1
|
Chien YS, Lai CC, Hsu CY, Hsieh YC, Lin SY, Wang HC, Chen HP, Chen THH, Luh DL, Yeh YP. Reducing tuberculosis transmission by genotype-based contact tracing coupled with public health containment measures: a case study during the COVID-19 pandemic in Taiwan. Microbiol Spectr 2025; 13:e0212524. [PMID: 40135900 PMCID: PMC12053905 DOI: 10.1128/spectrum.02125-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/16/2025] [Indexed: 03/27/2025] Open
Abstract
This study aimed to estimate the effectiveness of genotype-based contact tracing coupled with public health and social containment measures (PHSMs) in reducing tuberculosis (TB) transmission during the COVID-19 pandemic. Patients suspicious of recent TB infection from index cases were traced by genotyping method between 2017 and 2021. To make allowance for TB cases attributed to reactivation, TB cases identified from the genotype-based contact tracing group were compared to those from the underlying population via the notifiable nationwide system without genotyping. The relative changes (ratios) in TB cases before and during the pandemic between the two groups were leveraged to estimate the effectiveness of PHSMs following genotype-based contact tracing, taking into account demographic features and geographic variation, with a multivariable Poisson regression model. Before the pandemic, we identified 42 of 133 (31.6%) sputum culture-positive index (SCI) patients via 344 genotype-matched clustered TB cases. During the pandemic, 11 of 70 (15.7%) SCI patients were linked to 36 clustered cases. The annual average of TB-clustered patients for the genotype-based contact tracing group decreased by 84.3%, whereas the corresponding figure for the comparator decreased by 18.5%. The adjusted relative risk of 0.19 (95% CI 0.14-0.28) gave an 81% TB transmission reduction after controlling for extraneous factors. Genotype-based contact tracing coupled with PHSMs significantly reduced TB transmission. Our findings from the pandemic period demonstrate that a molecular epidemiological approach with public health containment measures will enable a moderate-burden TB country to reach the WHO End TB targets by 2035.IMPORTANCEThe extent to which COVID-19 public health and social measures reduced tuberculosis transmission remains unclear. We elucidated the recent tuberculosis infection with a novel genotype-based contact tracing from 2017 to 2021. These patients were recruited as the contact tracing group in contrast to the comparison group of tuberculosis cases from the general population via the notifiable nationwide system without genotyping. The relative changes in tuberculosis cases before and during the pandemic between the contact tracing group and the comparison group were used to estimate the effectiveness of reducing tuberculosis transmission. We found a significant 81% reduction in tuberculosis transmission during the first 2 years of the pandemic. This finding demonstrates that a molecular epidemiological approach with public health containment measures will enable a moderate-burden tuberculosis country to reach the End TB targets by 2035.
Collapse
Affiliation(s)
- Yuan-Shan Chien
- Department of Public Health, Chung Shan Medical University, Taichung City, Taiwan
- Changhua Public Health Bureau, Changhua, Taiwan
| | - Chao-Chih Lai
- Emergency Department of Taipei City Hospital, Ren-Ai Branch, Taipei City, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Chen-Yang Hsu
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | | | - Shin-Yi Lin
- Changhua Public Health Bureau, Changhua, Taiwan
| | | | - Hung-pin Chen
- Department of Public Health, Chung Shan Medical University, Taichung City, Taiwan
- Ershuei Township Health Center, Changhua, Taiwan
| | - Tony Hsiu-His Chen
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Dih-Ling Luh
- Department of Public Health, Chung Shan Medical University, Taichung City, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Yen-Po Yeh
- Changhua Public Health Bureau, Changhua, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
2
|
Wada T, Yoshida S, Yamamoto T, Nonaka L, Fukushima Y, Nakajima C, Suzuki Y, Imajoh M. Application of Genomic Epidemiology of Pathogens to Farmed Yellowtail Fish Mycobacteriosis in Kyushu, Japan. Microbes Environ 2024; 39:ME24011. [PMID: 38897967 PMCID: PMC11220446 DOI: 10.1264/jsme2.me24011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
To investigate mycobacterial cases of farmed yellowtail fish in coastal areas of western Japan (Kagoshima, Kyushu), where aquaculture fisheries are active, Mycobacterium pseudoshottsii, the causative agent, was isolated from six neighboring fishing ports in 2012 and 2013. A phylogenetic ana-lysis revealed that the strains isolated from one fishing port were closely related to those isolated from other regions of Japan, suggesting the nationwide spread of a single strain. However, strains from Japan were phylogenetically distinct from those from the Mediterranean and the United States; therefore, worldwide transmission was not observed based on the limited data obtained on the strains exami-ned in this study. The present results demonstrate that a bacterial genomic ana-lysis of infected cases, a mole-cular epidemiology strategy for public health, provides useful data for estimating the prevalence and transmission pathways of M. pseudoshottsii in farmed fish. A bacterial genome ana-lysis of strains, such as that performed herein, may play an important role in monitoring the prevalence of this pathogen in fish farms and possible epidemics in the future as a result of international traffic, logistics, and trade in fisheries.
Collapse
Affiliation(s)
- Takayuki Wada
- Department of Microbiology, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Shiomi Yoshida
- Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center, Sakai, Osaka, Japan
| | - Takeshi Yamamoto
- Azuma-cho Fisheries Cooperative Association, Izumi, Kagoshima, Japan
| | - Lisa Nonaka
- Faculty of Human Life Sciences, Shokei University, Kumamoto, Kumamoto, Japan
| | - Yukari Fukushima
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chie Nakajima
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Division of Research Support, Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Division of Research Support, Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masayuki Imajoh
- Laboratory of Fish Disease, Aquaculture Course, Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
3
|
Wang J, Yu C, Xu Y, Chen Z, Qiu W, Chen S, Pei H, Zhong Y. Analysis of Drug-Resistance Characteristics and Genetic Diversity of Multidrug-Resistant Tuberculosis Based on Whole-Genome Sequencing on the Hainan Island, China. Infect Drug Resist 2023; 16:5783-5798. [PMID: 37692467 PMCID: PMC10487742 DOI: 10.2147/idr.s423955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose Given the high burden of Tuberculosis (TB) in China, the prevalence of multidrug-resistant tuberculosis (MDR-TB) is significant. Whole-genome sequencing (WGS) of Mycobacterium tuberculosis (MTB) enables the identification of lineages, drug-resistant mutations, and transmission patterns, offering valuable insights for TB control, clinical diagnosis, and treatment. Methods We collected 202 MDR-MTB strains from 3519 suspected pulmonary TB patients treated at The Second Affiliated Hospital of Hainan Medical University between July 2019 and June 2021. Proportional drug-susceptibility testing was performed using 8 common anti-tuberculosis drugs. Subsequently, the genotypic drug resistance and genetic characteristics were analyzed by the WGS. Results Lineages are identified by TB-profiler revealed 202 MDR-MTB strains, showcasing three predominant lineages, with lineage 2 being the most prevalent. Close genomic relatedness analysis and evidence of MTB transmission led to the formation of 15 clusters comprising 42 isolates, resulting in a clustering rate of 20.8%. Novelty, lineage 2.1 (non-Beijing) accounted for 27.2% of the MDR-MTB strains, which is rare in China and Neighboring countries. Regarding first-line anti-TB drugs, genes associated with rifampicin resistance, primarily the rpoB gene, were detected in 200 strains (99.0%). Genes conferring resistance to isoniazid, ethambutol, and streptomycin were identified in 191 (94.5%), 125 (61.9%), and 100 (49.5%) strains, respectively. Among the second-line drugs, 97 (48.0%) strains exhibited genes encoding resistance to fluoroquinolones. Comparing the results to phenotypic drug susceptibility-based testing, the sensitivity of WGS for detecting resistance to each of the six drugs (rifampicin, isoniazid, ethambutol, ofloxacin, kanamycin, capreomycin) was 90% or higher. With the exception of ethambutol, the specificity of WGS prediction for the remaining drugs exceeded 88%. Conclusion Our study provides crucial insights into genetic mutation types, genetic diversity, and transmission of MDR-MTB on Hainan Island, serving as a significant reference for MDR-MTB surveillance and clinical decision-making.
Collapse
Affiliation(s)
- Jieying Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, People’s Republic of China
| | - Chunchun Yu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, People’s Republic of China
| | - Yuni Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, People’s Republic of China
| | - Zhuolin Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, People’s Republic of China
| | - Wenhua Qiu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, People’s Republic of China
| | - Shaowen Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, People’s Republic of China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, People’s Republic of China
| | - Yeteng Zhong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, People’s Republic of China
| |
Collapse
|
4
|
Müller J, Hösel V. Contact tracing & super-spreaders in the branching-process model. J Math Biol 2023; 86:24. [PMID: 36625934 PMCID: PMC9830628 DOI: 10.1007/s00285-022-01857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 01/11/2023]
Abstract
In recent years, it became clear that super-spreader events play an important role, particularly in the spread of airborne infections. We investigate a novel model for super-spreader events, not based on a heterogeneous contact graph but on a random contact rate: Many individuals become infected synchronously in single contact events. We use the branching-process approach for contact tracing to analyze the impact of super-spreader events on the effect of contact tracing. Here we neglect a tracing delay. Roughly speaking, we find that contact tracing is more efficient in the presence of super-spreaders if the fraction of symptomatics is small, the tracing probability is high, or the latency period is distinctively larger than the incubation period. In other cases, the effect of contact tracing can be decreased by super-spreaders. Numerical analysis with parameters suited for SARS-CoV-2 indicates that super-spreaders do not decrease the effect of contact tracing crucially in case of that infection.
Collapse
Affiliation(s)
- Johannes Müller
- Center for Mathematics, Technische Universität München, 85748, Garching, Germany. .,Institute for Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany.
| | - Volker Hösel
- grid.6936.a0000000123222966Center for Mathematics, Technische Universität München, 85748 Garching, Germany
| |
Collapse
|
5
|
Zhao B, Liu C, Fan J, Ma A, He W, Hu Y, Zhao Y. Transmission and Drug Resistance Genotype of Multidrug-Resistant or Rifampicin-Resistant Mycobacterium tuberculosis in Chongqing, China. Microbiol Spectr 2022; 10:e0240521. [PMID: 36214695 PMCID: PMC9604020 DOI: 10.1128/spectrum.02405-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/29/2022] [Indexed: 01/04/2023] Open
Abstract
Multidrug-resistant or rifampicin-resistant tuberculosis (MDR/RR-TB) is a global barrier for the Stop TB plan. To identify risk factors for treatment outcome and cluster transmission of MDR/RR-TB, whole-genome sequencing (WGS) data of isolates from patients of the Chongqing Tuberculosis Control Institute were used for phylogenetic classifications, resistance predictions, and cluster analysis. A total of 223 MDR/RR-TB cases were recorded between 1 January 2018 and 31 December 2020. Elderly patients and those with lung cavitation are at increased risk of death due to MDR/RR-TB. A total of 187 MDR/RR strains were obtained from WGS data; 152 were classified as lineage 2 strains. Eighty (42.8%) strains differing by a distance of 12 or fewer single nucleotide polymorphisms were classified as 20 genomic clusters, indicating recent transmission. Patients infected with lineage 2 strains or those with occupations listed as "other" are significantly associated with a transmission cluster of MDR/RR-TB. Analysis of resistant mutations against first-line tuberculosis drugs found that 76 (95.0%) of all 80 strains had the same mutations within each cluster. A total of 55.0% (44 of 80) of the MDR/RR-TB strains accumulated additional drug resistance mutations along the transmission chain, especially against fluoroquinolones (63.6% [28 of 44]). Recent transmission of MDR/RR strains is driving the MDR/RR-TB epidemics, leading to the accumulation of more serious resistance along the transmission chains. IMPORTANCE The drug resistance molecular characteristics of MDR/RR-TB were elucidated by genome-wide analysis, and risk factors for death by MDR/RR-TB were identified in combination with patient information. Cluster characteristics of MDR/RR-TB in the region were analyzed by genome-wide analysis, and risk factors for cluster transmission (recent transmission) were analyzed. These analyses provide reference for the prevention and treatment of MDR/RR-TB in Chongqing.
Collapse
Affiliation(s)
- Bing Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Chunfa Liu
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Jiale Fan
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Aijing Ma
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Wencong He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yan Hu
- Tuberculosis Reference Laboratory, Chongqing Tuberculosis Control Institute, Jiulongpo, Chongqing, China
| | - Yanlin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| |
Collapse
|
6
|
Use of Whole-Genome Sequencing to Explore Mycobacterium tuberculosis Complex Circulating in a Hotspot Department in France. Microorganisms 2022; 10:microorganisms10081586. [PMID: 36014004 PMCID: PMC9414808 DOI: 10.3390/microorganisms10081586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
The Seine-Saint-Denis is the French metropolitan department with the highest incidence of tuberculosis (TB). Our aim was to explore epidemiological and phylogenetic characteristics of TB strains in this hotspot department. We performed WGS on 227 strains of Mycobacterium tuberculosis complex isolated from patients at the Avicenne Hospital from 2016 to 2021 and randomly selected to represent the clinical diversity of French TB localization. Clinical and demographic data were recorded for each TB patient. The mean age of patients was 36 years old. They came from Africa (44%), Asia (27%), Europe (26%) and America (3%). Strains isolated from extrapulmonary samples were associated with Asian patients, whereas strains isolated from pulmonary samples were associated with European patients. We observed a high level of lineage diversity in line with the known worldwide diversity. Interestingly, lineage 3 was associated with lymph node TB. Additionally, the sensitivity of WGS for predicting resistance was 100% for rifampicin, isoniazid and ethambutol and 66.7% for pyrazinamide. The global concordance with drug-susceptibility testing using the phenotypic approach was 97%. In microbiology laboratories, WGS turns out to be an essential tool for better understanding local TB epidemiology, with direct access to circulating lineage identification and to drug susceptibilities to first- and second-line anti-TB drugs.
Collapse
|
7
|
Molecular Epidemiology and Genetic Diversity of Multidrug-Resistant Mycobacterium tuberculosis Isolates in Bangladesh. Microbiol Spectr 2022; 10:e0184821. [PMID: 35196788 PMCID: PMC8865560 DOI: 10.1128/spectrum.01848-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although the number of multidrug-resistant (MDR) tuberculosis (TB) cases is high overall, a major gap exists in our understanding of the molecular characteristics and transmission dynamics of the MDR Mycobacterium tuberculosis isolates circulating in Bangladesh. The present study aims to characterize the MDR-TB isolates of Bangladesh and to investigate the mode of transmission. A total of 544 MDR-TB isolates were obtained from a nationwide drug-resistant TB surveillance study conducted between October 2011 and March 2017 covering all geographic divisions of Bangladesh. The isolates were characterized using TbD1 deletion analysis, spoligotyping, and mycobacterial interspersed repetitive-unit–variable-number tandem-repeat (MIRU-VNTR) typing. Deletion analysis showed that 440 (80.9%) isolates were the modern type, while the remainder were the ancestral type. The largest circulating lineage was the Beijing type, comprising 208 isolates (38.2%), followed by T, EAI, and LAM with 93 (17.1%), 58 (10.7%), and 52 (9.5%) isolates, respectively. Combined MIRU-VNTR and spoligotyping analysis demonstrated that the majority of the clustered isolates were of the Beijing and T1 lineages. The overall rate of recent transmission was estimated at 33.8%. In conclusion, the MDR M. tuberculosis isolates circulating in Bangladesh are mostly of the modern virulent type. The Beijing and T lineages are the predominant types and most of the transmission of MDR-TB can be attributed to them. The findings also suggest that, along with the remarkable transmission, the emergence of MDR-TB in Bangladesh is largely due to acquired resistance. Rapid and accurate diagnosis and successful treatment will be crucial for controlling MDR-TB in Bangladesh. IMPORTANCE Multidrug-resistant TB is considered to be the major threat to tuberculosis control activities worldwide, including in Bangladesh. Despite the fact that the number of MDR-TB cases is high, a major gap exists in our understanding of the molecular epidemiology of the MDR-TB isolates in Bangladesh. In our study, we characterized and classified the MDR-TB isolates circulating in Bangladesh and investigated their mode of transmission. Our results demonstrated that the MDR M. tuberculosis isolates circulating in Bangladesh are mostly of the modern virulent type. The Beijing and T lineages are the predominant types and are implicated in the majority of MDR-TB transmission. Our findings reveal that, along with the remarkable transmission, the emergence of MDR-TB in Bangladesh is largely due to acquired resistance, which may be due to nonadherence to treatment or inadequate treatment of TB patients. Rapid diagnosis and adherence to an appropriate treatment regimen are therefore crucial to controlling MDR-TB in Bangladesh.
Collapse
|
8
|
Li H, Liu C, Liang M, Liu D, Zhao B, Shi J, Zhao Y, Ou X, Zhang G. Tuberculosis Outbreak in an Educational Institution in Henan Province, China. Front Public Health 2021; 9:737488. [PMID: 34712640 PMCID: PMC8545879 DOI: 10.3389/fpubh.2021.737488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
On June 17, 2018, a case of pulmonary tuberculosis (TB) was reported among students at a senior high school in Luoning, China. The outbreak encompassed a total of 23 cases along with TB screening in the whole school by means of PPD and chest X-ray. By the end of September 2018, the entire 9 cases cultured positive had epidemiological association. All of the 9 Mycobacterium tuberculosis (Mtb) isolates available were sensitive to all drugs tested and had similar spoligotyping and 15 loci mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) profile. Whole-genome sequencing (WGS) of the Mtb isolates revealed 20 variable nucleotide positions within 8 cases, indicating a clonal outbreak. The index case, which was first identified and diagnosed, is separated from the cluster by a minimum number of 95 distinct SNPs. Minimum distance spanning tree (MST) indicted that the 8 cases were indeed part of a single transmission chain. It was concluded that this is an epidemic situation of TB outbreak exposed by the aggrieved index case at school, which was caused by the veiled infectious case wherein a student was suffering from TB and attending school simultaneously.
Collapse
Affiliation(s)
- Hui Li
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Chunfa Liu
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Minghui Liang
- Luoyang Center for Disease Control and Prevention, Luoyang, China
| | - Dongxin Liu
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bing Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Shi
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Yanlin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xichao Ou
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guolong Zhang
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| |
Collapse
|
9
|
Han Z, Li J, Sun G, Gu K, Zhang Y, Yao H, Jiang Y. Transmission of multidrug-resistant tuberculosis in Shimen community in Shanghai, China: a molecular epidemiology study. BMC Infect Dis 2021; 21:1118. [PMID: 34715793 PMCID: PMC8557015 DOI: 10.1186/s12879-021-06725-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 08/20/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Multidrug-resistant tuberculosis (MDR-TB) has become a major public health problem in China, with mounting evidence suggesting that recent transmission accounts for the majority of MDR-TB. Here we aimed to reveal the transmission pattern of an MDR-TB outbreak in the Jing'an District of Shanghai between 2010 and 2015. METHODS We used whole-genome sequencing (WGS) to conduct genomic clustering analysis along with field epidemiological investigation to determine the transmission pattern and drug resistance profile of a cluster with ten MDR-TB patients in combining field epidemiological investigation. RESULTS The ten MDR-TB patients with genotypically clustered Beijing lineage strains lived in a densely populated, old alley with direct or indirect contact history. The analysis of genomic data showed that the genetic distances of the ten strains (excluding drug-resistant mutations) were 0-20 single nucleotide polymorphisms (SNPs), with an average distance of 9 SNPs, suggesting that the ten MDR-TB patients were infected and developed the onset of illness by the recent transmission of M. tuberculosis. The genetic analysis confirmed definite epidemiological links between the clustered cases. CONCLUSIONS The integration of the genotyping tool in routine tuberculosis surveillance can play a substantial role in the detection of MDR-TB transmission events. The leverage of genomic analysis in combination with the epidemiological investigation could further elucidate transmission patterns. Whole-genome sequencing could be integrated into intensive case-finding strategies to identify missed cases of MDR-TB and strengthen efforts to interrupt transmission.
Collapse
Affiliation(s)
- Zhiying Han
- Department of Tuberculosis Prevention and Control, Jing'an District Center for Disease Control and Prevention, Shanghai, 200072, China.
| | - Jing Li
- Tuberculosis Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200036, China
| | - Guomei Sun
- Department of Tuberculosis Prevention and Control, Jing'an District Center for Disease Control and Prevention, Shanghai, 200072, China
| | - Kaikan Gu
- Department of Tuberculosis Prevention and Control, Jing'an District Center for Disease Control and Prevention, Shanghai, 200072, China
| | - Yangyi Zhang
- Tuberculosis Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200036, China
| | - Hui Yao
- Second Shimen Road Community Health Center, Shanghai, China
| | - Yuan Jiang
- Tuberculosis Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200036, China.
| |
Collapse
|
10
|
Asare P, Asante-Poku A, Osei-Wusu S, Otchere ID, Yeboah-Manu D. The Relevance of Genomic Epidemiology for Control of Tuberculosis in West Africa. Front Public Health 2021; 9:706651. [PMID: 34368069 PMCID: PMC8342769 DOI: 10.3389/fpubh.2021.706651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB), an airborne infectious disease caused by Mycobacterium tuberculosis complex (MTBC), remains a global health problem. West Africa has a unique epidemiology of TB that is characterized by medium- to high-prevalence. Moreover, the geographical restriction of M. africanum to the sub-region makes West Africa have an extra burden to deal with a two-in-one pathogen. The region is also burdened with low case detection, late reporting, poor treatment adherence leading to development of drug resistance and relapse. Sporadic studies conducted within the subregion report higher burden of drug resistant TB (DRTB) than previously thought. The need for more sensitive and robust tools for routine surveillance as well as to understand the mechanisms of DRTB and transmission dynamics for the design of effective control tools, cannot be overemphasized. The advancement in molecular biology tools including traditional fingerprinting and next generation sequencing (NGS) technologies offer reliable tools for genomic epidemiology. Genomic epidemiology provides in-depth insight of the nature of pathogens, circulating strains and their spread as well as prompt detection of the emergence of new strains. It also offers the opportunity to monitor treatment and evaluate interventions. Furthermore, genomic epidemiology can be used to understand potential emergence and spread of drug resistant strains and resistance mechanisms allowing the design of simple but rapid tools. In this review, we will describe the local epidemiology of MTBC, highlight past and current investigations toward understanding their biology and spread as well as discuss the relevance of genomic epidemiology studies to TB control in West Africa.
Collapse
Affiliation(s)
- Prince Asare
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Adwoa Asante-Poku
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Isaac Darko Otchere
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
11
|
Mohamed S, Köser CU, Salfinger M, Sougakoff W, Heysell SK. Targeted next-generation sequencing: a Swiss army knife for mycobacterial diagnostics? Eur Respir J 2021; 57:57/3/2004077. [PMID: 33737379 DOI: 10.1183/13993003.04077-2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/09/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Sagal Mohamed
- Division of Infectious Diseases and International Health, University of Virginia Charlottesville, Charlottesville, VA, USA
| | | | - Max Salfinger
- University of South Florida College of Public Health and Morsani College of Medicine, Tampa, FL, USA
| | - Wladimir Sougakoff
- Sorbonne Université, INSERM U1135, CIMI-Paris, APHP, Hôpital Pitié-Salpêtrière, NRC-MyRMA, Paris, France
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia Charlottesville, Charlottesville, VA, USA
| |
Collapse
|
12
|
Abascal E, Pérez-Lago L, Martínez-Lirola M, Chiner-Oms Á, Herranz M, Chaoui I, Comas I, El Messaoudi MD, Cárdenas JAG, Santantón S, Bouza E, García-de-Viedma D. Whole genome sequencing-based analysis of tuberculosis (TB) in migrants: rapid tools for cross-border surveillance and to distinguish between recent transmission in the host country and new importations. ACTA ACUST UNITED AC 2020; 24. [PMID: 30696526 PMCID: PMC6351995 DOI: 10.2807/1560-7917.es.2019.24.4.1800005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background The analysis of transmission of tuberculosis (TB) is challenging in areas with a large migrant population. Standard genotyping may fail to differentiate transmission within the host country from new importations, which is key from an epidemiological perspective. Aim To propose a new strategy to simplify and optimise cross-border surveillance of tuberculosis and to distinguish between recent transmission in the host country and new importations Methods We selected 10 clusters, defined by 24-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR), from a population in Spain rich in migrants from eastern Europe, north Africa and west Africa and reanalysed 66 isolates by whole-genome sequencing (WGS). A multiplex-allele-specific PCR was designed to target strain-specific marker single nucleotide polymorphisms (SNPs), identified from WGS data, to optimise the surveillance of the most complex cluster. Results In five of 10 clusters not all isolates showed the short genetic distances expected for recent transmission and revealed a higher number of SNPs, thus suggesting independent importations of prevalent strains in the country of origin. In the most complex cluster, rich in Moroccan cases, a multiplex allele-specific oligonucleotide-PCR (ASO-PCR) targeting the marker SNPs for the transmission subcluster enabled us to prospectively identify new secondary cases. The ASO-PCR-based strategy was transferred and applied in Morocco, demonstrating that the strain was prevalent in the country. Conclusion We provide a new model for optimising the analysis of cross-border surveillance of TB transmission in the scenario of global migration.
Collapse
Affiliation(s)
- Estefanía Abascal
- These authors have contributed equally.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laura Pérez-Lago
- These authors have contributed equally.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Álvaro Chiner-Oms
- Unidad Mixta Genómica y Salud, Centro Superior de Investigación en Salud Pública (FISABIO)-Universitat de València, Valencia, Spain
| | - Marta Herranz
- CIBER Enfermedades respiratorias (CIBERES), Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Imane Chaoui
- Unité de Biologie et Recherches Médicales, Division des Sciences du Vivant, Centre National de l'Energie, des Sciences et des Techniques Nucléaires (CNESTEN), Rabat, Morocco
| | - Iñaki Comas
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain.,Instituto de Biomedicina de Valencia (IBV) Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | | | | | - Sheila Santantón
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Emilio Bouza
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,CIBER Enfermedades respiratorias (CIBERES), Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Darío García-de-Viedma
- CIBER Enfermedades respiratorias (CIBERES), Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
13
|
Asare P, Otchere ID, Bedeley E, Brites D, Loiseau C, Baddoo NA, Asante-Poku A, Osei-Wusu S, Prah DA, Borrell S, Reinhard M, Forson A, Koram KA, Gagneux S, Yeboah-Manu D. Whole Genome Sequencing and Spatial Analysis Identifies Recent Tuberculosis Transmission Hotspots in Ghana. Front Med (Lausanne) 2020; 7:161. [PMID: 32509791 PMCID: PMC7248928 DOI: 10.3389/fmed.2020.00161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/09/2020] [Indexed: 01/08/2023] Open
Abstract
Whole genome sequencing (WGS) is progressively being used to investigate the transmission dynamics of Mycobacterium tuberculosis complex (MTBC). We used WGS analysis to resolve traditional genotype clusters and explored the spatial distribution of confirmed recent transmission clusters. Bacterial genomes from a total of 452 MTBC isolates belonging to large traditional clusters from a population-based study spanning July 2012 and December 2015 were obtained through short read next-generation sequencing using the illumina HiSeq2500 platform. We performed clustering and spatial analysis using specified R packages and ArcGIS. Of the 452 traditional genotype clustered genomes, 314 (69.5%) were confirmed clusters with a median cluster size of 7.5 genomes and an interquartile range of 4–12. Recent tuberculosis (TB) transmission was estimated as 24.7%. We confirmed the wide spread of a Cameroon sub-lineage clone with a cluster size of 78 genomes predominantly from the Ablekuma sub-district of Accra metropolis. More importantly, we identified a recent transmission cluster associated with isoniazid resistance belonging to the Ghana sub-lineage of lineage 4. WGS was useful in detecting unsuspected outbreaks; hence, we recommend its use not only as a research tool but as a surveillance tool to aid in providing the necessary guided steps to track, monitor, and control TB.
Collapse
Affiliation(s)
- Prince Asare
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.,West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Edmund Bedeley
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Daniela Brites
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Chloé Loiseau
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Diana Ahu Prah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Sonia Borrell
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Miriam Reinhard
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Audrey Forson
- Department of Chest Diseases, Korle-Bu Teaching Hospital, Korle-Bu, Accra, Ghana
| | - Kwadwo Ansah Koram
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.,West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| |
Collapse
|
14
|
Genomic Epidemiology of Complex, Multispecies, Plasmid-Borne bla KPC Carbapenemase in Enterobacterales in the United Kingdom from 2009 to 2014. Antimicrob Agents Chemother 2020; 64:AAC.02244-19. [PMID: 32094139 DOI: 10.1128/aac.02244-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/21/2020] [Indexed: 01/29/2023] Open
Abstract
Carbapenem resistance in Enterobacterales is a public health threat. Klebsiella pneumoniae carbapenemase (encoded by alleles of the bla KPC family) is one of the most common transmissible carbapenem resistance mechanisms worldwide. The dissemination of bla KPC historically has been associated with distinct K. pneumoniae lineages (clonal group 258 [CG258]), a particular plasmid family (pKpQIL), and a composite transposon (Tn4401). In the United Kingdom, bla KPC has represented a large-scale, persistent management challenge for some hospitals, particularly in North West England. The dissemination of bla KPC has evolved to be polyclonal and polyspecies, but the genetic mechanisms underpinning this evolution have not been elucidated in detail; this study used short-read whole-genome sequencing of 604 bla KPC-positive isolates (Illumina) and long-read assembly (PacBio)/polishing (Illumina) of 21 isolates for characterization. We observed the dissemination of bla KPC (predominantly bla KPC-2; 573/604 [95%] isolates) across eight species and more than 100 known sequence types. Although there was some variation at the transposon level (mostly Tn4401a, 584/604 [97%] isolates; predominantly with ATTGA-ATTGA target site duplications, 465/604 [77%] isolates), bla KPC spread appears to have been supported by highly fluid, modular exchange of larger genetic segments among plasmid populations dominated by IncFIB (580/604 isolates), IncFII (545/604 isolates), and IncR (252/604 isolates) replicons. The subset of reconstructed plasmid sequences (21 isolates, 77 plasmids) also highlighted modular exchange among non-bla KPC and bla KPC plasmids and the common presence of multiple replicons within bla KPC plasmid structures (>60%). The substantial genomic plasticity observed has important implications for our understanding of the epidemiology of transmissible carbapenem resistance in Enterobacterales for the implementation of adequate surveillance approaches and for control.
Collapse
|
15
|
Zakham F, Laurent S, Esteves Carreira A, Corbaz A, Bertelli C, Masserey E, Nicod L, Greub G, Jaton K, Mazza-Stalder J, Opota O. Whole-genome sequencing for rapid, reliable and routine investigation of Mycobacterium tuberculosis transmission in local communities. New Microbes New Infect 2019; 31:100582. [PMID: 31388433 PMCID: PMC6669808 DOI: 10.1016/j.nmni.2019.100582] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 11/28/2022] Open
Abstract
Contact investigations following the diagnosis of active tuberculosis (TB) are paramount for the control of the disease. Epidemiological data are very powerful for contact tracing but might be delayed and/or difficult to integrate, especially in the setting of multiple contact-tracing investigations. The aim of this study was to address the added-value of whole-genome sequencing (WGS) to routine local TB surveillance systems. From November 2016 to July 2017, the local TB surveillance system identified three clusters that could constitute a unique larger outbreak. Epidemiological and clinical information were integrated with WGS genotyping data of Mycobacterium tuberculosis strains obtained using a simple DNA extraction method coupled with sequencing using an Illumina MiSeq platform and an in-house bioinformatics pipeline for single nucleotide polymorphism (SNP) analysis. Epidemiological investigations identified three putative TB clusters potentially interrelated including eight patients with active TB. Seven M. tuberculosis isolates were available and analysed by WGS. Using a 5-SNP threshold to define recent transmission, WGS-based genotyping supported the occurrence of the three clusters as well as a link between clusters 1 and 2 (SNP ≤1), constituting a larger outbreak. This outbreak was clearly delineated by refuting a potential link with the third cluster (SNP >500). Genotyping data did not support the belonging of patient 7 to any studied cluster. This study illustrates the usefulness of WGS genotyping for routine TB surveillance systems in local communities to rapidly confirm or disprove epidemiological hypotheses and delineate TB clusters, especially in the context of multiple contact-tracing investigations.
Collapse
Affiliation(s)
- F. Zakham
- Institute of Microbiology, University of Lausanne and University Hospital of Lausanne, Lausanne Switzerland
| | - S. Laurent
- Institute of Microbiology, University of Lausanne and University Hospital of Lausanne, Lausanne Switzerland
| | - A.L. Esteves Carreira
- Department of Pneumology, University of Lausanne and University Hospital of Lausanne, Lausanne Switzerland
| | - A. Corbaz
- Department of Pneumology, University of Lausanne and University Hospital of Lausanne, Lausanne Switzerland
| | - C. Bertelli
- Institute of Microbiology, University of Lausanne and University Hospital of Lausanne, Lausanne Switzerland
| | - E. Masserey
- Public Health Department, Canton of Vaud, Lausanne Switzerland
| | - L. Nicod
- Department of Pneumology, University of Lausanne and University Hospital of Lausanne, Lausanne Switzerland
| | - G. Greub
- Institute of Microbiology, University of Lausanne and University Hospital of Lausanne, Lausanne Switzerland
| | - K. Jaton
- Institute of Microbiology, University of Lausanne and University Hospital of Lausanne, Lausanne Switzerland
| | - J. Mazza-Stalder
- Department of Pneumology, University of Lausanne and University Hospital of Lausanne, Lausanne Switzerland
| | - O. Opota
- Institute of Microbiology, University of Lausanne and University Hospital of Lausanne, Lausanne Switzerland
| |
Collapse
|
16
|
García de Viedma D. Pathways and strategies followed in the genomic epidemiology of Mycobacterium tuberculosis. INFECTION GENETICS AND EVOLUTION 2019; 72:4-9. [DOI: 10.1016/j.meegid.2019.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
|
17
|
Nikolayevskyy V, Niemann S, Anthony R, van Soolingen D, Tagliani E, Ködmön C, van der Werf MJ, Cirillo DM. Role and value of whole genome sequencing in studying tuberculosis transmission. Clin Microbiol Infect 2019; 25:1377-1382. [PMID: 30980928 DOI: 10.1016/j.cmi.2019.03.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND Tuberculosis (TB) remains a serious public health threat worldwide. Theoretically ultimate resolution of whole genome sequencing (WGS) for Mycobacterium tuberculosis complex (MTBC) strain classification makes this technology very attractive for epidemiological investigations. OBJECTIVES To summarize the evidence available in peer-reviewed publications on the role and place of WGS in detection of TB transmission. SOURCES A total of 69 peer-reviewed publications identified in Pubmed database. CONTENT Evidence from >30 publications suggests that a cut-off value of fewer than six single nucleotide polymorphisms between strains efficiently excludes cases that are not the result of recent transmission and could be used for the identification of drug-sensitive isolates involved in direct human-to-human TB transmission. Sensitivity of WGS to identify epidemiologically linked isolates is high, reaching 100% in eight studies with specificity (17%-95%) highly dependent on the settings. Drug resistance and specific phylogenetic lineages may be associated with accelerated mutation rates affecting genetic distances. WGS can be potentially used to distinguish between true relapses and re-infections but in high-incidence low-diversity settings this would require consideration of epidemiological links and minority alleles. Data from four studies looking into within-host diversity highlight a need for developing criteria for acceptance or rejection of WGS relatedness results depending on the proportion of minority alleles. IMPLICATIONS WGS will potentially allow for more targeted public health actions preventing unnecessary investigations of false clusters. Consensus on standardization of raw data quality control processing criteria, analytical pipelines and reporting language is yet to be reached.
Collapse
Affiliation(s)
- V Nikolayevskyy
- Public Health England, London, UK; Imperial College, London, UK.
| | - S Niemann
- Molecular and Experimental Mycobacteriology, National Reference Centre for Mycobacteria, Research Centre, Borstel, Germany; German Centre for Infection Research, Borstel site, Germany
| | - R Anthony
- Tuberculosis Reference Laboratory, Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - D van Soolingen
- Tuberculosis Reference Laboratory, Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - E Tagliani
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - C Ködmön
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - M J van der Werf
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - D M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
18
|
Martin MA, Lee RS, Cowley LA, Gardy JL, Hanage WP. Within-host Mycobacterium tuberculosis diversity and its utility for inferences of transmission. Microb Genom 2018; 4. [PMID: 30303479 PMCID: PMC6249434 DOI: 10.1099/mgen.0.000217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whole genome sequencing in conjunction with traditional epidemiology has been used to reconstruct transmission networks of Mycobacterium tuberculosis during outbreaks. Given its low mutation rate, genetic diversity within M. tuberculosis outbreaks can be extremely limited - making it difficult to determine precisely who transmitted to whom. In addition to consensus SNPs (cSNPs), examining heterogeneous alleles (hSNPs) has been proposed to improve resolution. However, few studies have examined the potential biases in detecting these hSNPs. Here, we analysed genome sequence data from 25 specimens from British Columbia, Canada. Specimens were sequenced to a depth of 112-296×. We observed biases in read depth, base quality, strand distribution and read placement where possible hSNPs were initially identified, so we applied conservative filters to reduce false positives. Overall, there was phylogenetic concordance between the observed 2542 cSNP and 63 hSNP loci. Furthermore, we identified hSNPs shared exclusively by epidemiologically linked patients, supporting their use in transmission inferences. We conclude that hSNPs may add resolution to transmission networks, particularly where the overall genetic diversity is low.
Collapse
Affiliation(s)
- Michael A Martin
- 1Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Robyn S Lee
- 2Department of Epidemiology, Harvard University, Boston, MA 02115, USA
| | - Lauren A Cowley
- 1Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Jennifer L Gardy
- 3School of Population and Public Health, University of British Columbia, Vancouver, Canada.,4British Columbia Centre for Disease Control, Vancouver, Canada
| | - William P Hanage
- 1Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
19
|
Séraphin MN, Didelot X, Nolan DJ, May JR, Khan MSR, Murray ER, Salemi M, Morris JG, Lauzardo M. Genomic Investigation of a Mycobacterium tuberculosis Outbreak Involving Prison and Community Cases in Florida, United States. Am J Trop Med Hyg 2018; 99:867-874. [PMID: 29987998 PMCID: PMC6159577 DOI: 10.4269/ajtmh.17-0700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 05/18/2018] [Indexed: 01/10/2023] Open
Abstract
We used whole-genome sequencing to investigate a tuberculosis outbreak involving U.S.-born persons in the prison system and both U.S.- and foreign-born persons in the community in Florida over a 7-year period (2009-2015). Genotyping by spacer oligonucleotide typing and 24-locus mycobacterial interspersed repetitive unit-variable number tandem repeat suggested that the outbreak might be clonal in origin. However, contact tracing could not link the two populations. Through a multidisciplinary approach, we showed that the cluster involved distinct bacterial transmission networks segregated by country of birth. The source strain is of foreign origin and circulated in the local Florida community for more than 20 years before introduction into the prison system. We also identified novel transmission links involving foreign and U.S.-born cases not discovered during contact investigation. Our data highlight the potential for spread of strains originating from outside the United States into U.S. "high-risk" populations, such as prisoners, with subsequent movement back to the general community.
Collapse
Affiliation(s)
- Marie Nancy Séraphin
- Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, Florida
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - David J. Nolan
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida
- Bioinfoexperts, LLC, Thibodaux, Louisiana
| | - Justin R. May
- Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, Florida
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Md Siddiqur Rahman Khan
- Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, Florida
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Ellen R. Murray
- Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, Florida
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - J. Glenn Morris
- Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, Florida
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Michael Lauzardo
- Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, Florida
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
20
|
Cannas A, Camassa S, Sali M, Butera O, Mazzarelli A, Sanguinetti M, Di Caro A, Delogu G, Girardi E. Genetic Diversity of Mycobacterium tuberculosis Isolates in the Metropolitan Area of Rome. Chemotherapy 2018; 63:148-154. [PMID: 29902788 DOI: 10.1159/000489860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/05/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND The presence in a geographic area of Mycobacterium tuberculosis (Mtb) strains belonging to different phylogeographic lineages and showing different drug susceptibility patterns may suggest recent transmission, with implications in terms of patient clinical management and disease control. The aim of this study was to carry out a preliminary epidemiological investigation of tuberculosis (TB) cases in Rome. METHODS A total of 232 Mtb isolates, collected from new or previously treated patients, admitted between 2008 and 2014 at 2 hospital settings in Rome with a diagnosis of TB, were analyzed by spoligotyping and analyzing 24 variable-number tandem repeats (VNTR) mycobacterial interspersed repetitive-unit (MIRU) loci. The SITVIT2 database and the MIRU-VNTRplus web applications were used to identify the strain genotypes and to generate phylogenetic trees. RESULTS Based on the position on the phylogenetic tree, 97.4% of the strains were associated with 1 of the 7 main lineages. The Euro-American lineage was the most commonly represented (81.9%) within both Italian and foreign-born populations, although all main lineages were present. The highest frequency of drug-resistant strains was found among the East-Asian lineage (Beijing genotype) isolated from foreign-born patients. CONCLUSIONS Dynamics of TB transmission in Rome indicate recent spread of Mtb strains belonging to phylogeographic lineages and clades usually found in countries and geographic areas with a high incidence of TB, similarly to what is observed in most metropolitan areas in Western Europe. Knowledge from molecular and classical epidemiology provides an important tool for disease control.
Collapse
Affiliation(s)
- Angela Cannas
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani - IRCCS, Rome, Italy
| | - Serena Camassa
- Institute of Microbiology, Università Cattolica del Sacro Cuore - Fondazione Policlinico Universitario Gemelli, Rome, Italy
| | - Michela Sali
- Institute of Microbiology, Università Cattolica del Sacro Cuore - Fondazione Policlinico Universitario Gemelli, Rome, Italy
| | - Ornella Butera
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani - IRCCS, Rome, Italy
| | - Antonio Mazzarelli
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani - IRCCS, Rome, Italy
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore - Fondazione Policlinico Universitario Gemelli, Rome, Italy
| | - Antonino Di Caro
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani - IRCCS, Rome, Italy
| | - Giovanni Delogu
- Institute of Microbiology, Università Cattolica del Sacro Cuore - Fondazione Policlinico Universitario Gemelli, Rome, Italy
| | - Enrico Girardi
- Department of Epidemiology, Preclinical Research, and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani - IRCCS, Rome, Italy
| |
Collapse
|
21
|
Dekhil N, Skhairia MA, Mhenni B, Ben Fradj S, Warren R, Mardassi H. Automated IS6110-based fingerprinting of Mycobacterium tuberculosis: Reaching unprecedented discriminatory power and versatility. PLoS One 2018; 13:e0197913. [PMID: 29856789 PMCID: PMC5983439 DOI: 10.1371/journal.pone.0197913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/10/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Several technical hurdles and limitations have restricted the use of IS6110 restriction fragment length polymorphism (IS6110 RFLP), the most effective typing method for detecting recent tuberculosis (TB) transmission events. This has prompted us to conceive an alternative modality, IS6110-5'3'FP, a plasmid-based cloning approach coupled to a single PCR amplification of differentially labeled 5' and 3' IS6110 polymorphic ends and their automated fractionation on a capillary sequencer. The potential of IS6110-5'3'FP to be used as an alternative to IS6110 RFLP has been previously demonstrated, yet further technical improvements are still required for optimal discriminatory power and versatility. OBJECTIVES Here we introduced critical amendments to the original IS6110-5'3'FP protocol and compared its performance to that of 24-loci multiple interspersed repetitive unit-variable number tandem repeats (MIRU-VNTR), the current standard method for TB transmission analyses. METHODS IS6110-5'3'FP protocol modifications involved: (i) the generation of smaller-sized polymorphic fragments for efficient cloning and PCR amplification, (ii) omission of the plasmid amplification step in E. coli for shorter turnaround times, (iii) the use of more stable fluorophores for increased sensitivity, (iv) automated subtraction of background fluorescent signals, and (v) the automated conversion of fluorescent peaks into binary data. RESULTS In doing so, the overall turnaround time of IS6110-5'3'FP was reduced to 4 hours. The new protocol allowed detecting almost all 5' and 3' IS6110 polymorphic fragments of any given strain, including IS6110 high-copy number Beijing strains. IS6110-5'3'FP proved much more discriminative than 24-loci MIRU-VNTR, particularly with strains of the M. tuberculosis lineage 4. CONCLUSIONS The IS6110-5'3'FP protocol described herein reached the optimal discriminatory potential of IS6110 fingerprinting and proved more accurate than 24-loci MIRU-VNTR in estimating recent TB transmission. The method, which is highly cost-effective, was rendered versatile enough to prompt its evaluation as an automatized solution for a TB integrated molecular surveillance.
Collapse
Affiliation(s)
- Naira Dekhil
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Mohamed Amine Skhairia
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Besma Mhenni
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Saloua Ben Fradj
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Rob Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Helmi Mardassi
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
22
|
Leong KWC, Cooley LA, Anderson TL, Gautam SS, McEwan B, Wells A, Wilson F, Hughson L, O'Toole RF. Emergence of Vancomycin-Resistant Enterococcus faecium at an Australian Hospital: A Whole Genome Sequencing Analysis. Sci Rep 2018; 8:6274. [PMID: 29674657 PMCID: PMC5908837 DOI: 10.1038/s41598-018-24614-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/06/2018] [Indexed: 11/09/2022] Open
Abstract
In 2015, a marked increase in vancomycin-resistant Enterococcus faecium (VREfm) isolation was detected at the Royal Hobart Hospital, Australia. The primary objective of this work was to examine the dynamics of VREfm transmission using whole genome data mapped to public health surveillance information. Screening and clinical isolates of VREfm from patients were typed for the specific vancomycin-resistance locus present. Of total isolates collected from 2014-2016 (n = 222), 15.3% and 84.7% harboured either the vanA or the vanB vancomycin-resistance locus, respectively. Whole-genome sequencing of 80 isolates was performed in conjunction with single-nucleotide polymorphic (SNP) analysis and in silico multi-locus sequence typing (MLST). Among the isolates sequenced, 5 phylogenetic clades were identified. The largest vanB clade belonged to MLST sequence type ST796 and contained clinical isolates from VREfm infections that clustered closely with isolates from colonised patients. Correlation of VREfm genotypes with spatio-temporal patient movements detected potential points of transmission within the hospital. ST80 emerged as the major vanA sequence type for which the most likely index case of a patient cluster was ascertained from SNP analyses. This work has identified the dominant clones associated with increased VREfm prevalence in a healthcare setting, and their likely direction of transmission.
Collapse
Affiliation(s)
- Kelvin W C Leong
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Louise A Cooley
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
- Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Tara L Anderson
- Royal Hobart Hospital, Hobart, Tasmania, Australia
- Tasmanian Infection Prevention and Control Unit, Department of Health and Human Services, Hobart, Tasmania, Australia
| | - Sanjay S Gautam
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Anne Wells
- Tasmanian Infection Prevention and Control Unit, Department of Health and Human Services, Hobart, Tasmania, Australia
| | - Fiona Wilson
- Tasmanian Infection Prevention and Control Unit, Department of Health and Human Services, Hobart, Tasmania, Australia
| | - Lucy Hughson
- Tasmanian Infection Prevention and Control Unit, Department of Health and Human Services, Hobart, Tasmania, Australia
| | - Ronan F O'Toole
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia.
- Trinity College Dublin, Department of Clinical Microbiology, Dublin, Ireland.
| |
Collapse
|
23
|
Campbell EM, Jia H, Shankar A, Hanson D, Luo W, Masciotra S, Owen SM, Oster AM, Galang RR, Spiller MW, Blosser SJ, Chapman E, Roseberry JC, Gentry J, Pontones P, Duwve J, Peyrani P, Kagan RM, Whitcomb JM, Peters PJ, Heneine W, Brooks JT, Switzer WM. Detailed Transmission Network Analysis of a Large Opiate-Driven Outbreak of HIV Infection in the United States. J Infect Dis 2017; 216:1053-1062. [PMID: 29029156 PMCID: PMC5853229 DOI: 10.1093/infdis/jix307] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/27/2017] [Indexed: 11/13/2022] Open
Abstract
In January 2015, an outbreak of undiagnosed human immunodeficiency virus (HIV) infections among persons who inject drugs (PWID) was recognized in rural Indiana. By September 2016, 205 persons in this community of approximately 4400 had received a diagnosis of HIV infection. We report results of new approaches to analyzing epidemiologic and laboratory data to understand transmission during this outbreak. HIV genetic distances were calculated using the polymerase region. Networks were generated using data about reported high-risk contacts, viral genetic similarity, and their most parsimonious combinations. Sample collection dates and recency assay results were used to infer dates of infection. Epidemiologic and laboratory data each generated large and dense networks. Integration of these data revealed subgroups with epidemiologic and genetic commonalities, one of which appeared to contain the earliest infections. Predicted infection dates suggest that transmission began in 2011, underwent explosive growth in mid-2014, and slowed after the declaration of a public health emergency. Results from this phylodynamic analysis suggest that the majority of infections had likely already occurred when the investigation began and that early transmission may have been associated with sexual activity and injection drug use. Early and sustained efforts are needed to detect infections and prevent or interrupt rapid transmission within networks of uninfected PWID.
Collapse
Affiliation(s)
- Ellsworth M Campbell
- Division of HIV/AIDS Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Hongwei Jia
- Division of HIV/AIDS Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Anupama Shankar
- Division of HIV/AIDS Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Debra Hanson
- Division of HIV/AIDS Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Wei Luo
- Division of HIV/AIDS Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Silvina Masciotra
- Division of HIV/AIDS Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - S Michele Owen
- Division of HIV/AIDS Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Alexandra M Oster
- Division of HIV/AIDS Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Romeo R Galang
- Division of HIV/AIDS Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Michael W Spiller
- Division of HIV/AIDS Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | | | | | | | - Joan Duwve
- Indiana State Department of Health, Indianapolis
- Indiana University Richard M. Fairbanks School of Public Health, Indianapolis
| | - Paula Peyrani
- Division of Infectious Diseases, University of Louisville, Kentucky
| | | | | | - Philip J Peters
- Division of HIV/AIDS Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Walid Heneine
- Division of HIV/AIDS Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - John T Brooks
- Division of HIV/AIDS Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - William M Switzer
- Division of HIV/AIDS Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
24
|
Mazariegos-Canellas O, Do T, Peto T, Eyre DW, Underwood A, Crook D, Wyllie DH. BugMat and FindNeighbour: command line and server applications for investigating bacterial relatedness. BMC Bioinformatics 2017; 18:477. [PMID: 29132318 PMCID: PMC5683244 DOI: 10.1186/s12859-017-1907-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/01/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Large scale bacterial sequencing has made the determination of genetic relationships within large sequence collections of bacterial genomes derived from the same microbial species an increasingly common task. Solutions to the problem have application to public health (for example, in the detection of possible disease transmission), and as part of divide-and-conquer strategies selecting groups of similar isolates for computationally intensive methods of phylogenetic inference using (for example) maximal likelihood methods. However, the generation and maintenance of distance matrices is computationally intensive, and rapid methods of doing so are needed to allow translation of microbial genomics into public health actions. RESULTS We developed, tested and deployed three solutions. BugMat is a fast C++ application which generates one-off in-memory distance matrices. FindNeighbour and FindNeighbour2 are server-side applications which build, maintain, and persist either complete (for FindNeighbour) or sparse (for FindNeighbour2) distance matrices given a set of sequences. FindNeighbour and BugMat use a variation model to accelerate computation, while FindNeighbour2 uses reference-based compression. Performance metrics show scalability into tens of thousands of sequences, with options for scaling further. CONCLUSION Three applications, each with distinct strengths and weaknesses, are available for distance-matrix based analysis of large bacterial collections. Deployed as part of the Public Health England solution for M. tuberculosis genomic processing, they will have wide applicability.
Collapse
Affiliation(s)
| | - Trien Do
- Nuffield Department of Medicine, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU UK
| | - Tim Peto
- Nuffield Department of Medicine, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU UK
| | - David W. Eyre
- Nuffield Department of Medicine, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU UK
| | | | - Derrick Crook
- Nuffield Department of Medicine, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU UK
| | - David H. Wyllie
- Nuffield Department of Medicine, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU UK
- Public Health England Academic Collaborating Centre, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU UK
| |
Collapse
|
25
|
Fiebig L, Kohl TA, Popovici O, Mühlenfeld M, Indra A, Homorodean D, Chiotan D, Richter E, Rüsch-Gerdes S, Schmidgruber B, Beckert P, Hauer B, Niemann S, Allerberger F, Haas W. A joint cross-border investigation of a cluster of multidrug-resistant tuberculosis in Austria, Romania and Germany in 2014 using classic, genotyping and whole genome sequencing methods: lessons learnt. ACTA ACUST UNITED AC 2017; 22:30439. [PMID: 28106529 PMCID: PMC5404487 DOI: 10.2807/1560-7917.es.2017.22.2.30439] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022]
Abstract
Molecular surveillance of multidrug-resistant tuberculosis (MDR-TB) using 24-loci MIRU-VNTR in the European Union suggests the occurrence of international transmission. In early 2014, Austria detected a molecular MDR-TB cluster of five isolates. Links to Romania and Germany prompted the three countries to investigate possible cross-border MDR-TB transmission jointly. We searched genotyping databases, genotyped additional isolates from Romania, used whole genome sequencing (WGS) to infer putative transmission links, and investigated pairwise epidemiological links and patient mobility. Ten isolates from 10 patients shared the same 24-loci MIRU-VNTR pattern. Within this cluster, WGS defined two subgroups of four patients each. The first comprised an MDR-TB patient from Romania who had sought medical care in Austria and two patients from Austria. The second comprised patients, two of them epidemiologically linked, who lived in three different countries but had the same city of provenance in Romania. Our findings strongly suggested that the two cases in Austrian citizens resulted from a newly introduced MDR-TB strain, followed by domestic transmission. For the other cases, transmission probably occurred in the same city of provenance. To prevent further MDR-TB transmission, we need to ensure universal access to early and adequate therapy and collaborate closely in tuberculosis care beyond administrative borders.
Collapse
Affiliation(s)
- Lena Fiebig
- Respiratory Infections Unit, Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany.,These authors contributed equally to this work
| | - Thomas A Kohl
- These authors contributed equally to this work.,Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Odette Popovici
- National Institute of Public Health - National Center for Communicable Diseases Surveillance and Control, Bucharest, Romania
| | | | - Alexander Indra
- Austrian Reference Laboratory for Mycobacteria, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Daniela Homorodean
- Clinical Hospital of Pneumology, Tuberculosis National Reference Laboratory, Cluj-Napoca, Romania
| | | | | | - Sabine Rüsch-Gerdes
- National Reference Center (NRC) for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Beatrix Schmidgruber
- Tuberculosis Patient Service, Health Service of the City of Vienna, Vienna, Austria
| | - Patrick Beckert
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany.,German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck, Borstel, Germany
| | - Barbara Hauer
- Respiratory Infections Unit, Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany.,National Reference Center (NRC) for Mycobacteria, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck, Borstel, Germany
| | - Franz Allerberger
- Austrian Reference Laboratory for Mycobacteria, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Walter Haas
- Respiratory Infections Unit, Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
26
|
Use of whole-genome sequencing to distinguish relapse from reinfection in a completed tuberculosis clinical trial. BMC Med 2017; 15:71. [PMID: 28351427 PMCID: PMC5371199 DOI: 10.1186/s12916-017-0834-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/09/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND RIFAQUIN was a tuberculosis chemotherapy trial in southern Africa including regimens with high-dose rifapentine with moxifloxacin. Here, the application of whole-genome sequencing (WGS) is evaluated within RIFAQUIN for identifying new infections in treated patients as either relapses or reinfections. WGS is further compared with mycobacterial interspersed repetitive units-variable number tandem repeats (MIRU-VNTR) typing. This is the first report of WGS being used to evaluate new infections in a completed clinical trial for which all treatment and epidemiological data are available for analysis. METHODS DNA from 36 paired samples of Mycobacterium tuberculosis cultured from patients before and after treatment was typed using 24-loci MIRU-VNTR, in silico spoligotyping and WGS. Following WGS, the sequences were mapped against the reference strain H37Rv, the single-nucleotide polymorphism (SNP) differences between pairs were identified, and a phylogenetic reconstruction was performed. RESULTS WGS indicated that 32 of the paired samples had a very low number of SNP differences (0-5; likely relapses). One pair had an intermediate number of SNP differences, and was likely the result of a mixed infection with a pre-treatment minor genotype that was highly related to the post-treatment genotype; this was reclassified as a relapse, in contrast to the MIRU-VNTR result. The remaining three pairs had very high SNP differences (>750; likely reinfections). CONCLUSIONS WGS and MIRU-VNTR both similarly differentiated relapses and reinfections, but WGS provided significant extra information. The low proportion of reinfections seen suggests that in standard chemotherapy trials with up to 24 months of follow-up, typing the strains brings little benefit to an analysis of the trial outcome in terms of differentiating relapse and reinfection. However, there is a benefit to using WGS as compared to MIRU-VNTR in terms of the additional genotype information obtained, in particular for defining the presence of mixed infections and the potential to identify known and novel drug-resistance markers.
Collapse
|
27
|
The Evolution of Strain Typing in the Mycobacterium tuberculosis Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:43-78. [PMID: 29116629 DOI: 10.1007/978-3-319-64371-7_3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is a contagious disease with a complex epidemiology. Therefore, molecular typing (genotyping) of Mycobacterium tuberculosis complex (MTBC) strains is of primary importance to effectively guide outbreak investigations, define transmission dynamics and assist global epidemiological surveillance of the disease. Large-scale genotyping is also needed to get better insights into the biological diversity and the evolution of the pathogen. Thanks to its shorter turnaround and simple numerical nomenclature system, mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) typing, based on 24 standardized plus 4 hypervariable loci, optionally combined with spoligotyping, has replaced IS6110 DNA fingerprinting over the last decade as a gold standard among classical strain typing methods for many applications. With the continuous progress and decreasing costs of next-generation sequencing (NGS) technologies, typing based on whole genome sequencing (WGS) is now increasingly performed for near complete exploitation of the available genetic information. However, some important challenges remain such as the lack of standardization of WGS analysis pipelines, the need of databases for sharing WGS data at a global level, and a better understanding of the relevant genomic distances for defining clusters of recent TB transmission in different epidemiological contexts. This chapter provides an overview of the evolution of genotyping methods over the last three decades, which culminated with the development of WGS-based methods. It addresses the relative advantages and limitations of these techniques, indicates current challenges and potential directions for facilitating standardization of WGS-based typing, and provides suggestions on what method to use depending on the specific research question.
Collapse
|
28
|
Genomic Epidemiology of Tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:79-93. [DOI: 10.1007/978-3-319-64371-7_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Cannas A, Mazzarelli A, Di Caro A, Delogu G, Girardi E. Molecular Typing of Mycobacterium Tuberculosis Strains: A Fundamental Tool for Tuberculosis Control and Elimination. Infect Dis Rep 2016; 8:6567. [PMID: 27403266 PMCID: PMC4927935 DOI: 10.4081/idr.2016.6567] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 11/23/2022] Open
Abstract
Tuberculosis (TB) is still an important cause of morbidity and mortality worldwide. An improvement of the strategies for disease control is necessary in both low- and high-incidence TB countries. Clinicians, epidemiologists, laboratory specialists, and public health players should work together in order to achieve a significant reduction in TB transmission and spread of drug-resistant strains. Effective TB surveillance relies on early diagnosis of new cases, appropriate therapy, and accurate detection of outbreaks in the community, in order to implement proper TB control strategies. To achieve this goal, information from classical and molecular epidemiology, together with patient clinical data need to be combined. In this review, we summarize the methodologies currently used in molecular epidemiology, namely molecular typing. We will discuss their efficiency to phylogenetically characterize Mycobacterium tuberculosis isolates, and their ability to provide information that can be useful for disease control. We will also introduce next generation sequencing as the methodology that potentially could provide in a short time both, detection of new outbreaks and identification of resistance patterns. This could envision a potential of next generation sequencing as an important tool for accurate patient management and disease control.
Collapse
Affiliation(s)
- Angela Cannas
- National Institute for Infectious Diseases L. Spallanzani , Rome, Italy
| | | | - Antonino Di Caro
- National Institute for Infectious Diseases L. Spallanzani , Rome, Italy
| | - Giovanni Delogu
- National Institute for Infectious Diseases L. Spallanzani, Rome, Italy; Institute of Microbiology, Sacro Cuore Catholic University, Rome, Italy
| | - Enrico Girardi
- National Institute for Infectious Diseases L. Spallanzani , Rome, Italy
| |
Collapse
|
30
|
Hatherell HA, Colijn C, Stagg HR, Jackson C, Winter JR, Abubakar I. Interpreting whole genome sequencing for investigating tuberculosis transmission: a systematic review. BMC Med 2016; 14:21. [PMID: 27005433 PMCID: PMC4804562 DOI: 10.1186/s12916-016-0566-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/23/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Whole genome sequencing (WGS) is becoming an important part of epidemiological investigations of infectious diseases due to greater resolution and cost reductions compared to traditional typing approaches. Many public health and clinical teams will increasingly use WGS to investigate clusters of potential pathogen transmission, making it crucial to understand the benefits and assumptions of the analytical methods for investigating the data. We aimed to understand how different approaches affect inferences of transmission dynamics and outline limitations of the methods. METHODS We comprehensively searched electronic databases for studies that presented methods used to interpret WGS data for investigating tuberculosis (TB) transmission. Two authors independently selected studies for inclusion and extracted data. Due to considerable methodological heterogeneity between studies, we present summary data with accompanying narrative synthesis rather than pooled analyses. RESULTS Twenty-five studies met our inclusion criteria. Despite the range of interpretation tools, the usefulness of WGS data in understanding TB transmission often depends on the amount of genetic diversity in the setting. Where diversity is small, distinguishing re-infections from relapses may be impossible; interpretation may be aided by the use of epidemiological data, examining minor variants and deep sequencing. Conversely, when within-host diversity is large, due to genetic hitchhiking or co-infection of two dissimilar strains, it is critical to understand how it arose. Greater understanding of microevolution and mixed infection will enhance interpretation of WGS data. CONCLUSIONS As sequencing studies have sampled more intensely and integrated multiple sources of information, the understanding of TB transmission and diversity has grown, but there is still much to be learnt about the origins of diversity that will affect inferences from these data. Public health teams and researchers should combine epidemiological, clinical and WGS data to strengthen investigations of transmission.
Collapse
Affiliation(s)
- Hollie-Ann Hatherell
- CoMPLEX, University College London, London, WC1E 6BT, UK. .,Centre for Infectious Disease Epidemiology, Infection and Population Health, University College London, London, WC1E 6JB, UK.
| | - Caroline Colijn
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
| | - Helen R Stagg
- Centre for Infectious Disease Epidemiology, Infection and Population Health, University College London, London, WC1E 6JB, UK
| | - Charlotte Jackson
- Centre for Infectious Disease Epidemiology, Infection and Population Health, University College London, London, WC1E 6JB, UK
| | - Joanne R Winter
- Centre for Infectious Disease Epidemiology, Infection and Population Health, University College London, London, WC1E 6JB, UK
| | - Ibrahim Abubakar
- Centre for Infectious Disease Epidemiology, Infection and Population Health, University College London, London, WC1E 6JB, UK.,Medical Research Council Clinical Trials Unit, 125 Kingsway, London, WC2B 6NH, UK
| |
Collapse
|
31
|
Genomic Analysis of Bacterial Outbreaks. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Implementation of a Consensus Set of Hypervariable Mycobacterial Interspersed Repetitive-Unit-Variable-Number Tandem-Repeat Loci in Mycobacterium tuberculosis Molecular Epidemiology. J Clin Microbiol 2015; 54:478-82. [PMID: 26659207 DOI: 10.1128/jcm.02945-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/21/2015] [Indexed: 11/20/2022] Open
Abstract
This study shows that the addition of a consensus 4-locus set of hypervariable mycobacterial interspersed repetitive-unit-variable-number tandem repeat (MIRU-VNTR) loci to the spoligotyping-24-locus MIRU-VNTR typing strategy is a well-standardized approach that can contribute to an improvement of the true cluster definition while retaining high typeability in non-Beijing strains.
Collapse
|
33
|
|
34
|
Azé J, Sola C, Zhang J, Lafosse-Marin F, Yasmin M, Siddiqui R, Kremer K, van Soolingen D, Refrégier G. Genomics and Machine Learning for Taxonomy Consensus: The Mycobacterium tuberculosis Complex Paradigm. PLoS One 2015; 10:e0130912. [PMID: 26154264 PMCID: PMC4496040 DOI: 10.1371/journal.pone.0130912] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/25/2015] [Indexed: 11/18/2022] Open
Abstract
Infra-species taxonomy is a prerequisite to compare features such as virulence in different pathogen lineages. Mycobacterium tuberculosis complex taxonomy has rapidly evolved in the last 20 years through intensive clinical isolation, advances in sequencing and in the description of fast-evolving loci (CRISPR and MIRU-VNTR). On-line tools to describe new isolates have been set up based on known diversity either on CRISPRs (also known as spoligotypes) or on MIRU-VNTR profiles. The underlying taxonomies are largely concordant but use different names and offer different depths. The objectives of this study were 1) to explicit the consensus that exists between the alternative taxonomies, and 2) to provide an on-line tool to ease classification of new isolates. Genotyping (24-VNTR, 43-spacers spoligotypes, IS6110-RFLP) was undertaken for 3,454 clinical isolates from the Netherlands (2004-2008). The resulting database was enlarged with African isolates to include most human tuberculosis diversity. Assignations were obtained using TB-Lineage, MIRU-VNTRPlus, SITVITWEB and an algorithm from Borile et al. By identifying the recurrent concordances between the alternative taxonomies, we proposed a consensus including 22 sublineages. Original and consensus assignations of the all isolates from the database were subsequently implemented into an ensemble learning approach based on Machine Learning tool Weka to derive a classification scheme. All assignations were reproduced with very good sensibilities and specificities. When applied to independent datasets, it was able to suggest new sublineages such as pseudo-Beijing. This Lineage Prediction tool, efficient on 15-MIRU, 24-VNTR and spoligotype data is available on the web interface “TBminer.” Another section of this website helps summarizing key molecular epidemiological data, easing tuberculosis surveillance. Altogether, we successfully used Machine Learning on a large dataset to set up and make available the first consensual taxonomy for human Mycobacterium tuberculosis complex. Additional developments using SNPs will help stabilizing it.
Collapse
Affiliation(s)
- Jérôme Azé
- LIRMM UM CNRS, UMR 5506, 860 rue de St Priest, 34095 Montpellier cedex 5, France
| | - Christophe Sola
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Bât 400, 91405 Orsay cedex, France
| | - Jian Zhang
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Bât 400, 91405 Orsay cedex, France
| | - Florian Lafosse-Marin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Bât 400, 91405 Orsay cedex, France
| | - Memona Yasmin
- Pakistan Institute for Engineering and Applied Sciences (PIEAS), Lehtrar Road, Nilore, Islamabad, Pakistan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box # 577, Jhang Road, Faisalabad, Pakistan
| | - Rubina Siddiqui
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box # 577, Jhang Road, Faisalabad, Pakistan
| | - Kristin Kremer
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Dick van Soolingen
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
- Department of Pulmonary Diseases and Department of Microbiology, Radbout University Nijmegen Medical Centre, University Lung Centre Dekkerswald, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Guislaine Refrégier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Bât 400, 91405 Orsay cedex, France
- * E-mail:
| |
Collapse
|
35
|
Witney AA, Gould KA, Arnold A, Coleman D, Delgado R, Dhillon J, Pond MJ, Pope CF, Planche TD, Stoker NG, Cosgrove CA, Butcher PD, Harrison TS, Hinds J. Clinical application of whole-genome sequencing to inform treatment for multidrug-resistant tuberculosis cases. J Clin Microbiol 2015; 53:1473-83. [PMID: 25673793 PMCID: PMC4400773 DOI: 10.1128/jcm.02993-14] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/06/2015] [Indexed: 01/29/2023] Open
Abstract
The treatment of drug-resistant tuberculosis cases is challenging, as drug options are limited, and the existing diagnostics are inadequate. Whole-genome sequencing (WGS) has been used in a clinical setting to investigate six cases of suspected extensively drug-resistant Mycobacterium tuberculosis (XDR-TB) encountered at a London teaching hospital between 2008 and 2014. Sixteen isolates from six suspected XDR-TB cases were sequenced; five cases were analyzed in a clinically relevant time frame, with one case sequenced retrospectively. WGS identified mutations in the M. tuberculosis genes associated with antibiotic resistance that are likely to be responsible for the phenotypic resistance. Thus, an evidence base was developed to inform the clinical decisions made around antibiotic treatment over prolonged periods. All strains in this study belonged to the East Asian (Beijing) lineage, and the strain relatedness was consistent with the expectations from the case histories, confirming one contact transmission event. We demonstrate that WGS data can be produced in a clinically relevant time scale some weeks before drug sensitivity testing (DST) data are available, and they actively help clinical decision-making through the assessment of whether an isolate (i) has a particular resistance mutation where there are absent or contradictory DST results, (ii) has no further resistance markers and therefore is unlikely to be XDR, or (iii) is identical to an isolate of known resistance (i.e., a likely transmission event). A small number of discrepancies between the genotypic predictions and phenotypic DST results are discussed in the wider context of the interpretation and reporting of WGS results.
Collapse
Affiliation(s)
- Adam A Witney
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Katherine A Gould
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Amber Arnold
- Clinical Infection Unit, St. George's Healthcare NHS Trust, London, United Kingdom
| | - David Coleman
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Rachel Delgado
- Department of Microbiology, St. George's Healthcare NHS Trust, London, United Kingdom
| | - Jasvir Dhillon
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Marcus J Pond
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Cassie F Pope
- Department of Microbiology, St. George's Healthcare NHS Trust, London, United Kingdom
| | - Tim D Planche
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom Department of Microbiology, St. George's Healthcare NHS Trust, London, United Kingdom
| | - Neil G Stoker
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Catherine A Cosgrove
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom Clinical Infection Unit, St. George's Healthcare NHS Trust, London, United Kingdom
| | - Philip D Butcher
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Thomas S Harrison
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom Clinical Infection Unit, St. George's Healthcare NHS Trust, London, United Kingdom
| | - Jason Hinds
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| |
Collapse
|
36
|
Wada T, Iwamoto T, Tamaru A, Seto J, Ahiko T, Yamamoto K, Hase A, Maeda S, Yamamoto T. Clonality and micro-diversity of a nationwide spreading genotype of Mycobacterium tuberculosis in Japan. PLoS One 2015; 10:e0118495. [PMID: 25734518 PMCID: PMC4348518 DOI: 10.1371/journal.pone.0118495] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/19/2015] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis transmission routes can be estimated from genotypic analysis of clinical isolates from patients. In Japan, still a middle-incidence country of TB, a unique genotype strain designated as ‘M-strain’ has been isolated nationwide recently. To ascertain the history of the wide spread of the strain, 10 clinical isolates from different areas were subjected to genome-wide analysis based on deep sequencers. Results show that all isolates possessed common mutations to those of referential strains. The greatest number of accumulated single nucleotide variants (SNVs) from the oldest coalescence was 13 nucleotides, indicating high clonality of these isolates. When an SNV common to the isolates was used as a surrogate marker of the clone, authentic clonal isolates with variation in a reliable subset of variable number of tandem repeat (VNTR) genotyping method can be selected successfully from clinical isolates populations of M. tuberculosis. When the authentic clones can also be assigned to sub-clonal groups by SNVs derived from the genomic comparison, they are classifiable into three sub-clonal groups with a bias of geographical origins. Feedback from genomic analysis of clinical isolates of M. tuberculosis to genotypic markers will be an efficient strategy for the big data in various settings for public health actions against TB.
Collapse
Affiliation(s)
- Takayuki Wada
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- * E-mail:
| | - Tomotada Iwamoto
- Department of Microbiology, Kobe Institute of Health, Kobe, Japan
| | - Aki Tamaru
- Department of Microbiology, Osaka Prefectural Institute of Public Health, Osaka, Japan
| | - Junji Seto
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| | - Tadayuki Ahiko
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| | - Kaori Yamamoto
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan
| | - Atushi Hase
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan
| | - Shinji Maeda
- Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Tokyo, Japan
| | - Taro Yamamoto
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
37
|
Mycobacterial DNA extraction for whole-genome sequencing from early positive liquid (MGIT) cultures. J Clin Microbiol 2015; 53:1137-43. [PMID: 25631807 PMCID: PMC4365189 DOI: 10.1128/jcm.03073-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a low-cost and reliable method of DNA extraction from as little as 1 ml of early positive mycobacterial growth indicator tube (MGIT) cultures that is suitable for whole-genome sequencing to identify mycobacterial species and predict antibiotic resistance in clinical samples. The DNA extraction method is based on ethanol precipitation supplemented by pretreatment steps with a MolYsis kit or saline wash for the removal of human DNA and a final DNA cleanup step with solid-phase reversible immobilization beads. The protocol yielded ≥0.2 ng/μl of DNA for 90% (MolYsis kit) and 83% (saline wash) of positive MGIT cultures. A total of 144 (94%) of the 154 samples sequenced on the MiSeq platform (Illumina) achieved the target of 1 million reads, with <5% of reads derived from human or nasopharyngeal flora for 88% and 91% of samples, respectively. A total of 59 (98%) of 60 samples that were identified by the national mycobacterial reference laboratory (NMRL) as Mycobacterium tuberculosis were successfully mapped to the H37Rv reference, with >90% coverage achieved. The DNA extraction protocol, therefore, will facilitate fast and accurate identification of mycobacterial species and resistance using a range of bioinformatics tools.
Collapse
|
38
|
Mears J, Abubakar I, Cohen T, McHugh TD, Sonnenberg P. Effect of study design and setting on tuberculosis clustering estimates using Mycobacterial Interspersed Repetitive Units-Variable Number Tandem Repeats (MIRU-VNTR): a systematic review. BMJ Open 2015; 5:e005636. [PMID: 25609667 PMCID: PMC4305070 DOI: 10.1136/bmjopen-2014-005636] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES To systematically review the evidence for the impact of study design and setting on the interpretation of tuberculosis (TB) transmission using clustering derived from Mycobacterial Interspersed Repetitive Units-Variable Number Tandem Repeats (MIRU-VNTR) strain typing. DATA SOURCES MEDLINE, EMBASE, CINHAL, Web of Science and Scopus were searched for articles published before 21st October 2014. REVIEW METHODS Studies in humans that reported the proportion of clustering of TB isolates by MIRU-VNTR were included in the analysis. Univariable meta-regression analyses were conducted to assess the influence of study design and setting on the proportion of clustering. RESULTS The search identified 27 eligible articles reporting clustering between 0% and 63%. The number of MIRU-VNTR loci typed, requiring consent to type patient isolates (as a proxy for sampling fraction), the TB incidence and the maximum cluster size explained 14%, 14%, 27% and 48% of between-study variation, respectively, and had a significant association with the proportion of clustering. CONCLUSIONS Although MIRU-VNTR typing is being adopted worldwide there is a paucity of data on how study design and setting may influence estimates of clustering. We have highlighted study design variables for consideration in the design and interpretation of future studies.
Collapse
Affiliation(s)
- Jessica Mears
- Department of Infection and Population Health, University College London, London, UK
| | - Ibrahim Abubakar
- Department of Infection and Population Health, University College London, London, UK
- Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK
- Clinical Trials Unit, Medical Research Council, London, UK
| | - Theodore Cohen
- Division of Global Health Equity, Brigham and Women's Hospital and Department of Epidemiology, Harvard School of Public Health, Harvard University, Boston, USA
| | - Timothy D McHugh
- Department of Infection, Centre for Clinical Microbiology, University College London, London, UK
| | - Pam Sonnenberg
- Department of Infection and Population Health, University College London, London, UK
| |
Collapse
|
39
|
Abstract
Recent advances in DNA sequencing technology have made the whole-genome sequencing of pathogens in a clinically relevant turn-around time both technically and economically feasible. The DNA sequencing of pathogens with epidemic potential offers new and exciting opportunities for high-resolution public health surveillance. This chapter outlines major methods and bioinformatics tools for pathogen genome characterization, the identification of infectious disease clusters, as well as for genomics-guided biosurveillance. Existing challenges are also considered.
Collapse
Affiliation(s)
- Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology - Public Health Pathology West ICPMR, Westmead Hospital C24, Hawkesbury Road and Darcy Road, Westmead, NSW, 2145, Australia,
| | | |
Collapse
|
40
|
Pouseele H, Supply P. Accurate Whole-Genome Sequencing-Based Epidemiological Surveillance of Mycobacterium Tuberculosis. METHODS IN MICROBIOLOGY 2015. [DOI: 10.1016/bs.mim.2015.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Hasnain SE, O'Toole RF, Grover S, Ehtesham NZ. Whole genome sequencing: a new paradigm in the surveillance and control of human tuberculosis. Tuberculosis (Edinb) 2014; 95:91-4. [PMID: 25586521 DOI: 10.1016/j.tube.2014.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/22/2014] [Indexed: 11/26/2022]
Abstract
Whole Genome Sequencing (WGS) is emerging as a very powerful tool for the management, outbreak analyses, surveillance and determining drug resistance of human infectious pathogens including Mycobacterium tuberculosis and MRSA. WGS can also discriminate relapse TB from re-infection and the resolution provided by WGS has no comparison to conventional technologies. With current cost coming down to <£70 per bacterial genome, WGS has emerged as an alternative to all the existing technologies put together. We discuss the advantage and disadvantages of WGS and whether it can become a point of care tool in not just developed countries but also in developing countries which have a huge TB burden. The likely utility of WGS for other pathogens and also in characterizing holobionts is also discussed.
Collapse
Affiliation(s)
- Seyed E Hasnain
- Kusuma School of Biological Sciences, Indian Institute of Technology (IIT), Hauz Khas, New Delhi 110016, India; Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500007, India.
| | - Ronan F O'Toole
- Department of Clinical Microbiology, School of Medicine, Trinity College, Dublin, Ireland.
| | - Sonam Grover
- Kusuma School of Biological Sciences, Indian Institute of Technology (IIT), Hauz Khas, New Delhi 110016, India
| | - Nasreen Z Ehtesham
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India.
| |
Collapse
|
42
|
Greatorex J, Ellington MJ, Köser CU, Rolfe KJ, Curran MD. New methods for identifying infectious diseases. Br Med Bull 2014; 112:27-35. [PMID: 25274572 DOI: 10.1093/bmb/ldu027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND The goal of clinical microbiology is to identify the cause of infection, aiding rapid treatment initiation or altering empirically chosen anti-microbial regimens. Automation and molecular techniques have brought about a revolution in the clinical laboratory, ensuring ever faster and more accurate diagnoses. In the last few years however, there have been a number of developments that radically alter the way that microbiology and other diagnostic laboratories are advancing. In particular, clinical microbiology will have the opportunity to intervene at the public health level as well as at the individual patient. SOURCES OF DATA, AREAS OF AGREEMENT AND CONTROVERSY Experts in the new technologies discuss the advances and some of the key literature that has been published to-date. They touch upon both the potential benefits and some of the hurdles that must be overcome before the technologies are embraced fully into the clinical laboratory. GROWING POINTS This review discusses a number of technologies that may alter the way in which clinical microbiology is used to investigate infectious disease. Diagnostic services in the UK are currently undergoing a process of rationalization, which involves a shift towards laboratory amalgamation, adoption of 24/7 working patterns and greater automation in order to reduce costs. This review explores technologies that are already or are expected to be important in this on-going transition because they simplify or accelerate the complex workflows that are required for pathogen identification.
Collapse
|
43
|
Teeter LD, Ha NP, Ma X, Wenger J, Cronin WA, Musser JM, Graviss EA. Evaluation of large genotypic Mycobacterium tuberculosis clusters: contributions from remote and recent transmission. Tuberculosis (Edinb) 2014; 93 Suppl:S38-46. [PMID: 24388648 DOI: 10.1016/s1472-9792(13)70009-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Tuberculosis genotypic clustering is used as a proxy for recent transmission. The association between clustering and recent transmission becomes problematic when the genotyping method lacks specificity in defining a cluster, as well as for clusters with extensive jurisdictional histories and/or common genotypes. We investigated the four largest spoligotype/12 loci MIRU-VNTR-defined clusters in Harris County, Texas from 2006-2012 to determine their historical contribution to tuberculosis morbidity, estimate the contributions from recent and remote transmission, and determine the impact of secondary genotyping on cluster definition. The clusters contained 189, 64, 51 and 38 cases. Each cluster was linked to cluster(s) previously identified by Houston Tuberculosis Initiative; 3 since 1995 and the fourth in 2002. Among cases for which timing of Mycobacterium tuberculosis transmission relative to tuberculosis disease could be ascertained, nearly equal proportions were associated with recent and remote transmission. The extent to which genotyping with an additional 12 MIRU-VNTR loci modified the cluster definition varied from little or no impact for the two smaller clusters to moderate impact for the larger clusters. Tuberculosis control measures to reduce morbidity associated with large clusters must involve strategies to identify and treat individuals who recently acquired infection, as well as persons infected for years.
Collapse
Affiliation(s)
- Larry D Teeter
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Disease Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Ngan P Ha
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Disease Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Xin Ma
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Disease Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jane Wenger
- Mycobacteriology and Mycology Section, Microbial Diseases Laboratory, Division of Communicable Disease Control, Center for Infectious Diseases, California Department of Public Health, Richmond, CA, USA
| | - Wendy A Cronin
- Center for TB Control and Prevention, Maryland Department of Health and Mental Hygiene, Baltimore, MD 21202, USA
| | - James M Musser
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Disease Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Edward A Graviss
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Disease Research, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Stucki D, Ballif M, Bodmer T, Coscolla M, Maurer AM, Droz S, Butz C, Borrell S, Längle C, Feldmann J, Furrer H, Mordasini C, Helbling P, Rieder HL, Egger M, Gagneux S, Fenner L. Tracking a tuberculosis outbreak over 21 years: strain-specific single-nucleotide polymorphism typing combined with targeted whole-genome sequencing. J Infect Dis 2014; 211:1306-16. [PMID: 25362193 DOI: 10.1093/infdis/jiu601] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Whole-genome sequencing (WGS) is increasingly used in molecular-epidemiological investigations of bacterial pathogens, despite cost- and time-intensive analyses. We combined strain-specific single-nucleotide polymorphism (SNP) typing and targeted WGS to investigate a tuberculosis cluster spanning 21 years in Bern, Switzerland. METHODS On the basis of genome sequences of 3 historical outbreak Mycobacterium tuberculosis isolates, we developed a strain-specific SNP-typing assay to identify further cases. We screened 1642 patient isolates and performed WGS on all identified cluster isolates. We extracted SNPs to construct genomic networks. Clinical and social data were retrospectively collected. RESULTS We identified 68 patients associated with the outbreak strain. Most received a tuberculosis diagnosis in 1991-1995, but cases were observed until 2011. Two thirds were homeless and/or substance abusers. Targeted WGS revealed 133 variable SNP positions among outbreak isolates. Genomic network analyses suggested a single origin of the outbreak, with subsequent division into 3 subclusters. Isolates from patients with confirmed epidemiological links differed by 0-11 SNPs. CONCLUSIONS Strain-specific SNP genotyping allowed rapid and inexpensive identification of M. tuberculosis outbreak isolates in a population-based strain collection. Subsequent targeted WGS provided detailed insights into transmission dynamics. This combined approach could be applied to track bacterial pathogens in real time and at high resolution.
Collapse
Affiliation(s)
- David Stucki
- Swiss Tropical and Public Health Institute University of Basel
| | | | - Thomas Bodmer
- Institute for Infectious Diseases, University of Bern labormedizinisches zentrum Dr Risch, Liebefeld-Bern
| | - Mireia Coscolla
- Swiss Tropical and Public Health Institute University of Basel
| | | | - Sara Droz
- Institute for Infectious Diseases, University of Bern
| | | | - Sonia Borrell
- Swiss Tropical and Public Health Institute University of Basel
| | | | - Julia Feldmann
- Swiss Tropical and Public Health Institute University of Basel
| | - Hansjakob Furrer
- Department of Infectious Diseases, Bern University Hospital and University of Bern
| | | | | | - Hans L Rieder
- Institute of Social and Preventive Medicine, University of Zurich, Switzerland Tuberculosis Department, International Union Against Tuberculosis and Lung Disease, Paris, France
| | - Matthias Egger
- Institute of Social and Preventive Medicine School of Public Health and Family Medicine, University of Cape Town, South Africa
| | | | - Lukas Fenner
- Swiss Tropical and Public Health Institute University of Basel Institute of Social and Preventive Medicine
| |
Collapse
|
45
|
Prodinger WM, Indra A, Koksalan OK, Kilicaslan Z, Richter E. Mycobacterium caprae infection in humans. Expert Rev Anti Infect Ther 2014; 12:1501-13. [PMID: 25345680 DOI: 10.1586/14787210.2014.974560] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mycobacterium caprae, a member of the Mycobacterium tuberculosis complex, causes tuberculosis (TB) in man and animals. Some features distinguish M. caprae from its epidemiological twin, Mycobacterium bovis: M. caprae is evolutionarily older, accounts for a smaller burden of zoonotic TB and is not globally distributed, but primarily restricted to European countries. M. caprae occurs only in a low proportion of human TB cases and this proportion may even decrease, if progress toward eradication of animal TB in Europe continues. So why bother, if M. caprae is not an enigma for diagnostic TB tests and if resistance against first-line drugs is a rarity with M. caprae? This 'European' pathogen of zoonotic TB asks interesting questions regarding the definition of a species. The latter, seemingly only an academic question, particularly requires and challenges the collaboration between human and veterinary medicine.
Collapse
Affiliation(s)
- Wolfgang M Prodinger
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Schoepfstrasse 41, 6020 Austria
| | | | | | | | | |
Collapse
|
46
|
Steiner A, Stucki D, Coscolla M, Borrell S, Gagneux S. KvarQ: targeted and direct variant calling from fastq reads of bacterial genomes. BMC Genomics 2014; 15:881. [PMID: 25297886 PMCID: PMC4197298 DOI: 10.1186/1471-2164-15-881] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 10/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-throughput DNA sequencing produces vast amounts of data, with millions of short reads that usually have to be mapped to a reference genome or newly assembled. Both reference-based mapping and de novo assembly are computationally intensive, generating large intermediary data files, and thus require bioinformatics skills that are often lacking in the laboratories producing the data. Moreover, many research and practical applications in microbiology require only a small fraction of the whole genome data. RESULTS We developed KvarQ, a new tool that directly scans fastq files of bacterial genome sequences for known variants, such as single nucleotide polymorphisms (SNP), bypassing the need of mapping all sequencing reads to a reference genome and de novo assembly. Instead, KvarQ loads "testsuites" that define specific SNPs or short regions of interest in a reference genome, and directly synthesizes the relevant results based on the occurrence of these markers in the fastq files. KvarQ has a versatile command line interface and a graphical user interface. KvarQ currently ships with two "testsuites" for Mycobacterium tuberculosis, but new "testsuites" for other organisms can easily be created and distributed. In this article, we demonstrate how KvarQ can be used to successfully detect all main drug resistance mutations and phylogenetic markers in 880 bacterial whole genome sequences. The average scanning time per genome sequence was two minutes. The variant calls of a subset of these genomes were validated with a standard bioinformatics pipeline and revealed >99% congruency. CONCLUSION KvarQ is a user-friendly tool that directly extracts relevant information from fastq files. This enables researchers and laboratory technicians with limited bioinformatics expertise to scan and analyze raw sequencing data in a matter of minutes. KvarQ is open-source, and pre-compiled packages with a graphical user interface are available at http://www.swisstph.ch/kvarq.
Collapse
Affiliation(s)
| | | | | | | | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland.
| |
Collapse
|
47
|
Diversity and evolution of Mycobacterium tuberculosis: moving to whole-genome-based approaches. Cold Spring Harb Perspect Med 2014; 4:a021188. [PMID: 25190252 DOI: 10.1101/cshperspect.a021188] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Genotyping of clinical Mycobacterium tuberculosis complex (MTBC) strains has become a standard tool for epidemiological tracing and for the investigation of the local and global strain population structure. Of special importance is the analysis of the expansion of multidrug (MDR) and extensively drug-resistant (XDR) strains. Classical genotyping and, more recently, whole-genome sequencing have revealed that the strains of the MTBC are more diverse than previously anticipated. Globally, several phylogenetic lineages can be distinguished whose geographical distribution is markedly variable. Strains of particular (sub)lineages, such as Beijing, seem to be more virulent and associated with enhanced resistance levels and fitness, likely fueling their spread in certain world regions. The upcoming generalization of whole-genome sequencing approaches will expectedly provide more comprehensive insights into the molecular and epidemiological mechanisms involved and lead to better diagnostic and therapeutic tools.
Collapse
|
48
|
Köser CU, Ellington MJ, Peacock SJ. Whole-genome sequencing to control antimicrobial resistance. Trends Genet 2014; 30:401-7. [PMID: 25096945 PMCID: PMC4156311 DOI: 10.1016/j.tig.2014.07.003] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 11/18/2022]
Abstract
Following recent improvements in sequencing technologies, whole-genome sequencing (WGS) is positioned to become an essential tool in the control of antibiotic resistance, a major threat in modern healthcare. WGS has already found numerous applications in this area, ranging from the development of novel antibiotics and diagnostic tests through to antibiotic stewardship of currently available drugs via surveillance and the elucidation of the factors that allow the emergence and persistence of resistance. Numerous proof-of-principle studies have also highlighted the value of WGS as a tool for day-to-day infection control and, for some pathogens, as a primary diagnostic tool to detect antibiotic resistance. However, appropriate data analysis platforms will need to be developed before routine WGS can be introduced on a large scale.
Collapse
Affiliation(s)
- Claudio U Köser
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Matthew J Ellington
- Clinical Microbiology and Public Health Laboratory, Public Health England, Cambridge, UK
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Cambridge, UK; Clinical Microbiology and Public Health Laboratory, Public Health England, Cambridge, UK; Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| |
Collapse
|
49
|
Luo T, Yang C, Peng Y, Lu L, Sun G, Wu J, Jin X, Hong J, Li F, Mei J, DeRiemer K, Gao Q. Whole-genome sequencing to detect recent transmission of Mycobacterium tuberculosis in settings with a high burden of tuberculosis. Tuberculosis (Edinb) 2014; 94:434-40. [PMID: 24888866 DOI: 10.1016/j.tube.2014.04.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/08/2014] [Accepted: 04/26/2014] [Indexed: 12/19/2022]
Abstract
Whole genome sequencing (WGS) of Mycobacterium tuberculosis has been used to trace the transmission of M. tuberculosis, the causative agent of tuberculosis (TB). Previously published studies using WGS were conducted in developed countries with a low TB burden. We sought to evaluate the relative usefulness of traditional VNTR and SNP typing methods, WGS and epidemiological investigations to study the recent transmission of M. tuberculosis in a high TB burden country. We conducted epidemiological investigations of 42 TB patients whose M. tuberculosis isolates were classified into three clusters based on variable-number tandem repeat (VNTR) typing. We applied WGS to 32 (76.2%) of the 42 strains and calculated the pairwise genomic distances between strains within each cluster. Eighteen (56.3%) of the 32 strains had genomic differences ≥100 SNPs with every other strain, suggesting that direct transmission did not likely occurred. Ten strains were grouped into four WGS-based clusters with genomic distances ≤5 SNPs within each cluster, and confirmed epidemiological links were identified in two of these clusters. Our results indicate that WGS provides reliable resolution for tracing the transmission of M. tuberculosis in high TB burden settings. The high resolution of WGS is particularly useful to confirm or exclude the possibility of direct transmission events defined by traditional typing methods.
Collapse
Affiliation(s)
- Tao Luo
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Chongguang Yang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Ying Peng
- Tuberculosis (TB) Control Center of Heilongjiang Province, No. 40, Youfang Street, Harbin, Heilongjiang 150030, China.
| | - Liping Lu
- Department of TB Control, Songjiang District of Shanghai Municipal Center for Disease Control and Prevention, 1050 North Xi Lin Road, Shanghai 201620, China.
| | - Guomei Sun
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Jie Wu
- Department of TB Control, Shanghai Municipal Centers for Disease Control and Prevention, Shanghai 200336, China.
| | - Xiaoping Jin
- Department of TB Control, Songjiang District of Shanghai Municipal Center for Disease Control and Prevention, 1050 North Xi Lin Road, Shanghai 201620, China.
| | - Jianjun Hong
- Department of TB Control, Songjiang District of Shanghai Municipal Center for Disease Control and Prevention, 1050 North Xi Lin Road, Shanghai 201620, China.
| | - Fabin Li
- Tuberculosis (TB) Control Center of Heilongjiang Province, No. 40, Youfang Street, Harbin, Heilongjiang 150030, China.
| | - Jian Mei
- Department of TB Control, Shanghai Municipal Centers for Disease Control and Prevention, Shanghai 200336, China.
| | - Kathryn DeRiemer
- University of California, Davis, School of Medicine, One Shields Avenue, Davis, CA 95616, USA.
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
50
|
Chernyaeva EN, Shulgina MV, Rotkevich MS, Dobrynin PV, Simonov SA, Shitikov EA, Ischenko DS, Karpova IY, Kostryukova ES, Ilina EN, Govorun VM, Zhuravlev VY, Manicheva OA, Yablonsky PK, Isaeva YD, Nosova EY, Mokrousov IV, Vyazovaya AA, Narvskaya OV, Lapidus AL, O'Brien SJ. Genome-wide Mycobacterium tuberculosis variation (GMTV) database: a new tool for integrating sequence variations and epidemiology. BMC Genomics 2014; 15:308. [PMID: 24767249 PMCID: PMC4234438 DOI: 10.1186/1471-2164-15-308] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 04/15/2014] [Indexed: 11/10/2022] Open
Abstract
Background Tuberculosis (TB) poses a worldwide threat due to advancing multidrug-resistant strains and deadly co-infections with Human immunodeficiency virus. Today large amounts of Mycobacterium tuberculosis whole genome sequencing data are being assessed broadly and yet there exists no comprehensive online resource that connects M. tuberculosis genome variants with geographic origin, with drug resistance or with clinical outcome. Description Here we describe a broadly inclusive unifying Genome-wide Mycobacterium tuberculosis Variation (GMTV) database, (http://mtb.dobzhanskycenter.org) that catalogues genome variations of M. tuberculosis strains collected across Russia. GMTV contains a broad spectrum of data derived from different sources and related to M. tuberculosis molecular biology, epidemiology, TB clinical outcome, year and place of isolation, drug resistance profiles and displays the variants across the genome using a dedicated genome browser. GMTV database, which includes 1084 genomes and over 69,000 SNP or Indel variants, can be queried about M. tuberculosis genome variation and putative associations with drug resistance, geographical origin, and clinical stages and outcomes. Conclusions Implementation of GMTV tracks the pattern of changes of M. tuberculosis strains in different geographical areas, facilitates disease gene discoveries associated with drug resistance or different clinical sequelae, and automates comparative genomic analyses among M. tuberculosis strains.
Collapse
Affiliation(s)
- Ekaterina N Chernyaeva
- St, Petersburg State University, Theodosius Dobzhansky Center for Genome Bioinformatics, 41 Sredniy prospect, St, Petersburg, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|