1
|
Abdella MAA, Hassan ME, Soliman TN. Covalently immobilized β-galactosidase onto a novel alginate/lemon peel carrier: Catalytic, kinetic, stability studies, and its application in the production of whey high-protein beverage. Int J Biol Macromol 2025; 307:142222. [PMID: 40107554 DOI: 10.1016/j.ijbiomac.2025.142222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/25/2024] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
β-Galactosidase (βG) was immobilized on novel alginate/lemon peel (Alg/LP) beads, achieving an immobilization yield of 84.7 % and an efficiency of 96.6 %. Both free and immobilized enzymes exhibited optimal activity at 50 °C and pH 5. The immobilized enzyme (Alg/LP/βG) demonstrated significantly improved thermal stability and broader pH tolerance compared to its free form. Immobilization notably altered enzyme kinetics, reducing Km by 57 % and Vmax by 13.4 %. Alg/LP/βG displayed excellent storage stability at 4 °C, retaining 91.3 % activity after 21 days and 79.6 % activity after 35 days. It also maintained 100 % activity after 11 cycles and 75.4 % activity after 15 operational cycles. The enzyme's application was explored in producing high-protein beverages from 13 % whey protein concentrate, enhancing sweetness by hydrolyzing lactose into glucose and galactose, which were further sweetened with 7 % sucrose. Adding lemon peel powder (LPP) improved the beverage's flavor, antioxidant properties, total phenolic content, and viscosity while keeping its chemical composition low. Sensory evaluation identified the beverage with 0.4 % LPP as the most preferred. This study highlights the potential of Alg/LP beads as an effective support matrix for β-galactosidase, offering enhanced stability, reusability, and applicability, particularly for enzymatic processes in the food industry.
Collapse
Affiliation(s)
- Mohamed A A Abdella
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed E Hassan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt; Centre of Excellence, Encapsulation and Nanobiotechnology Group, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Tarek N Soliman
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Giza 12622, Egypt.
| |
Collapse
|
2
|
Chen X, Gulbahar K, Ding H, Nie C, Gao X. Comparative analysis of proteomics and transcriptomics reveals novel mechanism underlying the antibacterial activity and immune-enhancing properties of horse milk. Front Nutr 2025; 12:1512669. [PMID: 40135224 PMCID: PMC11932903 DOI: 10.3389/fnut.2025.1512669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Background Horse milk is a highly valuable organic food that is a promising alternative to cow milk, exhibiting plenty of healthy and immune benefits to human. However, identification of proteins associated human wellness and underlying molecular mechanism in horse milk remain unclear. Methodology Label-free mass spectrometry-based protein quantification technology was employed to investigate protein composition of animal milk, including cow, goat, camel and horse milk. Prokaryotic expression and disk diffusion assay were applied to acquire and evaluate in vitro antimicrobial activity of candidate proteins. RAW264.7 macrophage model cell line was used to validate effect of proteins on cytotoxicity, apoptosis and immune induction. ROS probe detected cell ROS change and RT-qPCR verified expression of immune response genes induced by proteins. Microscopy was used to observe the effects of protein on the morphological characteristics of bacteria, further transcriptome analysis was performed to investigate transcriptional changes of bacteria induced by candidate proteins. Results A total of 1,335 proteins was identified in cow, goat, camel and horse milk. GO enrichment analysis showed that the proteins related to protein degradation were highly expressed in horse milk compared to other three types of milk, contributing to easier assimilation and palatability. KEGG analysis showed that horse milk contained abundant antimicrobial associated proteins relevant to pathogenic bacterial resistance, leading to the decreased risk of pathogenic diseases. A higher accumulation of proteins associated with caffeine metabolism, amino acid biosynthesis, and glycolysis/gluconeogenesis in horse milk contributes to its distinctive flavor. Notably, highly expressed proteins in horse milk were closely linked to immune signaling pathways, functioning as immune modulators. Importantly, we identified four highly expressed antimicrobial associated proteins in horse milk including LPO, B2M, CD14 and PGL, among them, PGL functioned dually by in vitro antibacterial activity and immune activation. Further transcriptome analysis demonstrated that PGL exerted significant transcriptional changes to bacteria. Enrichment analysis showed PGL could inhibit growth of P. aeruginosa and E. coli by repressing the biosynthesis of secondary metabolites. Conclusion Comparative proteomics revealed immune enhancement and nutrient composition of horse milk compared to cow, goat and camel milk. Identification of PGL showed antibacterial activity and potential medicinal value.
Collapse
Affiliation(s)
- Xueshan Chen
- School of Pharmacy, Xinjiang Medical University, Xinjiang, China
| | - Kawuli Gulbahar
- School of Pharmacy, Xinjiang Medical University, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Xinjiang Medical University, Xinjiang, China
| | - Haiyan Ding
- School of Pharmacy, Xinjiang Medical University, Xinjiang, China
| | - Changhong Nie
- School of Pharmacy, Xinjiang Medical University, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Xinjiang Medical University, Xinjiang, China
| | - Xiaoli Gao
- School of Pharmacy, Xinjiang Medical University, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
3
|
Pillai AT, Morya S, Kasankala LM. Emerging Trends in Bioavailability and Pharma-Nutraceutical Potential of Whey Bioactives. J Nutr Metab 2024; 2024:8455666. [PMID: 38633607 PMCID: PMC11023716 DOI: 10.1155/2024/8455666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/18/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Whey, a component of milk and a useful by-product of the dairy industry's casein and cheese-making, has been used for generations to augment animal feed. It contains a range of proteins, including α-lactalbumin, β-lactoglobulin, bovine serum albumin, heavy and light chain immunoglobulins, lactoferrin, glycomacropeptide, and lactoperoxidase. Whey proteins exhibit great potential as biopolymers for creating bioactive delivery systems owing to their distinct health-enhancing characteristics and the presence of numerous amino acid groups within their structures. Whey has considerable factors such as antitumor, anti-inflammatory, antihypertensive, hypolipidemic, antiviral, and antibacterial properties in addition to chelating. The global market of whey protein stood at USD 5.33 billion in 2021, with a projected compound annual growth rate of 10.48% spanning the interval from 2022 to 2030. The escalating demand for whey protein is intrinsically linked to the amplifying consciousness surrounding healthy lifestyles. Notably, protein supplements are recurrently endorsed by fitness and sports establishments, thereby accentuating the focal point of customers toward whey protein. This review focuses on nutritional composition, whey bioactives, and their bioavailability with potential health benefits.
Collapse
Affiliation(s)
- Adhithyan T. Pillai
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sonia Morya
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India
| | | |
Collapse
|
4
|
Zeng X, Wang Y, Yang S, Liu Y, Li X, Liu D. The functionalities and applications of whey/whey protein in fermented foods: a review. Food Sci Biotechnol 2024; 33:769-790. [PMID: 38371680 PMCID: PMC10866834 DOI: 10.1007/s10068-023-01460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 02/20/2024] Open
Abstract
Whey, a major by-product of cheese production, is primarily composed of whey protein (WP). To mitigate environmental pollution, it is crucial to identify effective approaches for fully utilizing the functional components of whey or WP to produce high-value-added products. This review aims to illustrate the active substances with immunomodulatory, metabolic syndrome-regulating, antioxidant, antibacterial, and anti-inflammatory activities produced by whey or WP through fermentation processes, and summarizes the application and the effects of whey or WP on nutritional properties and health promotion in fermented foods. All these findings indicate that whey or WP can serve as a preservative, a source of high-protein dietary, and a source of physiologically active substance in the production of fermented foods. Therefore, expanding the use of whey or WP in fermented foods is of great importance for converting whey into value-added products, as well as reducing whey waste and potential contamination.
Collapse
Affiliation(s)
- Xiaorong Zeng
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Yujie Wang
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Shuda Yang
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Yijun Liu
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Xing Li
- Zhangye Water Saving Agricultural Experimental Station, Gansu Academy of Agricultural Sciences, Zhangye, 734000 China
| | - Diru Liu
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| |
Collapse
|
5
|
Katrine Laursen A, Bue Dyrnø S, Steven Mikkelsen K, Pawel Czaja T, Albert Maria Rovers T, Ipsen R, Ahrné L. Effect of coagulation temperature on cooking integrity of heat and acid-induced milk gels. Food Res Int 2023; 169:112846. [PMID: 37254420 DOI: 10.1016/j.foodres.2023.112846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Heat and acid-induced milk gels do not melt or flow upon heating and thus show great potential as a dairy-based protein source for cooking, e.g. for stews. Understanding how processing, e.g. acidification, affects the cooking behavior of these gels is therefore of great industrial interest. The cooking integrity of gels produced by rapidly acidifying milk using citric acid at temperatures of 60, 75, and 90 °C, was determined by analyzing composition, texture, and spatial water distribution before and after cooking. Increasing the acidification temperature from 60 to75 °C resulted in a significant reduction of yield, due to decreased moisture content of the gels. With increasing content of solids, the gels grew harder and denser, as observed by texture profile analysis and low-field Nuclear Magnetic Resonance. Upon cooking the 60 °C gel lost a significant amount of moisture, due to the contraction of the porous protein network. The more compact gels, prepared at 75 and 90 °C, did not lose mass indicating good cooking integrity, i.e. a gel that keeps its structure during cooking. Acidification temperature thus greatly influenced cooking integrity. The effect was mainly ascribed to the density of the gel texture, a result of the speed of protein aggregation and calcium recovery.
Collapse
Affiliation(s)
- Anne Katrine Laursen
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Steffan Bue Dyrnø
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Kim Steven Mikkelsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Tomasz Pawel Czaja
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | | | - Richard Ipsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Lilia Ahrné
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark.
| |
Collapse
|
6
|
Wahba MI. Glutaraldehyde-pea protein grafted polysaccharide matrices for functioning as covalent immobilizers. Sci Rep 2023; 13:9105. [PMID: 37277367 DOI: 10.1038/s41598-023-36045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023] Open
Abstract
Three polysaccharide matrices (κ-Carrageenan (Carr), gellan gum, and agar) were grafted via glutaraldehyde (GA) and pea protein (PP). The grafted matrices covalently immobilized β-D-galactosidase (β-GL). Nonetheless, grafted Carr acquired the topmost amount of immobilized β-GL (iβ-GL). Thus, its grafting process was honed via Box-Behnken design and was further characterized via FTIR, EDX, and SEM. The optimal GA-PP-Carr grafting comprised processing Carr beads with 10% PP dispersion of pH 1 and 25% GA solution. The optimal GA-PP-Carr beads acquired 11.44 Ug-1 iβ-GL with 45.49% immobilization efficiency. Both free and GA-PP-Carr iβ-GLs manifested their topmost activity at the selfsame temperature and pH. Nonetheless, the β-GL Km and Vmax values were reduced following immobilization. The GA-PP-Carr iβ-GL manifested good operational stability. Moreover, its storage stability was incremented where 91.74% activity was offered after 35 storage days. The GA-PP-Carr iβ-GL was utilized to degrade lactose in whey permeate with 81.90% lactose degradation efficiency.
Collapse
Affiliation(s)
- Marwa I Wahba
- Department of Chemistry of Natural and Microbial Products, National Research Centre, El-Behooth St., Dokki, Giza, Egypt.
- Centre of Scientific Excellence-Group of Advanced Materials and Nanotechnology, National Research Centre, El-Behooth St., Dokki, Giza, Egypt.
| |
Collapse
|
7
|
do Carmo LB, Benincá DB, Grancieri M, Pereira LV, Lima Filho T, Saraiva SH, Silva PI, Oliveira DDS, Costa AGV. Green Coffee Extract Microencapsulated: Physicochemical Characteristics, Stability, Bioaccessibility, and Sensory Acceptability through Dairy Beverage Consumption. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13221. [PMID: 36293801 PMCID: PMC9603171 DOI: 10.3390/ijerph192013221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to investigate the effect of spray drying (SD) and freeze-drying (FD) on the microencapsulation of green coffee extracts by using polydextrose (PD) and inulin (IN) as encapsulating agents and their physicochemical, bioactive compounds' stability, phenolic compounds' bioaccessibility after digestion, and sensory effects in unfermented dairy beverages. The extract encapsulated with IN by FD had lower moisture content, water activity, and hygroscopicity, while particles encapsulated by SD exhibited a spherical shape and the structure of the FD products was irregular. No difference was observed in phenolic compounds' bioaccessibility. Dairy beverages with added encapsulated extracts had higher total phenolic content and antioxidant activity. Microencapsulation allowed a controlled release of the bioactive compounds with an increase in the content of caffeine, chlorogenic acid, and trigonelline during storage. The dairy beverage with added extract encapsulated with IN by FD had the highest scores of acceptability regarding the overall impression and purchase intent.
Collapse
Affiliation(s)
- Laísa Bernabé do Carmo
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
| | - Daiane Bonizioli Benincá
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
| | - Mariana Grancieri
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
- Centre of Exact, Natural and Health Sciences, Department of Pharmacy and Nutrition, Federal University of Espirito Santo, Alto Universitário, Guararema, Alegre 29500-000, ES, Brazil
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | - Lucélia Vieira Pereira
- Centre of Exact, Natural and Health Sciences, Department of Pharmacy and Nutrition, Federal University of Espirito Santo, Alto Universitário, Guararema, Alegre 29500-000, ES, Brazil
| | - Tarcísio Lima Filho
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
- Department of Food Engineering, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
| | - Sérgio Henriques Saraiva
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
- Department of Food Engineering, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
| | - Pollyanna Ibrahim Silva
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
- Department of Food Engineering, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
| | - Daniela da Silva Oliveira
- Centre of Exact, Natural and Health Sciences, Department of Pharmacy and Nutrition, Federal University of Espirito Santo, Alto Universitário, Guararema, Alegre 29500-000, ES, Brazil
| | - André Gustavo Vasconcelos Costa
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
- Centre of Exact, Natural and Health Sciences, Department of Pharmacy and Nutrition, Federal University of Espirito Santo, Alto Universitário, Guararema, Alegre 29500-000, ES, Brazil
| |
Collapse
|
8
|
Liu XC, Liu J, Skibsted LH. Temperature effect on calcium binding to aspartate and glutamate. Food Res Int 2022; 159:111625. [DOI: 10.1016/j.foodres.2022.111625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
|
9
|
de Souza AB, Xavier AAO, Stephani R, Tavares GM. Sedimentation in UHT high-protein dairy beverages: influence of sequential preheating coupled with homogenisation or supplementation with carbohydrates. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Daniloski D, McCarthy NA, Auldist MJ, Vasiljevic T. Properties of sodium caseinate as affected by the β-casein phenotypes. J Colloid Interface Sci 2022; 626:939-950. [PMID: 35835044 DOI: 10.1016/j.jcis.2022.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
The aim of the study was to investigate the properties of sodium caseinate dispersions and oil-in-water emulsions obtained from cows' milk of either A1/A1, A1/A2, or A2/A2 β-casein phenotype. Protein structural characterisation was examined using Fourier Transform Infrared and Nuclear Magnetic Resonance spectroscopies, with physicochemical and interfacial properties assessed by analysing adsorbed protein content, hydrophobicity, solubility, and emulsion stability of the samples. Results showed variations in the secondary structure of all samples dependent of the presence of A1 or A2 β-caseins. The main differences included greater amounts of α-helix and β-sheet in A1/A1 and A1/A2 sodium caseinate dispersions that influenced their lower solubility, while random coils/polyproline II helixes were found only in A2/A2 sodium caseinate dispersion. In contrast, upon adsorption on the interface of A2/A2 sodium caseinate emulsion, the protein adopted ordered conformational motifs. This conformational shift supposedly arose from structural differences between the two β-casein proteoforms, which most likely enhanced the emulsion properties of A2/A2 sodium caseinate compared to either A1/A1 or A1/A2 sodium caseinates. The A2 β-casein in both, A1/A2 and A2/A2 sodium caseinates, appears to be able to more rapidly reach the oil droplet surface and was more efficient as emulsifying agent. The current results demonstrated that the conformational rearrangement of proteins upon adsorption to emulsion interfaces was dependent not only on hydrophobicity and on solubility, but also on the conformational flexibility of A1/A1, A1/A2, and A2/A2 β-casein phenotypes. These findings can assist in predicting the behaviour of sodium caseinates during relevant industrial processing.
Collapse
Affiliation(s)
- Davor Daniloski
- Victoria University, Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities and College of Health and Biomedicine, Melbourne, Victoria 8001, Australia; Teagasc Food Research Centre, Food Chemistry and Technology Department, Moorepark, Fermoy, P61 C996, Cork, Ireland
| | - Noel A McCarthy
- Teagasc Food Research Centre, Food Chemistry and Technology Department, Moorepark, Fermoy, P61 C996, Cork, Ireland
| | - Martin J Auldist
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Ellinbank, Victoria 3821, Australia; University of Melbourne, Centre for Agricultural Innovation, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne, Victoria 3010, Australia
| | - Todor Vasiljevic
- Victoria University, Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities and College of Health and Biomedicine, Melbourne, Victoria 8001, Australia.
| |
Collapse
|