1
|
Mittal A, Benjakul S, Brunton N, Kadam D, Singh A. Combined Effect of Cold Atmospheric Plasma and Chitooligosaccharide-EGCG Conjugate on Quality and Shelf-Life of Depurated Asian Green Mussel. Foods 2025; 14:1399. [PMID: 40282801 PMCID: PMC12026644 DOI: 10.3390/foods14081399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
The combined effects of chitooligosaccharide-epigallocatechin gallate conjugate (CEC) at different concentrations (1, 2, and 3%, w/w) and cold atmospheric plasma (CAP) on the depurated Asian green mussel edible portion (AGM-EP) were investigated during refrigerated storage for 15 days. Among all the treatments, the microbial counts, total volatile bases (TMA-N and TVB-N), and lipid oxidation of AGM-EP-treated 3% CEC in conjunction with CAP (CEC-3-CAP) were lower than the other samples during 15-day storage (p < 0.05). Total viable bacteria (6.16 log CFU/g sample), psychrotrophic bacteria (3.24 log CFU/g sample), Vibrio spp. (2.47 log CFU/g sample), presumptive Pseudomonas (5.93 log CFU/g sample), and H2S-producing bacteria (5.05 log CFU/g sample) counts of the CEC-3-CAP were lower than samples treated with 1 and 2% (w/w) CEC on day 15, as well as samples solely treated using CAP during refrigerated storage, irrespective of storage time. Additionally, CEC-3-CAP had significantly lower lipid oxidation (PV: 8.36 mg cumene hydroperoxide/kg sample and TBARS: 2.65 mg MDA/kg sample) as compared to those without CEC added and other samples (p < 0.05). The incorporation of CEC effectively mitigated lipid oxidation as supported by lower reduction of PUFAs in AGM-EP. Moreover, on day 0, no significant differences were observed in cooking loss or textural parameters (firmness and toughness) among the treatments (p > 0.05). However, as storage progressed, cooking loss increased in the CEC-3-CAP sample, while a noticeable decline in firmness and toughness was recorded (p < 0.05). This further attributed to the lower likeness attained for CAP-3-CAP on day 12, but the score was higher than the acceptable limit (5.0). Therefore, CAP together with CEC is a promising technology to prolong the shelf-life of depurated AGM-EP by at least 9 days as compared to the control (3 days), but it certainly needs further studies for the retention of textural properties and sensorial attributes.
Collapse
Affiliation(s)
- Ajay Mittal
- UCD Institute of Food and Health, University College Dublin, Belfield Campus, D04 V1W8 Dublin, Ireland; (A.M.); (N.B.)
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Nigel Brunton
- UCD Institute of Food and Health, University College Dublin, Belfield Campus, D04 V1W8 Dublin, Ireland; (A.M.); (N.B.)
| | - Deepak Kadam
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| |
Collapse
|
2
|
Marques J, Maso ES, das Neves GB, Scheffer EK, Ribeiro BG, Borges GK, de Aguiar Boff L, Nuernberg SS, de Lima Miguel R, Miletti LC, de Quadros RM. Genotypic determination of Vibrio spp. in bivalves from natural environments on the south coast of Santa Catarina, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:9094-9102. [PMID: 40108036 DOI: 10.1007/s11356-025-36272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
The microbiota present in the marine environment derives from various sources. The ingestion of raw oysters and mussels contaminated with Vibrio spp., regardless of whether they are wild-caught or farmed, presents health hazards to humans. The consumption of bivalves, particularly oysters and mussels, is an expanding trend in all coastal areas of Brazil. As filter-feeders, they accumulate these bacteria in their tissues, thereby enhancing their concentration in relation to the surrounding aquatic environment. Strains of the genus Vibrio can induce gastroenteritis and infections in open wounds. Between 2021 and 2023, a total of 300 specimens of Perna perna bivalve were collected from the rocky shores of Gravatá and Gi beaches, while 103 oysters were obtained from Noca lagoon in the city of Laguna, situated on the southern coast of Santa Catarina state, Brazil. Bivalve gill samples were cultured on thiosulfate-citrate-bile salts-sucrose agar for a presumptive analysis of Vibrio spp. The multiplex-PCR method was employed to amplify a representative genome sequence of each Vibrio for species-specific gene analysis.. Of the 73 positive samples for Vibrio spp. in P. perna, the species Vibrio parahaemolyticus was predominant in 65.7% (48/73), followed by Vibrio alginolyticus 24.6% (18/73) and Vibrio vulnificus, on the other hand, was only present in one sample (1.36%). Following molecular analysis, it was determined that out of the 65 oyster isolates samples examined, 41 (63.0%) were classified as V. parahaemolyticus, 19 (29.2%) as V. alginolyticus, and 2 (3.08%) as V. vulnificus. V. vulnificus was exclusively identified during the summer season. Histological analyses conducted on the bivalve gills to evaluate tissue damage indicated no alterations This study may offer significant insights for novel research perspectives on the environmental conditions of Vibrio spp. in natural habitats, particularly given a lack of information for the region.
Collapse
Affiliation(s)
- Julia Marques
- Universidade Do Estado de Santa Catarina (UDESC), Centro de Ciências Agroveterinárias (CAV). Av. Luís de Camões, 2090-Conta Dinheiro, Lages-SC, 88520-000, Brazil
| | - Erika Sensolo Maso
- Universidade Do Estado de Santa Catarina (UDESC), Centro de Ciências Agroveterinárias (CAV). Av. Luís de Camões, 2090-Conta Dinheiro, Lages-SC, 88520-000, Brazil
| | - Gabriella Bassi das Neves
- Universidade Do Estado de Santa Catarina (UDESC), Centro de Ciências Agroveterinárias (CAV). Av. Luís de Camões, 2090-Conta Dinheiro, Lages-SC, 88520-000, Brazil
| | - Eduarda Karolyne Scheffer
- Universidade Do Estado de Santa Catarina (UDESC), Centro de Ciências Agroveterinárias (CAV). Av. Luís de Camões, 2090-Conta Dinheiro, Lages-SC, 88520-000, Brazil
| | - Brenda Guedes Ribeiro
- Universidade Do Estado de Santa Catarina (UDESC), Centro de Ciências Agroveterinárias (CAV). Av. Luís de Camões, 2090-Conta Dinheiro, Lages-SC, 88520-000, Brazil
| | - Gabriela Kaiser Borges
- Universidade Do Estado de Santa Catarina (UDESC), Centro de Ciências Agroveterinárias (CAV). Av. Luís de Camões, 2090-Conta Dinheiro, Lages-SC, 88520-000, Brazil
| | - Larissa de Aguiar Boff
- Centro de Educação Superior da Região Sul (CERES), Universidade Do Estado De Santa Catarina (UDESC), Rua Cel. Fernandes Martins, 270, Progresso, Laguna-SC, 88.790-000, Brazil
| | - Samuel Silvestre Nuernberg
- Centro de Educação Superior da Região Sul (CERES), Universidade Do Estado De Santa Catarina (UDESC), Rua Cel. Fernandes Martins, 270, Progresso, Laguna-SC, 88.790-000, Brazil
| | - Rafael de Lima Miguel
- Universidade Do Planalto Catarinense (UNIPLAC), Av. Castelo Branco, No. 170, Bairro Universitário-Lages-SC, Lages-SC, Brazil
| | - Luiz Claudio Miletti
- Universidade Do Estado de Santa Catarina (UDESC), Centro de Ciências Agroveterinárias (CAV). Av. Luís de Camões, 2090-Conta Dinheiro, Lages-SC, 88520-000, Brazil.
| | - Rosiléia Marinho de Quadros
- Universidade Do Estado de Santa Catarina (UDESC), Centro de Ciências Agroveterinárias (CAV). Av. Luís de Camões, 2090-Conta Dinheiro, Lages-SC, 88520-000, Brazil
- Universidade Do Planalto Catarinense (UNIPLAC), Av. Castelo Branco, No. 170, Bairro Universitário-Lages-SC, Lages-SC, Brazil
| |
Collapse
|
3
|
Smalls J, Jacobs J, Townsend H, Chigbu P, Parveen S. Evaluation of the relationships between physico-chemical parameters and the abundance of Vibrio spp. in blue crabs ( Callinectes sapidus) and seawater from the Maryland Coastal Bays. Front Microbiol 2024; 15:1459077. [PMID: 39479213 PMCID: PMC11521862 DOI: 10.3389/fmicb.2024.1459077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Fluctuations in water quality characteristics influence the productivity of blue crabs (Callinectes sapidus), and the risk of human exposure to pathogenic Vibrio species. Thus, this study assessed the prevalence of total and pathogenic/clinical markers of Vibrio parahaemolyticus and Vibrio vulnificus in blue crabs and seawater from the Maryland Coastal Bays (MCBs) and the correlation between Vibrio levels and physicochemical parameters. Methods Three to five crabs and 1 L of seawater were collected monthly for 3 years (May 2018 to December 2020) from six sites within the MCBs. Hemolymph and crab tissue were extracted and pooled for each site. Extracted hemolymph, crab tissue, and seawater were analyzed for V. parahaemolyticus and V. vulnificus using the Most Probable Number (MPN) and real-time PCR methods. A one-way Analysis of Variance (ANOVA), correlations, and linear models were used to analyze the data. Akaike Information Criterion (AICc) was evaluated to determine the model that provides the best fit to the data relating to Vibrio concentrations and environmental factors. Results Results suggested that environmental factors could influence the growth of Vibrio spp. Both V. parahaemolyticus and V. vulnificus were more prevalent during the warmer months than colder months. Vibrio was more prevalent in crab samples compared to seawater. Vibrio vulnificus concentrations in seawater and hemolymph were positively correlated with temperature (p = 0.0143 seawater) and pH (p = 0.006 hemolymph). A negative correlation was observed between the concentration of V. vulnificus in whole crab (tissue) and dissolved oxygen level (p = 0.0256). The concentration of V. parahaemolyticus in seawater was positively correlated with temperature (p = 0.009) and negatively correlated with dissolved oxygen (p = 0.012). Discussion These results provide current information on the spatial and temporal distributions of Vibrio spp. in the MCBs that are useful for implementing more efficient processing and handling procedures of seafood products.
Collapse
Affiliation(s)
- Jasmine Smalls
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States
| | - John Jacobs
- NOAA/NOS/NCCOS, Cooperative Oxford Laboratory, Oxford, MD, United States
| | - Howard Townsend
- NOAA/NMFS/ST/Ecosystems, Cooperative Oxford Laboratory, Oxford, MD, United States
| | - Paulinus Chigbu
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States
| | - Salina Parveen
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States
| |
Collapse
|
4
|
Wenclawiak JT, Weinstein JE, Key PB, Plante CJ, Beckingham BA. Effects of Vibrio vulnificus and Microcystis aeruginosa co-exposures on microplastic accumulation and depuration in the Eastern Oyster (Crassostrea virginica). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124558. [PMID: 39029861 PMCID: PMC11371496 DOI: 10.1016/j.envpol.2024.124558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Microplastics are ubiquitous in the aquatic environment, and bivalves such as the Eastern oyster (Crassostrea virginica) can accumulate these particles directly from the water column. Bivalves are concurrently exposed to pathogenic and toxin-producing bacteria, including Vibrio spp. and Microcystis spp., which have been shown to adversely impact filtration rates. Exposure to these bacteria could thus affect oysters' ability to accumulate and depurate microplastics. As climate change creates conditions that favor Vibrio spp. and Microcystis spp. growth in estuaries, it is increasingly important to understand how these co-occurring biotic stressors influence microplastic contamination in bivalves. The objective of this study was to examine how co-exposures to Vibrio vulnificus and Microcystis aeruginosa influence microplastic accumulation and depuration in Eastern oysters. Oysters were exposed to nylon microplastics (5000 particles L-1) and either V. vulnificus, M. aeruginosa, or both species (104 colony-forming units or cells mL-1, respectively) and sampled over time up to 96 h. Following exposure, remaining oysters were allowed to depurate in clean seawater and sampled over time for up to 96 h. Microplastic concentrations in oysters were quantified and compared among treatments, and rate constants for uptake (ku) and depuration (kd) were calculated using nonlinear regression and two-compartment kinetic models. Overall, microplastic concentrations in oysters exposed to V. vulnificus (X‾ = 2.885 ± 0.350 (SE) particles g-1 w.w.) and V. vulnificus with M. aeruginosa (X‾ = 3.089 ± 0.481 particles g-1 w.w.) were higher than oysters exposed to M. aeruginosa (X‾ = 1.540 ± 0.235 particles g-1 w.w.) and to microplastics alone (X‾ = 1.599 ± 0.208 particles g-1 w.w.). Characterizing microplastic accumulation and depuration in oysters co-exposed to these biotic stressors is an important first step in understanding how contaminant loads in bivalves can change. With this research, the efficacy of depuration for commonly-consumed seafood species can be estimated.
Collapse
Affiliation(s)
- Jessica T Wenclawiak
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson Road, Charleston, SC, 29412, USA.
| | - John E Weinstein
- Department of Biology, The Citadel, Military College of South Carolina, 171 Moultrie Street, Charleston, SC, 29409, USA
| | - Peter B Key
- National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, 331 Fort Johnson Road, Charleston, SC, 29412, USA
| | - Craig J Plante
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson Road, Charleston, SC, 29412, USA
| | - Barbara A Beckingham
- Department of Geology and Environmental Geosciences, College of Charleston, 66 George Street, Charleston, SC, 29424, USA
| |
Collapse
|
5
|
Zhou H, Lu Z, Liu X, Bie X, Cui X, Wang Z, Sun X, Yang J. Characterization and transmission of plasmid-mediated multidrug resistance in foodborne Vibrio parahaemolyticus. Front Microbiol 2024; 15:1437660. [PMID: 39144225 PMCID: PMC11322368 DOI: 10.3389/fmicb.2024.1437660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Objectives The purpose of this study was to determine the structural features and transferability of the multidrug-resistance (MDR) plasmid, and resistance phenotypes for the tested antimicrobials in foodborne Vibrio parahaemolyticus. Methods Plasmids were isolated from a V. parahaemolyticus strain of seafood origin, then sequenced using the Illumina NovaSeq 6000 and PacBio Sequel II sequencing platforms to obtain the complete genome data. Characterization of the MDR plasmid pVP52-1, including determination of antimicrobial resistance genes (ARGs), plasmid incompatibility groups, and transferability, was carried out. Results V. parahaemolyticus strain NJIFDCVp52 contained two circular chromosomes and two circular plasmids (pVP52-1 and pVP52-2). Plasmid typing indicated that pVP52-1 belonged to the incompatibility group IncA/C2 and the sequence type pST3. pVP52-1 carried 12 different ARGs, an IS110-composite transposon consisting of aac(6')-Ib-cr, qnrVC1, aac(6')-Ib, dfrA14, and the IS26-mphA-IS6100 unit flanked by inverted sequences of IS5075 and IS4321. pVP52-2 carried no ARGs. A plasmid elimination assay showed that only pVP52-1 and its ARGs were lost, the loss of resistance to several antimicrobials, causing a change from the ampicillin-ampicillin/sulbactam-cefazolin-cefoxitin-ceftazidime-cefotaxime-imipenem-trimethoprim/sulfamethoxazole resistance pattern to the ampicillin resistance pattern. In accordance, a conjugation transfer assay showed that only pVP52-1 and its ARGs were horizontally transferred, leading to increased antimicrobial resistance in Escherichia coli strain EC600, causing a change from the ampicillin-nalidixic acid resistance pattern to the ampicillin-ampicillin/sulbactam-cefazolin-cefoxitin-ceftazidime-cefotaxime-imipenem-nalidixic acid-chloramphenicol-tetracycline-trimethoprim/sulfamethoxazole-azithromycin resistance pattern. Further transferability experiments revealed that pVP52-1 could be transferred to other enterobacterial strains of E. coli and Salmonella. Discussion This study emphasizes the urgent need for continued surveillance of resistance plasmids and changes in antimicrobial resistance profiles among the V. parahaemolyticus population.
Collapse
Affiliation(s)
- Haibo Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xinmei Liu
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xinping Cui
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zuwei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaojie Sun
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing, China
| | - Jun Yang
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing, China
| |
Collapse
|
6
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Baker‐Austin C, Hervio‐Heath D, Martinez‐Urtaza J, Caro ES, Strauch E, Thébault A, Guerra B, Messens W, Simon AC, Barcia‐Cruz R, Suffredini E. Public health aspects of Vibrio spp. related to the consumption of seafood in the EU. EFSA J 2024; 22:e8896. [PMID: 39045511 PMCID: PMC11263920 DOI: 10.2903/j.efsa.2024.8896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Vibrio parahaemolyticus, Vibrio vulnificus and non-O1/non-O139 Vibrio cholerae are the Vibrio spp. of highest relevance for public health in the EU through seafood consumption. Infection with V. parahaemolyticus is associated with the haemolysins thermostable direct haemolysin (TDH) and TDH-related haemolysin (TRH) and mainly leads to acute gastroenteritis. V. vulnificus infections can lead to sepsis and death in susceptible individuals. V. cholerae non-O1/non-O139 can cause mild gastroenteritis or lead to severe infections, including sepsis, in susceptible individuals. The pooled prevalence estimate in seafood is 19.6% (95% CI 13.7-27.4), 6.1% (95% CI 3.0-11.8) and 4.1% (95% CI 2.4-6.9) for V. parahaemolyticus, V. vulnificus and non-choleragenic V. cholerae, respectively. Approximately one out of five V. parahaemolyticus-positive samples contain pathogenic strains. A large spectrum of antimicrobial resistances, some of which are intrinsic, has been found in vibrios isolated from seafood or food-borne infections in Europe. Genes conferring resistance to medically important antimicrobials and associated with mobile genetic elements are increasingly detected in vibrios. Temperature and salinity are the most relevant drivers for Vibrio abundance in the aquatic environment. It is anticipated that the occurrence and levels of the relevant Vibrio spp. in seafood will increase in response to coastal warming and extreme weather events, especially in low-salinity/brackish waters. While some measures, like high-pressure processing, irradiation or depuration reduce the levels of Vibrio spp. in seafood, maintaining the cold chain is important to prevent their growth. Available risk assessments addressed V. parahaemolyticus in various types of seafood and V. vulnificus in raw oysters and octopus. A quantitative microbiological risk assessment relevant in an EU context would be V. parahaemolyticus in bivalve molluscs (oysters), evaluating the effect of mitigations, especially in a climate change scenario. Knowledge gaps related to Vibrio spp. in seafood and aquatic environments are identified and future research needs are prioritised.
Collapse
|
7
|
Park SK, Lee D, Jo DM, Yu D, Song HS, Kim YM. Bactericidal effect of water-washing methods on Vibrio vulnificus contaminated in a raw fish Konosirus punctatus: water type, temperature, and pH. Food Sci Biotechnol 2024; 33:1495-1504. [PMID: 38585562 PMCID: PMC10992113 DOI: 10.1007/s10068-023-01421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/23/2023] [Accepted: 08/10/2023] [Indexed: 04/09/2024] Open
Abstract
This study aimed to evaluate a method for effectively reducing Vibrio vulnificus contamination in fish based on the type of washing water and method. Texture profiles and sensory evaluations were performed to determine the effect of the developed method on the quality and preference of the samples. The selected fish sample was Konosirus punctatus, which is mainly consumed in Asian countries. Various factors that could affect the survival rate of V. vulnificus were reviewed, including water type, temperature, exposure time, organic acids, pH, and washing methods. As a result, immersion and washing with filtered water with pH adjusted to 4.0 using acetic acid showed a high bactericidal effect of 2.5 log MPN/100 g. Furthermore, this method showed no statistically significant effect on the texture and sensory characteristics of fish. The results of the present study suggest a simple and effective method for preventing V. vulnificus infection in raw fish.
Collapse
Affiliation(s)
- Seul-Ki Park
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju, 55365 Korea
| | - Daeun Lee
- Department of Food Science and Technology, Pukyong National University, Busan, 48513 Korea
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan, 48513 Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513 Korea
| | - Daeung Yu
- Department of Food and Nutrition, Changwon National University, Changwon, 51140 Korea
- Interdisciplinary Program in Senior Human-Ecology, Major in Food and Nutrition, Changwon National University, Changwon, 51140 Korea
| | - Ho-Su Song
- Division of Culinary Arts, Youngsan University, Busan, 48015 Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513 Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513 Korea
| |
Collapse
|
8
|
Ayitey S, Nijamdeen TWGFM, Peiris H, Arachchilage SK, George I, Dahdouh-Guebas F, Deepananda KHMA. Human health risk attributed to consumption of seafood and recreation swimming in Negombo Lagoon, Sri Lanka: An assessment on lagoon water and inhabitant oysters (Crassostrea cucullata Born, 1778). MARINE POLLUTION BULLETIN 2024; 201:116189. [PMID: 38430680 DOI: 10.1016/j.marpolbul.2024.116189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
The Negombo Lagoon is a coastal lagoon influenced by local communities that introduce waste into its ecosystem. This study examined seven sewage entry points, out of which five sites were chosen for oyster sampling based on availability. Physicochemical and microbiological parameters of water (measured in triplicate at each site, n = 84) and oyster samples (total length, TL > 6 cm, n = 30) were assessed. Variation in regional coliform contamination was analyzed employing a one-way analysis of variance (ANOVA). Results indicated that the northern part of the lagoon exceeded recommended coliform thresholds for swimming (total coliform concentration (TCC) < 126 most probable number (MPN)) and seafood consumption (TCC < 100 MPN/g), indicating the presence of Escherichia coli. Water quality indices affirmed fecal pollution, except in the southern part of the lagoon. Furthermore, the study found high oyster consumption (76.7 %), elucidating that oysters from the northern part of Negombo Lagoon pose health risks.
Collapse
Affiliation(s)
- Samuel Ayitey
- Ecology of Aquatic Systems Research Unit, Faculty of Sciences, Université Libre de Bruxelles, Brussels, Belgium; Systems Ecology and Resource Management Research Unit, Département de Biologie des Organismes, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium; Deepartment of Biology, Faculteit Wetenschappen en Bio ingenieurswetenschappen, Vrije Universiteit Brussel, Brussels, Belgium.
| | - T W G F Mafaziya Nijamdeen
- Systems Ecology and Resource Management Research Unit, Département de Biologie des Organismes, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium; Deepartment of Biology, Faculteit Wetenschappen en Bio ingenieurswetenschappen, Vrije Universiteit Brussel, Brussels, Belgium; Department of Environmental Sciences, Open University of the Netherlands, Heerlen, the Netherlands
| | - Harshini Peiris
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Ruhuna, Galle, Sri Lanka
| | | | - Isabelle George
- Ecology of Aquatic Systems Research Unit, Faculty of Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Farid Dahdouh-Guebas
- Systems Ecology and Resource Management Research Unit, Département de Biologie des Organismes, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium; Deepartment of Biology, Faculteit Wetenschappen en Bio ingenieurswetenschappen, Vrije Universiteit Brussel, Brussels, Belgium
| | - K H M Ashoka Deepananda
- Department of Fisheries and Aquaculture, Faculty of Fisheries and Marine Science & Technology, University of Ruhuna, Matara, Sri Lanka
| |
Collapse
|
9
|
Rusco G, Di Iorio M, Felici A, Galosi L, Iaffaldano N, Roncarati A. Strategies to improve the postharvest management of flat oyster (Ostrea edulis) from aquaculture using the short-term storage and package in an innovative closed-circuit system. J Food Sci 2024; 89:186-201. [PMID: 38078769 DOI: 10.1111/1750-3841.16866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/15/2024]
Abstract
This study aimed to improve postharvest management of flat oysters reared in a longline system in the mid Adriatic Sea, using short-term storage and package in an innovative closed-circuit system. For the trial, 870 oysters were employed, divided into three experimental groups (A, B, and C), N = 270 oysters each group, whereas the remaining 60 oysters were used for the 2 controls. Each group differed in relation to the time spent in the depuration tank and the time of packaging: group A was packed and immediately transferred to the cell; group B was depurated in a tank for 48 h, then packed and transferred to the cell; group C was depurated in a tank for 48 h and then packed, depurated for another 24 h and transferred to a cell. Samples of each group were sampled at different times of permanence in cell (t0) up until 12 days (t12) for biomorphometric, sensorial, nutritional, and microbiological analysis. Although the nutritional and sensorial quality of the oysters was more pronounced in group A, B and C groups also showed good results. In these two groups, thanks to the use of the modern water recirculation system the quality and safety of oysters was improved by reducing the presence of sludge and eliminating fecal contaminants completely than A treatment and seawater control. These results were also confirmed by the tank control, where a more extended depuration period positively influenced the same parameters emphasizing the importance of the adequate depuration processes in oyster production.
Collapse
Affiliation(s)
- Giusy Rusco
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Michele Di Iorio
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Alberto Felici
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Macerata, Italy
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Macerata, Italy
| | - Nicolaia Iaffaldano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Alessandra Roncarati
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Macerata, Italy
| |
Collapse
|
10
|
Blanchon C, Toulza E, Calvayrac C, Eichendorff S, Travers MA, Vidal-Dupiol J, Montagnani C, Escoubas JM, Stavrakakis C, Plantard G. Inactivation of two oyster pathogens by photocatalysis and monitoring of changes in the microbiota of seawater: A case study on Ostreid herpes virus 1 μVar and Vibrio harveyi. CHEMOSPHERE 2024; 346:140565. [PMID: 38303385 DOI: 10.1016/j.chemosphere.2023.140565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024]
Abstract
The pollution of seawater by both biotic (bacteria, viruses) and abiotic contaminants (biocides, pharmaceutical residues) frequently leads to economic losses in aquaculture activities mostly mortality events caused by microbial infection. Advanced Oxidation Processes (AOPs) such as heterogeneous photocatalysis allow the removal of all organic contaminants present in water and therefore could reduce production losses in land-based farms. Oysters in land-based farms such as hatcheries and nurseries suffer from a large number of mortality events, resulting in significant losses. If photocatalysis has been widely studied for the decontamination, its application for disinfection is still overlooked, especially on seawater for viruses. We therefore studied seawater disinfection using the photocatalysis (UV365/TiO2) method in the context of Pacific oyster mortality syndrome (POMS). POMS has been defined as a polymicrobial disease involving an initial viral infection with Ostreid Herpes Virus 1, accompanied by multiple bacterial infections. We investigated the impact of treatment on Vibrio harveyi, a unique opportunistic pathogenic bacterium, and on a complex microbial community reflecting a natural POMS event. Viral inactivation was monitored using experimental infections to determine whether viral particles were still infectious after. Changes in the total bacterial community in seawater were studied by comparing UV365/TiO2 treatment with UV365-irradiated seawater and untreated seawater. In the case of OsHV-1, a 2-h photocatalytic treatment prevents POMS disease and oyster mortality. The same treatment also inactivates 80% of viable Vibrio harveyi culture (c.a. 1.5 log). Since OsHV-1 and Vibrio harveyi are effectively inactivated without long-term destabilization of the total bacterial microbiota in the seawater, photocatalysis appears to be a relevant alternative for disinfecting seawater in land-based oyster beds.
Collapse
Affiliation(s)
- Cécile Blanchon
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Perpignan, France; Biocapteurs Analyses Environnement, Université de Perpignan Via Domitia, 66000, Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Sorbonne Université, CNRS, 66650, Banyuls sur Mer, France; PROMES-CNRS UPR 8521, Process Material and Solar Energy, Rambla de la Thermodynamique, 66100, Perpignan, France
| | - Eve Toulza
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Perpignan, France.
| | - Christophe Calvayrac
- Biocapteurs Analyses Environnement, Université de Perpignan Via Domitia, 66000, Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Sorbonne Université, CNRS, 66650, Banyuls sur Mer, France
| | - Stanislawa Eichendorff
- PROMES-CNRS UPR 8521, Process Material and Solar Energy, Rambla de la Thermodynamique, 66100, Perpignan, France
| | - Marie-Agnès Travers
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Perpignan, France
| | - Jeremie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Perpignan, France
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Perpignan, France
| | - Jean-Michel Escoubas
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Perpignan, France
| | | | - Gaël Plantard
- PROMES-CNRS UPR 8521, Process Material and Solar Energy, Rambla de la Thermodynamique, 66100, Perpignan, France
| |
Collapse
|
11
|
Sun T, Ji C, Li F, Wu H. Beyond the exposure phase: Microplastic depuration and experimental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160302. [PMID: 36403837 DOI: 10.1016/j.scitotenv.2022.160302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Currently, most studies focus on the effect of microplastics (MPs) in the exposure phase, but pay limited attention to the depuration phase. Depuration is a promising practice to achieve safe aquaculture production, which is also helpful to understand the long-term impact of MPs. Therefore, investigating the post-exposure scenarios of MPs has great practical significance. In order to provide implications for future research, this work attempted to systematize the current findings and knowledge gaps regarding the depuration of MPs. More specifically, three methods, including direct fitting, one-compartment kinetic model and interval observation, for estimating the retention time of MPs to further determine the minimum depuration time were introduced, in which the one-compartment kinetic model could also be used to calculate the depuration rate constant and biological half-life of MPs. Moreover, the post-exposure effect of MPs generally presented three scenarios: incomplete reversal (legacy effect), return to control level (recovery) and stimulatory response (hormesis-like effect). In addition, the possible tissue translocation of MPs, the influence of food abundance and body shape on MPs egestion, and the potential interaction with environmental factors, have aroused great scientific concerns and need further exploration and clarification.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|