1
|
Ballon A, Queiroz LS, de Lamo-Castellví S, Güell C, Ferrando M, Jacobsen C, Yesiltas B. Physical and oxidative stability of 5 % fish oil-in-water emulsions stabilized with lesser mealworm (Alphitobius diaperinus larva) protein hydrolysates pretreated with ultrasound and pulsed electric fields. Food Chem 2025; 476:143339. [PMID: 39977981 DOI: 10.1016/j.foodchem.2025.143339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
Lesser mealworm (Alphitobius diaperinus larva) meal was pretreated with ultrasound (US) or pulsed electric fields (PEF) and hydrolyzed using Alcalase or Trypsin enzymes. The resulting hydrolysates were evaluated for their ability to maintain physical and oxidative stability of 5 % fish oil-in-water emulsions. The effects of the pretreatment on enzymatic hydrolysis were assessed by measuring the degree of hydrolysis (DH), protein yield, and molecular weight distribution. Hydrolysates with 19-28 % DH were produced. Physical stability was evaluated in terms of creaming index, Turbiscan stability index, ζ-potential, and droplet size. Emulsions stabilized with US-pretreated Trypsin hydrolysates presented the smallest droplet sizes (0.626 μm). Primary and volatile secondary oxidation products were measured during storage. However, none of the hydrolysate-stabilized emulsions exhibited greater oxidative stability than sodium caseinate, the reference protein. These results suggest that although US-pretreated Trypsin hydrolysates exhibit potential as emulsifiers, additional antioxidants are needed to effectively control lipid oxidation.
Collapse
Affiliation(s)
- Aurélie Ballon
- Departament d'Enginyeria Química, Escola Tecnica Superior d'Enginyeria Quimica, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | - Lucas Sales Queiroz
- National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Sílvia de Lamo-Castellví
- Departament d'Enginyeria Química, Escola Tecnica Superior d'Enginyeria Quimica, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain; Department of Food Science and Technology, The Ohio State University, 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, United States
| | - Carme Güell
- Departament d'Enginyeria Química, Escola Tecnica Superior d'Enginyeria Quimica, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | - Montse Ferrando
- Departament d'Enginyeria Química, Escola Tecnica Superior d'Enginyeria Quimica, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Masijn Q, Dekeukelaere L, Fraeye I. Impact of temperature on aggregation and gelation of potato protein under salt condition typical for food systems. Food Chem 2025; 475:143312. [PMID: 39965489 DOI: 10.1016/j.foodchem.2025.143312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
The European Farm-to-Fork strategy partially focuses on a shift towards alternative protein. Among these, potato protein is promising, because it is nutritious, low allergenic and highly techno-functional. However, research on the impact of temperature on potato protein gel properties under salt conditions typical for food systems is lacking. Therefore, the effect of temperature (50 °C, 60 °C, 70 °C or 90 °C, selected based on differential scanning calorimetry) of isothermal treatment on potato protein aggregation and gelation was studied in a model system containing 250 mM NaCl. Two new analyses in potato protein research, residual denaturation enthalpy and SDS-PAGE of soluble protein, revealed denaturation and aggregation of patatin between 50 and 60 °C and of protease inhibitors between 60 and 70 °C. The aggregation mechanism relies on hydrophobic interactions and/or hydrogen bonds, both for patatin and protease inhibitors. The temperature regimes could be linked to a decrease in least gelation concentration and to an increase in water holding capacity, stiffness, fracture stress and fracture strain of potato protein gels.
Collapse
Affiliation(s)
- Quinten Masijn
- KU Leuven - Ghent, Meat Technology & Science of Protein-rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), Ghent, Belgium
| | - Lien Dekeukelaere
- KU Leuven - Ghent, Meat Technology & Science of Protein-rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), Ghent, Belgium
| | - Ilse Fraeye
- KU Leuven - Ghent, Meat Technology & Science of Protein-rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), Ghent, Belgium.
| |
Collapse
|
3
|
Pei Y, Yan S, Liao Y, Qi B, Huang Y, Li Y. Recent advances in the modification of soy proteinase: Enzyme types, structural and functional characteristics, and applications in foods. Food Res Int 2025; 207:116056. [PMID: 40086957 DOI: 10.1016/j.foodres.2025.116056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/27/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
Soy protein, as the major component of soybean, has important applications in food, medicine and materials. This review summarizes the research progress in the technology of enzymatic modification of soy protein, focusing on the principles and applications of enzymatic hydrolysis and enzymatic cross-linking. Enzymatic modification can modulate the structure and properties of soy protein, providing a theoretical basis for its wide application in the food industry. The functional properties of soy protein are closely related to its structure. Enzyme-modified soy protein can be improved in terms of solubility, emulsification, water and oil retention, and gel properties. The enzyme modification technology is highly specific, safe and mild and provides new ideas for functional improvement of soy protein. However, in practical applications, enzymatic modification still has problems such as poor control of the degree of hydrolysis. Therefore, in the future, the effects of different types of enzymes and modification methods on soy protein, as well as efficient and targeted regulatory mechanisms, can be further explored to make it more widely used in food, medicine and materials.
Collapse
Affiliation(s)
- Yukun Pei
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yi Liao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuyang Huang
- Harbin University of Commerce, Harbin, Heilongjiang 150028, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Province China-Mongolia-Russia Joint R&D Laboratory for Bio-processing and Equipment for Agricultural Products (International Cooperation), Department of Food Science, Northeast Agricultural University, Harbin 150030, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
Chen Z, Li H, Zhang L, Ping Y, Wang Q, Fang X, Zhao B, Zhang L. Construction and microencapsulation of tea polyphenols W 1/O/W 2 double emulsion based on modified gluten (MEG). Int J Biol Macromol 2025; 290:139050. [PMID: 39708867 DOI: 10.1016/j.ijbiomac.2024.139050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
The objective of this study was to solve instability and low bioavailability of tea polyphenols (TPs), and to explore the application of gluten protein as microcapsule wall material. Modified gluten protein (MEG), β-cyclodextrin (β-CD), xanthan gum (XG) or acacia gum (GA) were used as composite wall materials to encapsulate TPs by double-emulsion technique, and the physicochemical and structural properties of the products were characterized. The results show that the composite wall material effectively encapsulated and enhanced the stability of TPs. CLSM imaging and in vitro digestion simulation further validated the structural integrity in gastric conditions and controlled release properties of microcapsules. When the composite wall materials was MEG:β-CD (2:1)-XG, the superior bioavailability of TPs was 60.35 %. This study provides a preparation method of TPs microcapsules and composite wall materials, which will contribute to the stability and bioavailability of polyphenols and the expansion of the application of gluten.
Collapse
Affiliation(s)
- Zhenzhen Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Hua Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China.
| | - Lanxi Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yali Ping
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Qingyuan Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xiaoxue Fang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Beibei Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Lulu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
5
|
Alehosseini E, McSweeney PLH, Miao S. Recent updates on plant protein-based dairy cheese alternatives: outlook and challenges. Crit Rev Food Sci Nutr 2025:1-15. [PMID: 39819182 DOI: 10.1080/10408398.2025.2452356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
In response to population growth, ethical considerations, and the environmental impacts of animal proteins, researchers are intensifying efforts to find alternative protein sources that replicate the functionality and nutritional profile of animal proteins. In this regard, plant-based cheese alternatives are becoming increasingly common in the marketplace, as one of the emerging dairy-free products. However, the dairy industry faces challenges in developing dairy-free products alternatives that meet the demands of customers with specific lifestyles or diets, ensure sustainability, and retain traditional customers. These challenges include food neophobia, the need to mimic the physicochemical, sensory, functional, and nutritional properties of dairy products, the inefficient conversion factor of plant-based proteins into animal proteins, and high production expenses. Given the distinct nature of plant-based milks, understanding their differences from cow's milk is crucial for formulating alternatives with comparable properties. Designing dairy-free cheese analogs requires overcoming electrostatic repulsion energy barriers among plant proteins to induce gelation and curd formation. Innovative approaches have substantially enhanced the physicochemical and sensory properties of these alternatives. Researchers are exploring the application of microalgae as a plant protein source and investigating new microbial fermentation methods to increase protein content in dairy-free products.
Collapse
Affiliation(s)
| | - Paul L H McSweeney
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
6
|
Barozzi L, Plazzotta S, Nucci A, Manzocco L. Elucidating the role of compositional and processing variables in tailoring the technological functionalities of plant protein ingredients. Curr Res Food Sci 2025; 10:100971. [PMID: 39911601 PMCID: PMC11795097 DOI: 10.1016/j.crfs.2025.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Although various plant protein (PP) ingredients are available on the market, their application in foods is not trivial, and food companies are struggling to identify PP ingredients fitting the intended use. To fill this gap, abundant literature has appeared but data are hardly comparable due to the absence of a recognized classification of PP ingredients accounting not only for protein purity but also for the process history, and of standardised protocols for technological functionality assessment. In this review, a comprehensive analysis of comparable literature data was thus carried out to elucidate the effect of composition and processing variables on PP technological functionalities. The review presents four sections describing: (i) the approach followed for the construction of a database of PP ingredient functionalities; (ii) the composition and processing factors relevant to PP ingredients; (iii) PP ingredient functional properties and methods used for their determination; (iv) the effect of composition and processing factors on PP ingredient functionalities. This analysis showed legume proteins to present the highest solubility and interfacial properties while pseudocereal ones the highest water-holding capacity. Although pure ingredients show higher functionalities, non-protein components could contribute to interfacial properties. Alkaline extraction, isoelectric precipitation and freeze-drying is the process mostly used in academic research to obtain PP ingredients. However, other extraction, purification, and drying methods can be properly combined, resulting in specific PP ingredient functionalities. Overall, this review highlights that, besides protein purity and source, knowledge of the processing history is required to select PP ingredients with desired functionalities.
Collapse
Affiliation(s)
- Lorenzo Barozzi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/a, 33100, Udine, Italy
| | - Stella Plazzotta
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/a, 33100, Udine, Italy
| | - Ada Nucci
- Lavazza innovation Center, Luigi Lavazza s.p.a., Str. di Settimo, 10156, Famolenta, Italy
| | - Lara Manzocco
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/a, 33100, Udine, Italy
| |
Collapse
|
7
|
Yang M, Zhu Y, Xu J, Zhao Z, Wang L, Yang J, Zhang M. Modification approaches of walnut proteins to improve their structural and functional properties: A review. Food Chem X 2024; 24:101873. [PMID: 39974719 PMCID: PMC11838099 DOI: 10.1016/j.fochx.2024.101873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 10/02/2024] [Indexed: 02/21/2025] Open
Abstract
Walnut protein has a high gluten content and compact structure, which limits its water solubility and affects its applications. Therefore, improving the sustainability of walnut proteins is an urgent issue that must be addressed. Physical modification can directly alter the structure of walnut proteins, leading to enhanced functional properties. Chemical modifications typically involve the introduction of exogenous substances that react with walnut proteins to obtain novel products with improved processing attributes. As a highly specific modification technique, biomodification uses enzymes or microorganisms to break down walnut proteins into small peptide molecules or cross-link them to form soluble polymers, thereby enhancing their functional properties and bioactivity. This review presents various methods for modifying walnut proteins and their effects on the structure and functional properties of walnut proteins. The challenges associated with the application and development of these unique technologies are also discussed.
Collapse
Affiliation(s)
- Min Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Yunkun Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Jiangxia Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Zhongkai Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Liang Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Jie Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
8
|
Yin C, Zhang X, Xu B, Zhao Q, Zhang S, Li Y. Effect of limited hydrolysis on the structure and gel properties of soybean isolate proteins: A comparative study of papain or/and trypsin. Int J Biol Macromol 2024; 282:137398. [PMID: 39521233 DOI: 10.1016/j.ijbiomac.2024.137398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Plant protein's gelation is crucial in various food applications, and hydrolysis may enhance their gelation properties. In this study, we prepared soybean protein isolate hydrolysates (SPIH) using trypsin and/or papain, and found significant improvement in the solubility and gelling properties. These proteases broken down the peptide bonds and caused the exposure of hydrophobic groups as well as the unfolding of protein. Low molecular weight (<35 kDa) SPIHs were generated by the two-step enzymatic hydrolysis, showing significant improvements in storage modulus (G'), loss modulus (G″), viscosity, strength, and water-holding capacity (WHC). Among, PT-10 exhibited the highest WHC (61.72 ± 0.36 %), gel strength (4.67 ± 0.12 g), and network cross-linking density (0.33 ± 0.01 mol/m3), while its solubility was also significantly increased up to 254 %. According to the results of gel molecular force interactions, disulfide bonds, hydrophobic interactions and hydrogen bonds involved in the gel network formation. These findings reveal that the appropriate hydrolysis modification may improve SPI gel's properties and expand its application in gel foods.
Collapse
Affiliation(s)
- Chengpeng Yin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoying Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bolin Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingkui Zhao
- Shandong Guohong Biotechnology Co, Liaocheng, Shandong 252000, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
9
|
Domokos-Szabolcsy É, Alshaal T, Elhawat N, Kovács Z, Kaszás L, Béni Á, Kiss A. Enhanced Oligopeptide and Free Tryptophan Release from Chickpea and Lentil Proteins: A Comparative Study of Enzymatic Modification with Bromelain, Ficin, and Papain. PLANTS (BASEL, SWITZERLAND) 2024; 13:3100. [PMID: 39520018 PMCID: PMC11548463 DOI: 10.3390/plants13213100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Plant-based foods offer a sustainable alternative to meet the growing protein demand. Legumes are the most promising of these, as they contain relatively high concentrations of protein, low digestible starch, and dietary fiber, as well as them possibly featuring low levels of fat. Enzymatically modified legume proteins provide us with tempting perspectives in terms of enhancing foods' biological values. However, their bioavailability and digestibility are generally less sufficient than that of proteins of animal origin, which may be improved by well-tailored enzyme modification. In this study, the efficacy of three plant-based proteases (bromelain, ficin, and papain) were evaluated at two distinct concentrations (2.5% and 10%) and three hydrolysis durations (1, 2, and 12 h) when transforming chickpea and lentil proteins. The degree of hydrolysis (DH), peptide profiles, and free amino acid content were analyzed to determine the efficiency of each enzyme. Results showed significant variations in DH, which was influenced by enzyme type, concentration, and hydrolysis duration. Papain exhibited the highest DH, particularly at a 10% concentration, reaching 27.8% efficiency in chickpea and 34.8% in lentils after 12 h. Bromelain and ficin were proven to be less effective, with ficin showing the least hydrolytic activity. SDS-PAGE analysis revealed substantial protein degradation, especially subsequent to papain treatment, pointing out that most proteins were cleaved into smaller peptides. SEC-HPLC indicated a predominant release of peptides within the 200-1000 Da range, suggesting enhanced bioavailability. Papain and bromelain treatments resulted in a significant release of oligopeptides and dipeptides. UHPLC analysis highlighted a marked post-hydrolysis increase in total free amino acids, with arginine, leucine, and lysine being the most abundant ones. Notably, tryptophan, being undetectable in untreated samples, was released in measurable amounts post-hydrolysis. These findings demonstrate papain's superior performance in protein hydrolysis and its potential in producing bioactive peptides, highlighting its applicability in food processing and the development of both nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Éva Domokos-Szabolcsy
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary; (É.D.-S.); (N.E.); (Z.K.); (L.K.)
| | - Tarek Alshaal
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary; (É.D.-S.); (N.E.); (Z.K.); (L.K.)
- Soil and Water Science Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Nevien Elhawat
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary; (É.D.-S.); (N.E.); (Z.K.); (L.K.)
- Faculty of Agriculture (for Girls), Al-Azhar University, Tanta 31732, Egypt
| | - Zoltán Kovács
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary; (É.D.-S.); (N.E.); (Z.K.); (L.K.)
| | - László Kaszás
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary; (É.D.-S.); (N.E.); (Z.K.); (L.K.)
| | - Áron Béni
- Institute of Agricultural Chemistry and Soil Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary;
| | - Attila Kiss
- Agro- and Food-Industrial Innovation Centre, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary;
| |
Collapse
|
10
|
Kaczynska K, Wouters AGB, Delcour JA. Air-water interfacial and foaming properties of nanoparticles based on commercial and lab-scale isolated maize (Zea mays L.) zein. Food Res Int 2024; 195:114977. [PMID: 39277242 DOI: 10.1016/j.foodres.2024.114977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Maize zein based nanoparticles (ZNPs) can have applications as food dispersion stabilizers. It has not been documented to what extent the used zein isolation method and conditions thereof impact the structure and functionality of nanoparticles (NPs) based thereupon. Here, zein extracted from maize flour on lab scale (LS-zein) was compared with a commercial zein powder (CS-zein). On a dry matter basis, CS-zein contained 96.5% protein, while LS-zein contained 74.5% protein, 12.7% lipid, 2.9% ash, and a residual fraction, likely starch remnants. SE-HPLC analysis showed that 27.8% of CS-zein protein occurred in an aggregated and insoluble form, while LS-zein mainly contained mono-/dimeric proteins but also approximately 30% hydrophilic peptides. These differences resulted in notably different behavior in the functionality of ZNPs based on CS- and LS-zein (CS-ZNPs and LS-ZNPs, respectively) produced via liquid antisolvent precipitation. CS-ZNPs had poor foaming properties regardless of the pH, in line with their low interfacial dilatational moduli (12.9-15.0 mN/m). The foaming properties of LS-ZNPs were notably better. The high LS-ZNP foam stability (FS) at pH 8.0 and 10.0 was attributed to electrostatic repulsive effects between interfaces of adjacent air bubbles due to the adsorption of peptides and to synergistic protein-lipid interaction effects at the air-water interface. The LS-ZNP FS at pH 4.0 was low despite a high interfacial dilatational modulus (52.6 mN/m). It is hypothesized that intact LS-ZNPs in the liquid thin films between gas bubbles negatively affect FS by a bridging de-wetting effect. Overall, it can be concluded that the (partial) co-isolation of lipids with zein may positively influence foaming properties of NPs based thereupon, while extensive zein purification as applied in industrial zein isolation leads to (partial) zein aggregation and overall low foaming capacity of the obtained CS-ZNPs.
Collapse
Affiliation(s)
- Katarzyna Kaczynska
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| |
Collapse
|
11
|
Withrow NA, Al-Tawil Y, Patterson PJ, Wilson M, Ryan E, Millovich V, Valentine CJ. Retrospective Cohort Study Demonstrates Tolerance and Adherence to Pea-Based Complete Enteral Formula When Transitioned from a Previous Hypoallergenic Product. Nutrients 2024; 16:3365. [PMID: 39408332 PMCID: PMC11479067 DOI: 10.3390/nu16193365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Plant-based formulas have become increasingly popular due to their health benefits, environmental concerns, cultural beliefs, improved palatability, and decreased cost. A retrospective chart review of medically stable children transitioning from a hypoallergenic formula to a yellow pea protein plant-based formula (PPPBF) was included. This study aimed to assess gastrointestinal tolerance, weight changes, and adherence to receiving a unique PPPBF. METHODS Healthcare providers (HCPs) from pediatric clinics across the United States who requested increased PPPBF samples between the dates of 1 November 2021and 31 January 2022 and again from 1 February 2022 to 15 April 2022 inputted survey data. The HCPs selected participants based on the inclusion criteria. RESULTS Seventy-three completed patient surveys were included of children (ages 1-18 years old, 41% females, 59% males). After the transition to PPPBF, 38.4% experienced improvement in GI tolerance, 56.2% experienced no change, and 5.5% reported worsening GI tolerance. There was a 95% adherence rate, and 98.9% reported no adverse reactions or allergic manifestations after formula transition. CONCLUSIONS Transitioning from a hypoallergenic formula to a PPPBF showed a trend toward stable GI tolerance, weight gain or stability, and adherence. A PPPBF offers a first-choice option for children who are on hypoallergenic formulas due to intolerance.
Collapse
Affiliation(s)
- Nicole A. Withrow
- Kate Farms, Inc., Goleta, CA 93111, USA; (Y.A.-T.); (V.M.); (C.J.V.)
| | - Youhanna Al-Tawil
- Kate Farms, Inc., Goleta, CA 93111, USA; (Y.A.-T.); (V.M.); (C.J.V.)
- GI for Kids, Knoxville, TN 37922, USA; (P.J.P.); (M.W.)
| | | | - Madden Wilson
- GI for Kids, Knoxville, TN 37922, USA; (P.J.P.); (M.W.)
| | - Erika Ryan
- Baxter International, Deerfield, IL 60015, USA;
| | - Vanessa Millovich
- Kate Farms, Inc., Goleta, CA 93111, USA; (Y.A.-T.); (V.M.); (C.J.V.)
| | - Christina J. Valentine
- Kate Farms, Inc., Goleta, CA 93111, USA; (Y.A.-T.); (V.M.); (C.J.V.)
- Department of Pediatrics and Nutrition, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
12
|
Yin X, Li J, Zhu L, Zhang H. Advances in the formation mechanism of set-type plant-based yogurt gel: a review. Crit Rev Food Sci Nutr 2024; 64:9412-9431. [PMID: 37203992 DOI: 10.1080/10408398.2023.2212764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant-based yogurt has several advantages over traditional yogurt, such as being lactose and cholesterol-free, making it more suitable for individuals with cardiovascular and gastrointestinal diseases. The formation mechanism of the gel in plant-based yogurt needs more attention because it is associated with the gel properties of yogurt. Most plant proteins, except for soybean protein, have poor functional abilities, such as solubility and gelling properties, which limits their application in most food items. This often results in undesirable mechanical quality of plant-based products, particularly plant-based yogurt gels, including grainy texture, high syneresis, and poor consistency. In this review, we summarize the common formation mechanism of plant-based yogurt gel. The main ingredients, including protein and non-protein components, as well as their interactions involved in the gel are discussed to understand their effects on gel formation and properties. The main interventions and their effects on gel properties are highlighted, which have been shown to improve the properties of plant-based yogurt gels effectively. Each type of intervention method may exhibit desirable advantages in different processes. This review provides new opportunities and theoretical guidance for efficiently improving the gel properties of plant-based yogurt for future consumption.
Collapse
Affiliation(s)
- Xinya Yin
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinxin Li
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Li Y, Mao M, Yuan X, Zhao J, Ma L, Chen F, Liao X, Hu X, Ji J. Natural Gastrointestinal Stable Pea Albumin Nanomicelles for Capsaicin Delivery and Their Effects for Enhanced Mucus Permeability at Small Intestine. Biomater Res 2024; 28:0065. [PMID: 39157812 PMCID: PMC11327615 DOI: 10.34133/bmr.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Natural nanodelivery systems are highly desirable owing to their biocompatibility and biodegradability. However, these delivery systems face challenges from potential degradation in the harsh gastrointestinal environment and limitations imposed by the intestinal mucus barrier, reducing their oral delivery efficacy. Here, gastrointestinal stable and mucus-permeable pea albumin nanomicelles (PANs) with a small particle size (36.42 nm) are successfully fabricated via pre-enzymatic hydrolysis of pea albumin isolate (PAI) using trypsin. Capsaicin (CAP) is used as a hydrophobic drug model and loaded in PAN with a loading capacity of 20.02 μg/mg. PAN exhibits superior intestinal stability, with a 40% higher CAP retention compared to PAI in simulated intestinal digestion. Moreover, PAN displays unrestricted movement in intestinal mucus and can effectively penetrate it, since it increases the mucus permeability of CAP by 2.5 times, indicating an excellent ability to overcome the mucus barrier. Additionally, PAN enhances the cellular uptake and transcellular transport of CAP with endoplasmic reticulum/Golgi and Golgi/plasma membrane pathways involved in the transcytosis and exocytosis. This study suggests that partially enzymatically formed PAN may be a promising oral drug delivery system, effectively overcoming the harsh gastrointestinal environment and mucus barrier to improve intestinal absorption and bioavailability of hydrophobic bioactive substances.
Collapse
Affiliation(s)
| | | | - Xin Yuan
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jiajia Zhao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
14
|
Verma D, Vashisht P, Pahariya P, Adu Poku F, Kohli P, Sharma A, Albiol Tapia M, Choudhary R. Compatibility of pulse protein in the formulation of plant based yogurt: a review of nutri-functional properties and processing impact. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38973295 DOI: 10.1080/10408398.2024.2373383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
With the increased environmental concerns and health awareness among consumers, there has been a notable interest in plant-based dairy alternatives. The plant-based yogurt market has experienced rapid expansion in recent years. Due to challenges related to cultivation, higher cost of production and lower protein content researchers have explored the viability of pulse-based yogurt which has arisen as an economically and nutritionally abundant solution. This review aims to examine the feasibility of utilizing pulse protein for yogurt production. The nutritional, antinutritional, and functional characteristics of various pulses were discussed in detail, alongside the modifications in these properties during the various stages of yogurt manufacturing. The review also sheds light on pivotal findings from existing literature and outlines challenges associated with the production of pulse-based yogurt. Pulses have emerged as promising base materials for yogurt manufacturing due to their favorable nutritional and functional characteristics. Further, the fermentation process can effectively reduce antinutritional components and enhance digestibility. Nonetheless, variations in sensorial and rheological properties were noted when different types of pulses were employed. This issue can be addressed by employing suitable combinations to achieve the desired properties in pulse-based yogurt.
Collapse
Affiliation(s)
- Digvijay Verma
- School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | | | - Prachi Pahariya
- School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Felicia Adu Poku
- School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Punit Kohli
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Amandeep Sharma
- College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, India
| | - Marta Albiol Tapia
- Fermentation Science Institute, Southern Illinois University, Carbondale, Illinois, USA
| | - Ruplal Choudhary
- School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
15
|
Ospina-Quiroga JL, Coronas-Lozano C, García-Moreno PJ, Guadix EM, Almécija-Rodríguez MDC, Pérez-Gálvez R. Use of olive and sunflower protein hydrolysates for the physical and oxidative stabilization of fish oil-in-water emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5541-5552. [PMID: 38362946 DOI: 10.1002/jsfa.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Olive and sunflower seeds are by-products generated in large amounts by the plant oil industry. The technological and biological properties of plant-based substrates, especially protein hydrolysates, have increased their use as functional ingredients for food matrices. The present study evaluates the physical and oxidative stabilities of 50 g kg-1 fish oil-in-water emulsions where protein hydrolysates from olive and sunflower seeds were incorporated at 20 g kg-1 protein as natural emulsifiers. The goal was to investigate the effect of protein source (i.e. olive and sunflower seeds), enzyme (i.e. subtilisin and trypsin) and degree of hydrolysis (5%, 8% and 11%) on the ability of the hydrolysate to stabilize the emulsion and retard lipid oxidation over a 7-day storage period. RESULTS The plant protein hydrolysates displayed different emulsifying and antioxidant capacities when incorporated into the fish oil-in-water emulsions. The hydrolysates with degrees of hydrolysis (DH) of 5%, especially those from sunflower seed meal, provided higher physical stability, regardless of the enzymatic treatment. For example, the average D [2, 3] values for the emulsions containing sunflower subtilisin hydrolysates at DH 5% only slightly increased from 1.21 ± 0.02 μm (day 0) to 2.01 ± 0.04 μm (day 7). Moreover, the emulsions stabilized with sunflower or olive seed hydrolysates at DH 5% were stable against lipid oxidation throughout the storage experiment, with no significant variation in the oxidation indices between days 0 and 4. CONCLUSION The results of the present study support the use of sunflower seed hydrolysates at DH 5% as natural emulsifiers for fish oil-in-water emulsions, providing both physical and chemical stability against lipid oxidation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, Granada, Spain
| |
Collapse
|
16
|
Rajendhran HP, Vaidyanathan VK, Venkatraman S, Karthik P. Optimization of Enzymatic Hydrolysis by Protease Produced from Bacillus subtilis MTCC 2423 to Improve the Functional Properties of Wheat Gluten Hydrolysates. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:5053510. [PMID: 38974710 PMCID: PMC11227950 DOI: 10.1155/2024/5053510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 07/09/2024]
Abstract
This study is aimed at investigating the reutilizing of gluten protein from the wheat processing industry by Bacillus subtilis MTCC 2423 protease to obtain gluten hydrolysates with high added value. Gluten protein hydrolysis using protease achieved a 34.07% degree of hydrolysis with 5% gluten protein, at a hydrolysis time of 2 h for 1000 U/mL at pH 8.0 and temperature of 40°C. Compared to the wheat gluten, the obtained hydrolysates exhibited enhanced functional attributes, including heightened solubility (43%), increased emulsifying activity (93.08 m2/g), and improved radical scavenging properties. Furthermore, these hydrolysates demonstrated enhanced antioxidant potential, as evidenced by elevated ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) of 81.25% and DPPH (2,2-diphenyl-1-picrylhydrazyl) of 56.46% radical scavenging activities and also exhibited a higher α-amylase inhibitory effect of 33.98%. The enhancement in functional characteristics of wheat gluten hydrolysates was observed by Fourier transform infrared spectroscopy. The percentage of free amino acids obtained by protease-mediated hydrolysates increased significantly compared to the unhydrolyzed wheat, which was observed by high-performance liquid chromatography. These findings suggest that wheat gluten hydrolysates hold promising potential as functional and nutritional food ingredients in the food industry, owing to their enhanced functionalities and potential antioxidant and antidiabetic properties.
Collapse
Affiliation(s)
- Hari Prasath Rajendhran
- Integrated Bioprocess LaboratoryDepartment of BiotechnologySchool of BioengineeringSRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocess LaboratoryDepartment of BiotechnologySchool of BioengineeringSRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Swethaa Venkatraman
- Integrated Bioprocess LaboratoryDepartment of BiotechnologySchool of BioengineeringSRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Pothiyappan Karthik
- Department of Food TechnologyFaculty of EngineeringKarpagam Academy of Higher Education, Coimbatore 641021, India
- Centre for Food NanotechnologyKarpagam Academy of Higher Education, Coimbatore 641 021, India
| |
Collapse
|
17
|
Zhou Y, Zhou S, Lu C, Zhang Y, Zhao H. Enrichment of Trypsin Inhibitor from Soybean Whey Wastewater Using Different Precipitating Agents and Analysis of Their Properties. Molecules 2024; 29:2613. [PMID: 38893489 PMCID: PMC11173672 DOI: 10.3390/molecules29112613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Recovering valuable active substances from the by-products of agricultural processing is a crucial concern for scientific researchers. This paper focuses on the enrichment of soybean trypsin inhibitor (STI) from soybean whey wastewater using either ammonium sulfate salting or ethanol precipitation, and discusses their physicochemical properties. The results show that at a 60% ethanol content, the yield of STI was 3.983 mg/mL, whereas the yield was 3.833 mg/mL at 60% ammonium sulfate saturation. The inhibitory activity of STI obtained by ammonium sulfate salting out (A-STI) was higher than that obtained by ethanol precipitation (E-STI). A-STI exhibited better solubility than E-STI at specific temperatures and pH levels, as confirmed by turbidity and surface hydrophobicity measurements. Thermal characterization revealed that both A-STI and E-STI showed thermal transition temperatures above 90 °C. Scanning electron microscopy demonstrated that A-STI had a smooth surface with fewer pores, while E-STI had a rough surface with more pores. In conclusion, there was no significant difference in the yield of A-STI and E-STI (p < 0.05); however, the physicochemical properties of A-STI were superior to those of E-STI, making it more suitable for further processing and utilization. This study provides a theoretical reference for the enrichment of STI from soybean whey wastewater.
Collapse
Affiliation(s)
| | | | | | - Yihao Zhang
- College of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin 546199, China
| | - Haiyan Zhao
- College of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin 546199, China
| |
Collapse
|
18
|
Kumari S, Pandey A, Soni A, Mahala A, Kumar A, Dey K. Assessment of functional efficacy of sheep plasma protein hydrolysates and their utilization in mutton sausage. Meat Sci 2024; 212:109469. [PMID: 38428152 DOI: 10.1016/j.meatsci.2024.109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/02/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
The present study examines the bioactive potential of sheep plasma protein hydrolysates (SPPH) produced by in-vitro gastrointestinal digestion as antioxidants, antimicrobials, anti-obesity agents, and inhibitors of lipid oxidation in sausage to address the oxidative stability and shelf-life issues of mutton. The antioxidant and antimicrobial activities, indicate a positive relationship between the degree of hydrolysis and digestion duration. The study finds that SPPH has a potent inhibitory effect on pancreatic lipase and cholesterol esterase. It has higher oil holding capacity than sheep plasma protein, observed at one hour of hydrolysis time. SPPH exhibit an improved behavior in foaming properties along alkaline pH and digestion time while display lower emulsifying activity and stability with hydrolysis advancement. The SPPH act as a natural preservative in developing functional mutton sausage by inhibiting lipid-oxidation. This study showed that the recovery of SPPH can be a cost-effective and sustainable strategy for generating available ingredients for enhanced shelf-life of meat products.
Collapse
Affiliation(s)
- Sarita Kumari
- Department of Livestock Products Technology, Post- Graduate Institute of Veterinary Education & Research, Rajasthan University of Veterinary and Animal Science, Rajasthan 334001, India
| | - Anurag Pandey
- Department of Livestock Products Technology, Post- Graduate Institute of Veterinary Education & Research, Rajasthan University of Veterinary and Animal Science, Rajasthan 334001, India.
| | - Arvind Soni
- Section of Livestock Products Technology, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan 304501, India
| | - Anurag Mahala
- Division of Animal Genetics Breeding, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan 304501, India
| | - Arun Kumar
- Division of Animal Genetics Breeding, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan 304501, India
| | - Kushankur Dey
- Centre for Food & Agri-business Management, Indian Institute of Management, Lucknow, Uttar Pradesh 226013, India.
| |
Collapse
|
19
|
Cacak-Pietrzak G, Sujka K, Księżak J, Bojarszczuk J, Ziarno M, Studnicki M, Krajewska A, Dziki D. Assessment of Physicochemical Properties and Quality of the Breads Made from Organically Grown Wheat and Legumes. Foods 2024; 13:1244. [PMID: 38672916 PMCID: PMC11049594 DOI: 10.3390/foods13081244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to explore the feasibility of substituting wheat flour with varying levels (10%, 15%, 20%, and 25%) of flour derived from field bean, chickpea, lentil, and pea seeds. The investigation focused on assessing the physical properties of wheat dough and the physicochemical characteristics of bread samples. The addition of legume seed flours significantly influenced the dough's development time, particularly with chickpea flour causing a notable increase in this parameter. While dough stability was generally shorter for mixtures containing wheat flour and legume seed flour, chickpea flour was an exception, significantly prolonging dough stability time. Furthermore, the inclusion of legume flours resulted in increased protein, ash, fiber, fat, and phenolic contents in the enriched bread, while the carbohydrate content decreased. Additionally, the crumb exhibited increased redness and yellowness and decreased lightness due to the enrichment of the bread. Notably, the antioxidant activity of bread containing legume flour also increased, with the most significant increase observed when pea flour was utilized. Conversely, negative effects on bread volume, crumb density, and texture parameters were noted with the incorporation of legume additives. Taking into consideration the results of both physicochemical analyses and sensory evaluation, it is recommended that the incorporation of the specified legume flours should not exceed 15% in relation to the quantity of wheat flour used.
Collapse
Affiliation(s)
- Grażyna Cacak-Pietrzak
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (G.C.-P.); (K.S.); (M.Z.)
| | - Katarzyna Sujka
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (G.C.-P.); (K.S.); (M.Z.)
| | - Jerzy Księżak
- Department of Forage Crop Production, Institute of Soil Sciences and Plant Cultivation—State Research Institute, 8 Czartoryskich Street, 24-100 Pulawy, Poland; (J.K.); (J.B.)
| | - Jolanta Bojarszczuk
- Department of Forage Crop Production, Institute of Soil Sciences and Plant Cultivation—State Research Institute, 8 Czartoryskich Street, 24-100 Pulawy, Poland; (J.K.); (J.B.)
| | - Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (G.C.-P.); (K.S.); (M.Z.)
| | - Marcin Studnicki
- Department of Biometry, Institute of Agricuture, Warsaw University of Life Sciences, 159C Nowoursynowska Street, 02-776 Warsaw, Poland;
| | - Anna Krajewska
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka Street, 20-612 Lublin, Poland;
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka Street, 20-612 Lublin, Poland;
| |
Collapse
|
20
|
Arslan B, Xiong YL, Soyer A. Antioxidant properties of bovine liver protein hydrolysates and their practical application in biphasic systems. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2980-2989. [PMID: 38087783 DOI: 10.1002/jsfa.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND The influence of protein hydrolysate produced from bovine liver protein hydrolysate (LPH) by enzymatic hydrolysis, using Alcalase/Protamex (1:1), on lipid dispersions was investigated. LPH production was optimized to maximize the antioxidant activity (at 45, 50, and 55 °C for 12, 18, and 24 h). Different concentrations of LPHs (1, 3, and 5 mg/g) were added to emulsions and to liposomes. Lipid oxidation level and particle size of the lipid dispersions were monitored for 14 days of storage at 25 °C. RESULTS Radical scavenging activity and reducing power were the highest at 45 °C after 24 h of hydrolysis. Electrophoresis pattern showed that the antioxidant activity was arising from the peptides with molecular weight around 10 kDa. Lipid oxidation occurred more rapidly in samples without LPH during storage. In emulsions, lower thiobarbituric acid-reactive substance and conjugated diene values were measured with increasing concentrations of LPH at day 14. Accordingly, particle size of the samples containing 5 mg/g of LPH was smaller than those of other groups. Phase separation was observed only in lecithin emulsion without LPH at day 14. The use of LPH in liposome limited the lipid oxidation and maintained the size of the particles independently from the concentration. CONCLUSION This study highlights the potential applications of animal by-products as natural antioxidants in complex food systems. The results demonstrate that LPH, particularly when hydrolyzed at optimized conditions, can effectively inhibit lipid oxidation. The findings suggest that biphasic systems incorporating LPH have promising prospects for enhancing the stability and quality of food products. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Betul Arslan
- Department of Food Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
- Department of Food Engineering, Faculty of Engineering, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Youling L Xiong
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA
| | - Ayla Soyer
- Department of Food Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
| |
Collapse
|
21
|
Manzoor M, Singh J, Bhat ZF, Jaglan S. Multifunctional apple seed protein hydrolysates: Impact of enzymolysis on the biochemical, techno-functional and in vitro α-glucosidase, pancreatic lipase and angiotensin-converting enzyme inhibition activities. Int J Biol Macromol 2024; 257:128553. [PMID: 38056736 DOI: 10.1016/j.ijbiomac.2023.128553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
The work was designed to assess the amelioration effect of papain hydrolysis on the biochemical, techno-functional, and biological properties of apple seed protein isolate (API) after 0-90 min of hydrolysis. Hydrolysis significantly enhanced the nutritional value (protein content ˃ 90 %) while decreasing the average particle size. With increasing hydrolysis time, FTIR analysis revealed a transition from α-helix to β-turn structure, indicating the unfolding of protein structure. This structural alteration positively influenced the functional characteristics, with samples hydrolyzed for 90 min exhibiting excellent solubility, higher water and oil absorption capacity, foaming capacity, and increased emulsifying activity index. Moreover, samples hydrolyzed for 90 min displayed the highest α-glucosidase (29.62-57.43 %), pancreatic lipase inhibition (12.87-31.08 %), and ACE inhibition (25.32-62.70 %) activity. Interestingly, the inhibiting ability of protein hydrolysates against α-glucosidase and ACE was more effective than pancreatic lipase, suggesting their usefulness as a functional ingredient, particularly in type II diabetes and hypertension management.
Collapse
Affiliation(s)
- Mehnaza Manzoor
- Division of Food Science and Technology, Sher-e-Kashmir University of Agriculture Science and Technology, Jammu 180009, India; Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Jagmohan Singh
- Division of Food Science and Technology, Sher-e-Kashmir University of Agriculture Science and Technology, Jammu 180009, India.
| | - Zuhaib F Bhat
- Division of Livestock Product Technology, Sher-e-Kashmir University of Agriculture Science and Technology, Jammu, India.
| | - Sundeep Jaglan
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
22
|
Dai Y, Li H, Liu X, Wu Q, Ping Y, Chen Z, Zhao B. Effect of enzymolysis combined with Maillard reaction treatment on functional and structural properties of gluten protein. Int J Biol Macromol 2024; 257:128591. [PMID: 38052287 DOI: 10.1016/j.ijbiomac.2023.128591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
In this work, the modified gluten was prepared by enzymolysis combined with Maillard reaction (MEG), and its functional and structural properties were investigated. The result showed that the maximum foamability of MEG was 19.58 m2/g, the foam stability was increased by 1.8 times compared with gluten, and the solubility and degree of graft were increased to 44.4 % and 28.1 % at 100 °C, whereas the content of sulfhydryl group decreased to 0.81 μmol/g. The scavenging ability on ABTS+radical and DPPH radical of MEG was positively correlated with reaction temperature, and the maximum values were 86.57 % and 71.71 % at 140 °C, respectively. Furthermore, the fluorescence quenching effect of tryptophan and tyrosine residues was enhanced, while the fluorescence intensity decreased with the temperature increase. Scanning electron microscopy revealed that the surface of enzymatically hydrolyzed-gluten became smooth and the cross section became straightened, while MEG turned smaller and irregular approaching a circular structure. FT-IR spectroscopy showed that enzymatic hydrolysis promoted the occurrence of more carbonyl ammonia reactions and the formation of precursors of advanced glycosylation end products. These results provide a feasible method for improving the structure and functional properties of gluten protein.
Collapse
Affiliation(s)
- Ya Dai
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Hua Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, China.
| | - Xinhui Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Qingfeng Wu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yali Ping
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Zhenzhen Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Beibei Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
23
|
Shi W, Xie H, Ouyang K, Shi Q, Xiong H, Zhao Q. Enhancing the solubility and emulsion properties of rice protein by deamidation of citric acid-based natural deep eutectic solvents. Food Res Int 2024; 175:113762. [PMID: 38128999 DOI: 10.1016/j.foodres.2023.113762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The characteristics of rice protein deamidated (DRP) by choline chloride-citric acid and glucose-citric acid natural deep eutectic solvents (C-C NADES, G-C NADES) at different dilutions were investigated. Compared with the effect of citric acid deamidation on the structural and functional properties of the protein, the DRP from the NADESs led to remarkable differences in the degree of hydrolysis (DH), SDS-PAGE, morphology, surface hydrophobicity, average particle size, intrinsic fluorescence, amino acid compositions, and emulsion activity. The results of SDS-PAGE, DH, and SEM showed the NADESs reduced the occurrence of uncontrolled hydrolysis of protein during acid deamidation. DRP from C-C and G-C NADESs was found to significantly improve solubility. DRP prepared by C-C NADES showed a more than 40 % solubility over a wide pH range associated with its higher emulsifying activity (37.62-44.19 m2/g) and emulsifying stability (73.76-86.9 min), as well as a better deamidation effect while lower DH. Thus, these findings showed that acid-based NADESs had great potential as a deamidation solvent to expand the application of protein.
Collapse
Affiliation(s)
- Wenyi Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Hexiang Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Kefan Ouyang
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Qianqian Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
24
|
Zhang H, Lv S, Jin C, Ren F, Wang J. Wheat gluten amyloid fibrils: Conditions, mechanism, characterization, application, and future perspectives. Int J Biol Macromol 2023; 253:126435. [PMID: 37611682 DOI: 10.1016/j.ijbiomac.2023.126435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Amyloid fibrils have excellent structural characteristics, such as a high aspect ratio, excellent stiffness, and a wide availability of functional groups on the surface. More studies are now focusing on the formation of amyloid fibrils using food proteins. Protein fibrillation is now becoming recognized as a promising strategy for enhancing the function of food proteins and expanding their range of applications. Wheat gluten is rich in glutamine (Q), hydrophobic amino acids, and the α-helix structure with high β-sheet tendency. These characteristics make it very easy for wheat gluten to form amyloid fibrils. The conditions, formation mechanism, characterization methods, and application of amyloid fibrils formed by wheat gluten are summarized in this review. Further exploration of amyloid fibrils formed by wheat gluten will reveal how they can play a significant role in food, biology, and other fields, especially in medicine.
Collapse
Affiliation(s)
- Huijuan Zhang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Shihao Lv
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Chengming Jin
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
25
|
Gallego M, Grau R, Talens P. Behaviour of texture-modified meats using proteolytic enzymes during gastrointestinal digestion simulating elderly alterations. Meat Sci 2023; 206:109341. [PMID: 37717338 DOI: 10.1016/j.meatsci.2023.109341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
This study aimed to apply different proteolytic enzymes (bromelain, papain, and flavourzyme) to develop texture-modified meats suitable for people with chewing or swallowing problems. The samples were categorised at level 6 (soft and bite-sized food) of the dysphagia diet, characterised in terms of physicochemical and textural parameters, and evaluated for their behaviour during gastrointestinal digestion simulating elderly alterations. In general, the enzyme-treated samples had lower moisture content, weight, and diameter of the piece of meat, and presented colour differences compared to the control samples. Textural analyses did not show significant differences in terms of hardness and cohesiveness for the texture-modified meats, while flavourzyme-treated samples presented less elasticity. Instrumental mastication assay showed the breakdown of samples' structure mainly during the first mastication cycles, with flavourzyme-treated samples presenting slightly higher consistency. The protein digestibility of the meats greatly increased after simulated gastrointestinal digestion, but a decrease in proteolysis for the control and papain-treated samples in the altered gastric model and an increase for flavourzyme-treated samples in the altered both gastric and intestinal model were shown compared to standard conditions. These results allow integrating knowledge to design foods that better meet the requirements of dysphagics or elderly people.
Collapse
Affiliation(s)
- Marta Gallego
- Departamento Tecnología de Alimentos, Instituto Universitario de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Raúl Grau
- Departamento Tecnología de Alimentos, Instituto Universitario de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Pau Talens
- Departamento Tecnología de Alimentos, Instituto Universitario de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
26
|
Siriwat W, Ungwiwatkul S, Unban K, Laokuldilok T, Klunklin W, Tangjaidee P, Potikanond S, Kaur L, Phongthai S. Extraction, Enzymatic Modification, and Anti-Cancer Potential of an Alternative Plant-Based Protein from Wolffia globosa. Foods 2023; 12:3815. [PMID: 37893708 PMCID: PMC10606862 DOI: 10.3390/foods12203815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The global plant-based protein demand is rapidly expanding in line with the increase in the world's population. In this study, ultrasonic-assisted extraction (UAE) was applied to extract protein from Wolffia globosa as an alternative source. Enzymatic hydrolysis was used to modify the protein properties for extended use as a functional ingredient. The successful optimal conditions for protein extraction included a liquid to solid ratio of 30 mL/g, 25 min of extraction time, and a 78% sonication amplitude, providing a higher protein extraction yield than alkaline extraction by about 2.17-fold. The derived protein was rich in essential amino acids, including leucine, valine, and phenylalanine. Protamex and Alcalase were used to prepare protein hydrolysates with different degrees of hydrolysis, producing protein fragments with molecular weights ranging between <10 and 61.5 kDa. Enzymatic hydrolysis caused the secondary structural transformations of proteins from β-sheets and random coils to α-helix and β-turn structures. Moreover, it influenced the protein functional properties, particularly enhancing the protein solubility and emulsifying activity. Partial hydrolysis (DH3%) improved the foaming properties of proteins; meanwhile, an excess hydrolysis degree reduced the emulsifying stability and oil-binding capacity. The produced protein hydrolysates showed potential as anti-cancer peptides on human ovarian cancer cell lines.
Collapse
Affiliation(s)
- Warin Siriwat
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.S.); (K.U.); (T.L.); (W.K.); (P.T.)
| | - Sunisa Ungwiwatkul
- Chemical Industrial Process and Environment Program, Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok (Rayong Campus), Rayong 21120, Thailand;
| | - Kridsada Unban
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.S.); (K.U.); (T.L.); (W.K.); (P.T.)
| | - Thunnop Laokuldilok
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.S.); (K.U.); (T.L.); (W.K.); (P.T.)
| | - Warinporn Klunklin
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.S.); (K.U.); (T.L.); (W.K.); (P.T.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pipat Tangjaidee
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.S.); (K.U.); (T.L.); (W.K.); (P.T.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Lovedeep Kaur
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand;
| | - Suphat Phongthai
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.S.); (K.U.); (T.L.); (W.K.); (P.T.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
27
|
Lopes C, Akel Ferruccio C, de Albuquerque Sales AC, Tavares GM, de Castro RJS. Effects of processing technologies on the antioxidant properties of common bean (Phaseolus vulgaris L.) and lentil (Lens culinaris) proteins and their hydrolysates. Food Res Int 2023; 172:113190. [PMID: 37689943 DOI: 10.1016/j.foodres.2023.113190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
The effects of ultrasound (280 W, 5 min), heat treatment (75 °C and 90 °C for 10 min) and microfluidization (125 MPa, 4 cycles) as pre or post treatments and their combination with enzymatic hydrolysis on the antioxidant properties of common bean and lentil protein hydrolysates were investigated. In general, hydrolysis resulted in increases of antioxidant activity, both in the presence and absence of processing technologies. The increases reached maximum values of 158% (ABTS), 105% (DPPH), 279% (FRAP) and 107% (TAC) for the bean protein hydrolysates submitted to post-treatment with ultrasound (ABTS, FRAP and TAC) and pre-treatment with microfluidization (DPPH), compared to their respective controls (untreated samples). For lentil proteins, the increases reached 197% (ABTS), 170% (DPPH), 690% (FRAP) and 213% (TAC) for samples submitted to ultrasound post-treatment (ABTS), microfluidization pre-treatment (DPPH) and post-treatment (FRAP), and 75 °C pre-treatment (TAC) compared to their respective controls. Surface hydrophobicity and molecular weight profile by SEC-HPLC analysis indicated modifications in the structures of proteins in function of the different processing technologies. For both proteins, electrophoresis indicated a similar profile for all hydrolysates, regardless of the process applied as pre or post treatment. Solubility of bean and lentil protein concentrates was also improved. These results indicated that different processing technologies can be successfully used in association with enzymatic hydrolysis to improve the antioxidant properties of lentil and bean proteins.
Collapse
Affiliation(s)
- Caroline Lopes
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, Brazil.
| | - Cláudia Akel Ferruccio
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| | - Anne Caroline de Albuquerque Sales
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| | - Guilherme M Tavares
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| | - Ruann Janser Soares de Castro
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, Brazil.
| |
Collapse
|
28
|
Ozón B, Cotabarren J, Geier FR, Kise MP, García-Pardo J, Parisi MG, Obregón WD. Development of Fortified Breads Enriched with Plant-Based Bioactive Peptides Derived from the Chia ( Salvia hispanica L.) Expeller. Foods 2023; 12:3382. [PMID: 37761091 PMCID: PMC10528513 DOI: 10.3390/foods12183382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
By-products from the industrialization of oilseeds, particularly chia, can be sustainably used for the development of new functional products. In this work, wheat breads supplemented with up to 10 mg of chia expeller hydrolysate/g of flour were prepared, obtaining fortified breads with acceptability for consumption, according to a preliminary consumer research study based on an affective test employing a five-point hedonic scale of global acceptance. In this context, protein hydrolysates of the chia expeller were produced using Alcalase, reaching a degree of hydrolysis of 54.3 ± 1.6% with an antioxidant activity of 55.8 ± 0.4% after 6 h incubation at 25 °C in the presence of the enzyme. These peptides showed appropriate techno-functional properties and chemical compositions suitable for the further development of bakery products. Taken together, our approach and the development of a fortified bread with plant-based bioactive peptides provide a novel and eco-friendly alternative for the recovery of nutrients from agro-industrial waste. More importantly, these enriched breads could exert beneficial effects on human health by exploiting the antioxidant properties of functional peptides derived from the chia expeller.
Collapse
Affiliation(s)
- Brenda Ozón
- Departamento de Ciencias Biológicas, Centro de Investigación de Proteínas Vegetales (CIProVe), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (J.C.); (F.R.G.); (W.D.O.)
| | - Juliana Cotabarren
- Departamento de Ciencias Biológicas, Centro de Investigación de Proteínas Vegetales (CIProVe), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (J.C.); (F.R.G.); (W.D.O.)
| | - Florencia R. Geier
- Departamento de Ciencias Biológicas, Centro de Investigación de Proteínas Vegetales (CIProVe), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (J.C.); (F.R.G.); (W.D.O.)
| | - M. Paula Kise
- Departamento de Ciencias Básicas, Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu), Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján B6700, Buenos Aires, Argentina;
| | - Javier García-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Mónica G. Parisi
- Departamento de Ciencias Básicas, Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu), Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján B6700, Buenos Aires, Argentina;
| | - W. David Obregón
- Departamento de Ciencias Biológicas, Centro de Investigación de Proteínas Vegetales (CIProVe), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (J.C.); (F.R.G.); (W.D.O.)
| |
Collapse
|
29
|
Rakin M, Bulatović M, Zarić D, Krunić T, Lončarević I, Petrović J, Pajin B. Influence of added whey proteins and hydrolysates on rheological and textural characteristics of milk chocolate. FOOD SCI TECHNOL INT 2023; 29:610-618. [PMID: 35635175 DOI: 10.1177/10820132221103758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
In order to improve functional characteristics of standard milk chocolate (C) was enriched by the addition of whey protein concentrate (WPC) and whey proteins hydrolyzed by trypsin (H-WPC) in the amount of 6%. The chocolate samples were analyzed by determination of antioxidant capacity, particle size distribution, textural, rheological, and sensory properties. The obtained results revealed that chocolate enriched by whey protein hydrolysate (H-WPC) possesses higher content of total polyphenols (1007.8 ± 96.8 mg GAE/100 g), increased ability to inhibit ABTS radicals (66.30 ± 1.99%), and increased ability to inhibit DPPH radicals (56.34 ± 3.20%), compared to the standard milk chocolate (C) (877.1 ± 56.0 mg GAE/100g; 48.46 ± 2.11%; 48.07 ± 2.80%, respectively). The additional ingredients do not significantly affect the hardness and enthalpy of chocolates. The hydrolyzed whey proteins increase the viscosity of chocolate (11.81 ± 0.11 Pa·s) to a greater extent than non-hydrolyzed whey proteins (9.17 ± 0.09 Pa·s), relative to the control sample (3.53 ± 0.05 Pa·s). Regardless of the fact that the WPC sample has slightly better rheological characteristics and particle size distribution compared to the H-WPC sample, no major changes in the sensory characteristics of chocolate were observed. Based on the results, whey protein hydrolysate can be marked as an exceptional ingredient for improving the quality of chocolate.
Collapse
Affiliation(s)
- Marica Rakin
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Maja Bulatović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Danica Zarić
- Innovation Centre of the Faculty of Technology and Metallurgy ltd, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Tanja Krunić
- Innovation Centre of the Faculty of Technology and Metallurgy ltd, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Ivana Lončarević
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jovana Petrović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Biljana Pajin
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
30
|
Li S, Tao L, Peng S, Yu X, Ma X, Hu F. Structural and antioxidative properties of royal jelly protein by partial enzymatic hydrolysis. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
31
|
Zhang H, Lv S, Ren F, Liu J, Wang J. Degree of Hydrolysis Regulated by Enzyme Mediation of Wheat Gluten Fibrillation: Structural Characterization and Analysis of the Mechanism of Action. Int J Mol Sci 2023; 24:13529. [PMID: 37686349 PMCID: PMC10488075 DOI: 10.3390/ijms241713529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The impact of different degrees of hydrolysis (DHs) on fibrillation when trypsin mediates wheat gluten (WG) fibrillation has not been thoroughly investigated. This study discussed the differences in amyloid fibrils (AFs) formed from wheat gluten peptides (WGPs) at various DH values. The results from Thioflavin T (ThT) fluorescence analysis indicated that WGPs with DH6 were able to form the most AFs. Changes in Fourier Transform Infrared (FTIR) absorption spectra and secondary structure also suggested a higher degree of fibrillation in DH6 WGPs. Analysis of surface hydrophobicity and ζ-potential showed that DH6 AFs had the highest surface hydrophobicity and the most stable water solutions. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) images revealed the best overall morphology of DH6 AFs. These findings can offer valuable insights into the development of a standardized method for preparing wheat gluten amyloid fibrils.
Collapse
Affiliation(s)
- Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing 100048, China
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (S.L.); (F.R.); (J.L.)
| | - Shihao Lv
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing 100048, China
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (S.L.); (F.R.); (J.L.)
| | - Feiyue Ren
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing 100048, China
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (S.L.); (F.R.); (J.L.)
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing 100048, China
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (S.L.); (F.R.); (J.L.)
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing 100048, China
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (S.L.); (F.R.); (J.L.)
| |
Collapse
|
32
|
Pořízka J, Slavíková Z, Bidmonová K, Vymětalová M, Diviš P. Physiochemical and Sensory Properties of Bread Fortified with Wheat Bran and Whey Protein Isolates. Foods 2023; 12:2635. [PMID: 37444373 DOI: 10.3390/foods12132635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
This study investigated the effect of fortifying baked goods with wheat bran (WBPI) and whey protein isolates (WPI) on their physicochemical and sensory properties. The aim was to enhance the nutritional value by incorporating high-protein ingredients. WBPI and WPI, which are rich in essential amino acids, were chosen to create high-protein flour blends. The main advantage of WBPI is that it is derived from readily available and inexpensive wheat bran. High-protein flour blends fortified with substitutions of 5%, 10%, and 15% flour with WBPI and WPI were subjected to chemical and rheological analysis. WBPI substitution slightly increased water binding and softening, but it resulted in a decrease in dough quality. In contrast, WPI substitution prolonged dough development time, improved dough stability, and enhanced farinographic quality. WBPI-substituted dough exhibited comparable extensographic properties to the reference flour, with 5% WBPI substitution leading to improved energy and dough resistance. However, as the level of WBPI flour substitution increased, extensographic parameters gradually declined without further enhancing the dough's mechanical properties. Samples with 5% WPI substitution demonstrated superior mechanical properties compared to the reference sample. Baguette with high WBPI substitution was associated with reduced overall acceptance due to a bitter taste caused by the presence of small peptides, ferulic acid, and tannins, as confirmed by correlation analysis.
Collapse
Affiliation(s)
- Jaromír Pořízka
- Faculty of Chemistry, Brno University of Technology, 612 00 Brno, Czech Republic
| | - Zuzana Slavíková
- Faculty of Chemistry, Brno University of Technology, 612 00 Brno, Czech Republic
| | - Karolína Bidmonová
- Faculty of Chemistry, Brno University of Technology, 612 00 Brno, Czech Republic
| | - Miroslava Vymětalová
- Mlýny J. Voženílek, Ltd., Průmyslová 107, 503 02 Předměřice nad Labem, Czech Republic
| | - Pavel Diviš
- Faculty of Chemistry, Brno University of Technology, 612 00 Brno, Czech Republic
| |
Collapse
|
33
|
Rajasekaran B, Singh A, Ponnusamy A, Patil U, Zhang B, Hong H, Benjakul S. Ultrasound treated fish myofibrillar protein: Physicochemical properties and its stabilizing effect on shrimp oil-in-water emulsion. ULTRASONICS SONOCHEMISTRY 2023; 98:106513. [PMID: 37429184 PMCID: PMC10336788 DOI: 10.1016/j.ultsonch.2023.106513] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/21/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Abstract
Effects of ultrasonication at different amplitudes (40% and 60%) and time (5, 10, and 15 min) on the physicochemical and emulsifying properties of the fish myofibrillar protein (FMP) were investigated. Solubility, surface hydrophobicity, and emulsifying properties were augmented when FMP was subjected to ultrasonication at 40% amplitude for 15 min (p < 0.05). Protein pattern study revealed that augmenting amplitude and duration of ultrasound treatment reduced band intensity of myosin heavy chain. Ultrasound treatment facilitated the adsorption of FMP on oil droplets as indicated by the increases in both adsorbed and interfacial protein contents (p < 0.05). Ultrasound-treated FMP (UFMP) sample showed the alteration in chemical bonds as depicted by Fourier transform infrared (FTIR) spectra. Ultrasound treatment altered the β-sheet and random coil of FMP. During storage for 30 days at 30 °C, UFMP stabilized shrimp oil (SO)-in-water emulsion had higher turbidity but lower d32, d43, and polydispersity index than emulsion stabilized by untreated FMP (p < 0.05). Furthermore, emulsion stabilized by UFMP had lower flocculation and coalescence indices (p < 0.05). Microstructure observation revealed smaller droplet sizes and higher stability of droplets in emulsion stabilized by UFMP. Confocal laser scanning microscopic images demonstrated a monodisperse emulsion stabilized by UFMP. This coincided with higher viscosity and modulus values (G' and G″ ). Emulsion stabilized by UFMP exhibited viscous, shear-thinning, and non-Newtonian behavior and no phase separation occurred during storage. Therefore, ultrasonication was proven to be a potential method for enhancing the emulsifying properties of FMP and improving the stability of SO-in-water emulsion during prolonged storage.
Collapse
Affiliation(s)
- Bharathipriya Rajasekaran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Arunachalasivamani Ponnusamy
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Umesh Patil
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Bin Zhang
- College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
34
|
Kalajahi SG, Malekjani N, Samborska K, Akbarbaglu Z, Gharehbeglou P, Sarabandi K, Jafari SM. The enzymatic modification of whey-proteins for spray drying encapsulation of Ginkgo-biloba extract. Int J Biol Macromol 2023:125548. [PMID: 37356680 DOI: 10.1016/j.ijbiomac.2023.125548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Ginkgo biloba extract (GBLE) contains many bioactives including flavonoids and terpene trilactones that play some pharmacological roles. These compounds are sensitive to operating conditions; so, encapsulation is a suitable approach to protect them. In this study, different carriers including maltodextrin (MD), and its combination with gum-Arabic (MD-GA), whey protein concentrate (MD-WPC), and whey-protein hydrolysate (MD-HWPC) were used to encapsulate GBLE. Powder production yield, physicochemical/functional characteristics, physical stability and flowability of particles were affected by the type and composition of carriers. FTIR results indicated the placement of phenolic compounds in the carrier matrix. The SEM images also showed the morphological changes of particles (especially the size, indentation and surface shrinkage) under the influence of various carriers. Microencapsulated powders formulated using MD-HWPC showed the highest values of TPC, DPPH, and ABTS and a lighter color which determined the suitability of this wall material (due to the improvement of surface activity and emulsifying properties of protein as a result of partial enzymatic hydrolysis) to protect the antioxidant properties of GBLE during spray-drying, improving the production yield and preserving physical and functional characteristics of the encapsulated powders.
Collapse
Affiliation(s)
- Sina Ghadimi Kalajahi
- Occupational Health Research Center, Iran National Standards Organization (INSO), Tabriz, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Katarzyna Samborska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Poland
| | - Zahra Akbarbaglu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Pouria Gharehbeglou
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khashayar Sarabandi
- Department of Food Science & Technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
35
|
Starch digestion retarded by wheat protein hydrolysates with different degrees of hydrolysis. Food Chem 2023; 408:135153. [PMID: 36527925 DOI: 10.1016/j.foodchem.2022.135153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Wheat protein hydrolysates (WPH) were prepared by pepsin hydrolysis for 30, 60, and 120 min (WPH30, WPH60, and WPH120). The mixed system of rice starch and WPH was hydrothermally treated to explore the effect of WPH with different degrees of hydrolysis on starch digestion. WPH reduced the first-order rate coefficient (k) of starch digestion. Especially, WPH30 reduced the k value the most and formed the highest slowly digestible starch content due to the entanglement of starch chains and long-chain peptides. WPH60 and WPH120 with more hydrophobic peptides and polar amino acids than WPH30 tended to form hydrogen bonds with starch molecules due to less steric hindrance. Particularly, the complexation of WPH60 promoted the formation of dense aggregate structure and hindered the enzymatic hydrolysis of starch to a certain extent, thereby increasing the resistant starch content. These findings provide significant guidance for the preparation of hypoglycemic reformed food.
Collapse
|
36
|
Xu L, Wan Y, Liu X, Qin Z, Zhao Y, Fu X, Wei C, Liu W. Insights on the binding mechanism between specified aldehydes and flaxseed protein using multispectral image and molecular docking. Food Chem 2023; 422:136256. [PMID: 37141760 DOI: 10.1016/j.foodchem.2023.136256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
The binding and release behavior of flaxseed proteins to aldehydes is significant for the sensory properties of flaxseed foods. The key aldehydes of flaxseed were selected by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and odor activity value (OAV) method, and the interaction between flaxseed protein and flaxseed protein was investigated by multispectral, molecular docking, molecular dynamics simulation, and particle size techniques. The results showed that 2,4-decadienal presented a higher binding capability and a higher Stern-Volmer constant with flaxseed protein than pentanal, benzaldehyde, and decanal. Thermodynamic analysis revealed that hydrogen bonding and hydrophobic interactions were the main forces. Aldehydes contributed to a certain reduction in radius of gyration (Rg) value and α-helix content of flaxseed protein. In addition, the results of particle size showed that aldehydes caused the proteins to aggregate toward larger particles. This study could provide new insights into the interactions between flaxseed food and flavor.
Collapse
Affiliation(s)
- Lingxia Xu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yilai Wan
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiaoxiao Liu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Zhaoyang Qin
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yue Zhao
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xizhe Fu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Changqing Wei
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Wenyu Liu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
37
|
Structural characterization, interfacial and emulsifying properties of soy protein hydrolysate-tannic acid complexes. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Byrne ME, Arranz E, Bot F, Gómez-Mascaraque LG, Tobin JT, O’Mahony JA, O’Callaghan TF. The Protein Composition and In Vitro Digestive Characteristics of Animal- versus Plant-Based Infant Nutritional Products. Foods 2023; 12:foods12071469. [PMID: 37048290 PMCID: PMC10094249 DOI: 10.3390/foods12071469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
The protein composition and digestive characteristics of four commercially available infant formulae (IF) manufactured using bovine (B-IF), caprine (C-IF), soy (S-IF), and rice (R-IF) as a protein source were examined in this study. Plant-based formulae had significantly higher crude protein and non-protein nitrogen (NPN) concentrations. Static in vitro gastrointestinal digestion of these formulae, and subsequent analysis of their digestates, revealed significantly higher proteolysis of B-IF at the end of gastrointestinal digestion compared to the other formulae, as indicated by the significantly higher concentration of free amine groups. Furthermore, differences in structure formation during the gastric phase of digestion were observed, with formation of a more continuous, firmer coagulum by C-IF, while R-IF demonstrated no curd formation likely due to the extensive hydrolysis of these proteins during manufacture. Differences in digestive characteristics between formulae manufactured from these different protein sources may influence the bio-accessibility and bioavailability of nutrients, warranting additional study.
Collapse
|
39
|
Song F, Chen J, Zhang Z, Tian S. Preparation, characterization, and evaluation of flaxseed oil liposomes coated with chitosan and pea protein isolate hydrolysates. Food Chem 2023; 404:134547. [PMID: 36240554 DOI: 10.1016/j.foodchem.2022.134547] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
The effect of layer-by-layer coating of liposomes with chitosan and pea protein isolate hydrolysates (PPIH) was evaluated. Traditional flaxseed oil liposomes (FL Lipo) were used as a model for comparison to liposomes coated with chitosan and PPIH (FL LipoCP). The potential of PPIH as a coating material was evaluated. Additionally, the influence of chitosan and PPIH on vesicle size and zeta potential of liposomes was investigated. The chitosan layer of liposomes exhibited a loose structure. After the second layer of coating with PPIH, chitosan molecules were rearranged on the liposome surface, leading to a more compact and dense shell structure of liposomes. Electrostatic interactions, hydrogen bonds, and hydrophobic interactions favored the stability of FL LipoCP. Compared to FL Lipo, FL LipoCP displayed higher oxidation stability during storage and a slower release of flaxseed oil during in vitro digestion.
Collapse
Affiliation(s)
- Fanfan Song
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jie Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, China
| | - Zhengquan Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shaojun Tian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
40
|
Lim WS, Kim HW, Lee MH, Park HJ. Improved printability of pea protein hydrolysates for protein-enriched 3D printed foods. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
41
|
Comparison of Commercial Fish Proteins' Chemical and Sensory Properties for Human Consumption. Foods 2023; 12:foods12050966. [PMID: 36900483 PMCID: PMC10000493 DOI: 10.3390/foods12050966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
To stop overfishing and meet the protein needs of a growing population, more information is needed on how to use marine by-catches, by-products, and undervalued fish species for human consumption. Turning them into protein powder is a sustainable and marketable way to add value. However, more knowledge of the chemical and sensory properties of commercial fish proteins is needed to identify the challenges in developing fish derivatives. This study aimed to characterize the sensory and chemical properties of commercial fish proteins to compare their suitability for human consumption. Proximate composition, protein, polypeptide and lipid profiles, lipid oxidation, and functional properties were analyzed. The sensory profile was compiled using generic descriptive analysis, and odor-active compounds were identified with gas-chromatography-mass spectrometry-olfactometry (GC-MS/O). Results indicated significant differences in chemical and sensory properties between processing methods but not between fish species. However, the raw material had some influence in the proteins' proximate composition. Bitterness and fishiness were the main perceived off-flavors. All samples, apart from hydrolyzed collagen, had intense flavor and odor. Differences in odor-active compounds supported the sensory evaluation results. The chemical properties revealed that the lipid oxidation, peptide profile, and raw material degradation are likely affecting the sensory properties of commercial fish proteins. Limiting lipid oxidation during processing is crucial for the development of mild-tasting and -smelling products for human consumption.
Collapse
|
42
|
Evaluation of antioxidant, α-amylase-inhibitory and antimicrobial activities of wheat gluten hydrolysates produced by ficin protease. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
43
|
Yang Q, Venema P, van der Linden E, de Vries R. Soluble protein particles produced directly from mung bean flour by simple coacervation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Tang T, Wu N, Tang S, Xiao N, Jiang Y, Tu Y, Xu M. Industrial Application of Protein Hydrolysates in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1788-1801. [PMID: 36692023 DOI: 10.1021/acs.jafc.2c06957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Protein hydrolysates, which may be produced by the protein in the middle of the process or added as an ingredient, are part of the food formula. In food, protein hydrolysates are found in many forms, which can regulate the texture and functionality of food, including emulsifying properties, foaming properties, and gelation. Therefore, the relationship between the physicochemical and structural characteristics of protein hydrolysates and their functional characteristics is of significant importance. In recent years, researchers have conducted many studies on the role of protein hydrolysates in food processing. This Review explains the relationship between the structure and function of protein hydrolysates, and their interaction with the main ingredients of food, to provide reference for their development and further research.
Collapse
Affiliation(s)
- Tingting Tang
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuaishuai Tang
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nanhai Xiao
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Jiang
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
45
|
Yan Y, Zhang Y, Gao J, Qin L, Liu F, Zeng W, Wan J. Intracellular and extracellular sources, transformation process and resource recovery value of proteins extracted from wastewater treatment sludge via alkaline thermal hydrolysis and enzymatic hydrolysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158512. [PMID: 36063951 DOI: 10.1016/j.scitotenv.2022.158512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Excess sludge contains a large amount of protein and can be recycled to prepare industrial foaming agents, foliar fertilizers and other high value-added products. The optimization and effects of sludge protein extraction using the common processes of alkaline thermal hydrolysis (ATH) and enzymatic hydrolysis (EH) have been widely studied. This study focused on the protein extraction mechanisms of ATH and EH by comparing the ratio of intracellular to extracellular proteins extracted and the transformation of protein during the hydrolysis process. The extracellular protein content was 82.6 ± 5.07 mg/g VSS, and the content of intracellular protein extracted using ATH and EH was 376.9 mg/g VSS and 127.9 mg/g VSS, respectively. The ratio of intracellular to extracellular proteins extracted by ATH and EH was 4.5 and 1.5, respectively, indicating that ATH had a much better wall-breaking effect that allowed it to extract abundant intracellular proteins. The protein content obtained from ATH continuously increased over time, and approximately 38 % of proteins were further hydrolyzed to polypeptides. In contrast, the relatively low protein content extracted by EH possibly limited subsequent polypeptide hydrolysis, but subsequent hydrolysis to amino acids was not noticeably affected and was linearly correlated with the amount of protein extracted. An analysis of the recycling convenience and value of extracted proteins showed that the sludge dewatering performance increased by 86.7 % and 45.5 % after ATH and EH treatment, respectively, which was conducive to the subsequent separation of the protein solution. The protein extracted by ATH, with a large amount of peptides, would be beneficial to prepare industrial foaming agents, while the protein extracted by EH was rich in free amino acids and could be used to prepare foliar fertilizer.
Collapse
Affiliation(s)
- Yixin Yan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yajing Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jianlei Gao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Lei Qin
- Central Plains Environmental Protection Co., Ltd., Zhengzhou 450001, China
| | - Fan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wei Zeng
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Junfeng Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
46
|
Effect of Enzymatic Hydrolysis on Solubility and Emulsifying Properties of Lupin Proteins (Lupinus luteus). COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Solubility and emulsifying properties are important functional properties associated with proteins. However, many plant proteins have lower techno-functional properties, which limit their functional performance in many formulations. Therefore, the objective of this study was to investigate the effect of protein hydrolysis by commercial enzymes to improve their solubility and emulsifying properties. Lupin protein isolate (LPI) was hydrolyzed by 7 commercial proteases using different E/S ratios and hydrolysis times while the solubility and emulsifying properties were evaluated. The results showed that neutral and alkaline proteases are most efficient in hydrolyzing lupin proteins than acidic proteases. Among the proteases, Protamex® (alkaline protease) showed the highest DH values after 5 h of protein hydrolysis. Meanwhile, protein solubility of LPI hydrolysates was significantly higher (p < 0.05) than untreated LPI at all pH analyzed values. Moreover, the emulsifying capacity (EC) of undigested LPI was lower than most of the hydrolysates, except for acidic proteases, while emulsifying stability (ES) was significantly higher (p < 0.05) than most LPI hydrolysates by acidic proteases, except for LPI hydrolyzed with Acid Stable Protease with an E/S ratio of 0.04. In conclusion, the solubility, and emulsifying properties of lupin (Lupinus luteus) proteins can be improved by enzymatic hydrolysis using commercial enzymes.
Collapse
|
47
|
Enzymatic hydrolysis of lentil protein concentrate for modification of physicochemical and techno-functional properties. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AbstractThe effects of hydrolysis by commercial food-grade proteases on the physicochemical and techno-functional properties of lentil protein concentrate were investigated. Lentil protein concentrate was hydrolysed with Alcalase, Novozym 11028 or Flavourzyme, and a control was prepared without enzyme addition under the same conditions. Differences in specificity between the three proteases were evident in the electrophoretic protein profile, reversed-phase HPLC peptide profile, and free amino acid composition. Alcalase and Novozym were capable of extensively degrading all the major protein fractions. Alcalase or Novozym treatment resulted in considerably higher solubility under acidic conditions compared to the control. Flavourzyme treatment resulted in moderately improved solubility in the acidic range, but slightly lower solubility at pH 7. Alcalase treatment resulted in slightly larger particle size and slightly higher viscosity. The foaming properties of the protein concentrate were not significantly affected by hydrolysis. Increased solubility in acidic conditions with hydrolysis could broaden the range of food and beverage applications for lentil protein concentrate.
Collapse
|
48
|
Targeted hydrolysis of native potato protein: A novel workflow for obtaining hydrolysates with improved interfacial properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Liu FF, Li YQ, Wang CY, Liang Y, Zhao XZ, He JX, Mo HZ. Physicochemical, functional and antioxidant properties of mung bean protein enzymatic hydrolysates. Food Chem 2022; 393:133397. [DOI: 10.1016/j.foodchem.2022.133397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 01/22/2023]
|
50
|
Christensen LF, García-Béjar B, Bang-Berthelsen CH, Hansen EB. Extracellular microbial proteases with specificity for plant proteins in food fermentation. Int J Food Microbiol 2022; 381:109889. [DOI: 10.1016/j.ijfoodmicro.2022.109889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/06/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
|