sap, and drainage were observed at 30, 60, 75, and 90 days after transplant. PGPMs such as Trichoderma sp. and plant-growth-promoting rhizobacteria (PGPR) in organic substrates (40V + 60CF) can significantly improve the nutritional status of plants for use in organic soilless container agriculture. Biofertilization with PGPMs and suitable mixtures of organic substrates together with aqueous extracts (tea) of vermicompost, as nutrient solutions applied by fertigation, has allowed us to achieve an adequate level of production through environmentally friendly techniques. The results obtained allowed us to affirm that it was possible to replace conventional fertilization using chemical products and ensure adequate crop nutrition by supplying the main macronutrients.
Collapse
|
37
|
Optimizing the Growth Conditions of the Selected Plant-Growth-Promoting Rhizobacteria Paenibacillus sp. MVY-024 for Industrial Scale Production. BIOLOGY 2022; 11:biology11050745. [PMID: 35625473 PMCID: PMC9138474 DOI: 10.3390/biology11050745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary Nitrogen is one of the most important elements for plant growth and development. However, irrational fertilization causes many environmental problems: high rates of nitrogen fertilizers change the soil pH, encourage nitrate and nitrite accumulation in plants and the soil, leached nitrogen compounds cause water eutrophication and drinking water contamination, and gaseous losses of nitrogen contribute to global warming. The biological nitrogen fixation (BNF) process, in which atmospheric nitrogen is converted to ammonia by microorganisms, has a significant role in the global nitrogen cycle and agriculture. Nitrogen-fixing-bacteria inoculants could help to reduce the losses of consistently rising prices of mineral fertilizers and help to implement green revolution strategies. In this research, we found the bacteria strain Paenibacillus sp. MVY-024 that has a positive impact on nitrogen accumulation in spring wheat and was easily applied on an industrial scale. Abstract In this study, thirteen isolates, which were possibly expected to fix nitrogen, were isolated from soil and pea root nodules and identified by the gene analysis of 16S rDNA sequences. Two of these isolates that were able to form endospores and grow on nitrogen-free media were selected for spring wheat development research. The isolate Paenibacillus sp. S7 identified as Paenibacillus polymyxa was found to significantly increase the amount of ammonium and mineral N amounts in the soil. Furthermore, increased nitrogen accumulation in grains and a chlorophyll index were obtained after wheat treatment. Paenibacillus sp. S7 isolate was selected for further studies and the accession number MT900581 and strain name MVY-024 in NCBI nucleotide bank for this isolate were assigned. During the cultivation of Paenibacillus sp. MVY-024, sugarcane molasses and a yeast extract were determined as the most suitable carbon and nitrogen sources, whose optimal concentrations were 100 g L−1 and 10 g L−1, respectively. The optimal pH range for the cell culture was between 6.5 and 7.0, and the optimal air flow rate was 0.4 vvm. It was found that the air flow has an effect on biomass production and endospore formation. After Paenibacillus sp. MVY-024 biomass cultivation optimization, the cultured cell number was, on average, 2.2 × 109 cfu m L−1.
Collapse
|
38
|
Zhao N, Yi L, Ren S, Yin Q, Xiang W, Zhang X, Xie B. Algicidal interaction between
Paenibacillus polymyxa
MEZ6
and microalgae. J Appl Microbiol 2022; 133:646-655. [DOI: 10.1111/jam.15592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Na Zhao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology Central China Normal University Wuhan, 430079 China
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University, 430062 China
| | - Sanguo Ren
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology Central China Normal University Wuhan, 430079 China
| | - Qin Yin
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology Central China Normal University Wuhan, 430079 China
| | - Wei Xiang
- School of Basic Medicine Guizhou University of Traditional Chinese Medicine Guizhou, 550025 China
| | - Xu Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology Central China Normal University Wuhan, 430079 China
| | - Bo Xie
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology Central China Normal University Wuhan, 430079 China
| |
Collapse
|
39
|
Paenibacillus farraposensis sp. nov., isolated from a root nodule of Arachis villosa. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain UY79T was isolated from a root nodule of Arachis villosa, collected at the Esteros de Farrapos National Park, Río Negro, Uruguay. Cells were non-motile Gram-variable rods with central to subterminal oval to ellipsoidal endospores that swell the sporangia. Growth was observed in the range of 15–42 °C (optimum, 30 °C), pH 5.0–9.0 (optimum, pH 7.0–8.0) and with up to 3 % (w/v) NaCl (optimum, 1–2 %). Strain UY79T was facultative anaerobic, catalase-positive and oxidase-negative. According to the results of 16S rRNA gene sequence analysis, UY79T belongs to the genus
Paenibacillus
and is closely related to
P. ottowii
MS2379T,
P. peoriae
BD-57T,
P. polymyxa
ATCC 842T and
P. brasilensis
PB172T, exhibiting 99.4, 99.0, 99.0 and 98.9% sequence identity, respectively. Average nucleotide identity and digital DNA–DNA hybridization values with the most closely related type strains were 74.3–88.6% and 38.2–48.7 %, respectively. Major fatty acids (>10 %) were anteiso-C15:0, iso-C15:0, and C16 : 0. Menaquinones MK-7 and MK-6 were the only isoprenoid quinones detected. Major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified glycolipid. Spermidine was the predominant polyamine. The DNA G+C content based on the draft genome sequence was 46.34 mol%. Based on the current polyphasic study, UY79T represents a novel species of the genus
Paenibacillus
, for which the name Paenibacillus farraposensis sp. nov. is proposed. The type strain is UY79T (=CCM 9147T=CGMCC 1.19038T).
Collapse
|
40
|
Costa A, Corallo B, Amarelle V, Stewart S, Pan D, Tiscornia S, Fabiano E. Paenibacillus sp. Strain UY79, Isolated from a Root Nodule of Arachis villosa, Displays a Broad Spectrum of Antifungal Activity. Appl Environ Microbiol 2022; 88:e0164521. [PMID: 34757818 PMCID: PMC8788682 DOI: 10.1128/aem.01645-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
A nodule-inhabiting Paenibacillus sp. strain (UY79) isolated from wild peanut (Arachis villosa) was screened for its antagonistic activity against diverse fungi and oomycetes (Botrytis cinerea, Fusarium verticillioides, Fusarium oxysporum, Fusarium graminearum, Fusarium semitectum, Macrophomina phaseolina, Phomopsis longicolla, Pythium ultimum, Phytophthora sojae, Rhizoctonia solani, Sclerotium rolfsii, and Trichoderma atroviride). The results obtained show that Paenibacillus sp. UY79 was able to antagonize these fungi/oomycetes and that agar-diffusible compounds and volatile compounds (different from HCN) participate in the antagonism exerted. Acetoin, 2,3-butanediol, and 2-methyl-1-butanol were identified among the volatile compounds produced by strain UY79 with possible antagonistic activity against fungi/oomycetes. Paenibacillus sp. strain UY79 did not affect symbiotic association or growth promotion of alfalfa plants when coinoculated with rhizobia. By whole-genome sequence analysis, we determined that strain UY79 is a new species of Paenibacillus within the Paenibacillus polymyxa complex. Diverse genes putatively involved in biocontrol activity were identified in the UY79 genome. Furthermore, according to genome mining and antibiosis assays, strain UY79 would have the capability to modulate the growth of bacteria commonly found in soil/plant communities. IMPORTANCE Phytopathogenic fungi and oomycetes are responsible for causing devastating losses in agricultural crops. Therefore, there is enormous interest in the development of effective and complementary strategies that allow the control of the phytopathogens, reducing the input of agrochemicals in croplands. The discovery of new strains with expanded antifungal activities and with a broad spectrum of action is challenging and of great future impact. Diverse strains belonging to the P. polymyxa complex have been reported to be effective biocontrol agents. Results presented here show that the novel discovered strain of Paenibacillus sp. presents diverse traits involved in antagonistic activity against a broad spectrum of pathogens and is a potential and valuable strain to be further assessed for the development of biofungicides.
Collapse
Affiliation(s)
- Andrés Costa
- Biochemistry and Microbial Genomics Department, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Belén Corallo
- Sección Micología, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Vanesa Amarelle
- Biochemistry and Microbial Genomics Department, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Silvina Stewart
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa Cultivos de Secano. Estación Experimental La Estanzuela, Colonia, Uruguay
| | - Dinorah Pan
- Sección Micología, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Susana Tiscornia
- Sección Micología, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Elena Fabiano
- Biochemistry and Microbial Genomics Department, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| |
Collapse
|
41
|
Vargas P, Bosmans L, Van Calenberge B, Van Kerckhove S, Lievens B, Rediers H. Bacterial community dynamics of tomato hydroponic greenhouses infested with hairy root disease. FEMS Microbiol Ecol 2021; 97:6442176. [PMID: 34849757 DOI: 10.1093/femsec/fiab153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/23/2021] [Indexed: 11/14/2022] Open
Abstract
The rhizosphere is a complex ecosystem consisting of microbes in the interface between growth medium and plant roots, which affects plant productivity and health. This is one of the few studies analysing bacterial communities present in the rhizosphere of hydroponically grown plants. Tomato grown under hydroponic conditions is prone to hairy root disease (HRD) that is caused by rhizogenic Agrobacterium biovar 1 strains. In this study, using high-throughput amplicon sequencing of partial ribosomal RNA (rRNA) genes, we aimed to characterize bacterial communities in rockwool samples obtained from healthy or HRD-infested tomato during an entire growing season. Alpha diversity of rockwool increased in direct relation with time and samples obtained from healthy greenhouses presented a significantly lower alpha diversity than those from HRD-infested greenhouses. Beta diversity showed that bacterial community composition changed throughout the growing season. Amplicon Sequence Variants (ASVs) identified as rhizogenic Agrobacterium bv. 1 were more prevalent in HRD-infected greenhouses. Conversely, ASVs identified as Paenibacillus, previously identified as biocontrol organisms of rhizogenic agrobacteria, were more prevalent in healthy greenhouses. Altogether, our study greatly contributes to the knowledge of bacterial communities in rockwool hydroponics.
Collapse
Affiliation(s)
- Pablo Vargas
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium.,Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium
| | - Lien Bosmans
- Research Station Hoogstraten, Voort 71, B-2328 Meerle, Belgium
| | - Bart Van Calenberge
- Research Station for Vegetable Production, Duffelsesteenweg 101, B-2860 Sint-Katelijne-Waver, Belgium
| | | | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium.,Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium
| | - Hans Rediers
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium.,Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
42
|
Genome Sequence of Paenibacillus polymyxa Strain HOB6, Isolated from Hemp Seed Oil. Microbiol Resour Announc 2021; 10:e0034421. [PMID: 34080899 PMCID: PMC8354528 DOI: 10.1128/mra.00344-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Paenibacillus polymyxa strain HOB6 was isolated from hemp seed oil. The strain displays antimicrobial activity against fungal pathogens and has potential for development as a biopesticide against cannabis diseases. Its genome was sequenced and annotated, uncovering the ability to encode the biosynthetic pathways for antimicrobial lanthipeptides and nonribosomal peptides.
Collapse
|