1
|
Chattopadhyay A, Mitra M, Maiti MK. Understanding xylose transport in yeasts. VITAMINS AND HORMONES 2024; 128:243-301. [PMID: 40097252 DOI: 10.1016/bs.vh.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Xylose constitutes the second major sugar fraction of the plant-derived lignocellulosic biomass, which is the most abundantly available and renewable feedstock for microbial fermentations. Hence, comprehensive utilization of xylose is crucial from the perspective of sustainable development of bio-based products, such as fuels, fine chemicals, and high-value compounds. Due to several inherent advantages, various species and strains of yeast are employed to produce these biomolecules. With the advancement of genetic engineering in yeast, lignocellulosic biomass has begun to be commercialized for producing various bioproducts required in the food, fuel, pharmaceutical, chemical, and cosmetics industries. The increasing demands of these bioproducts worldwide lead to a necessity of utilizing xylose efficiently for yeast fermentation strategies together with/replacing glucose for more economic sustainability. However, yeast fermentation processes mostly employ glucose; hence, our understanding of xylose utilization by yeast has not been as scrupulous as it should have been. There has been a remarkable increase in the number of studies conducted on xylose utilization and metabolism in yeasts in the past decade. Our objective in this chapter is to highlight the key advancements and novel approaches in this area and to integrate our understanding of xylose metabolism in yeasts, which can help culminate into commercializing strategies in the future for the development of important bioproducts.
Collapse
Affiliation(s)
- Atrayee Chattopadhyay
- Department of Foundation of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, United States.
| | - Mohor Mitra
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India; Department of Microbial Pathogenesis & Immunology, Health Science Centre, Texas A&M University, College Station, TX, United States
| | - Mrinal K Maiti
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
2
|
Cho DH, Kim HJ, Oh SJ, Hwang JH, Shin N, Bhatia SK, Yoon JJ, Jeon JM, Yang YH. Strategy for efficiently utilizing Escherichia coli cells producing isobutanol by combining isobutanol and indigo production systems. J Biotechnol 2023; 367:62-70. [PMID: 37019156 DOI: 10.1016/j.jbiotec.2023.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Isobutanol is a potential biofuel, and its microbial production systems have demonstrated promising results. In a microbial system, the isobutanol produced is secreted into the media; however, the cells remaining after fermentation cannot be used efficiently during the isobutanol recovery process and are discarded as waste. To address this, we aimed to investigate the strategy of utilizing these remaining cells by combining the isobutanol production system with the indigo production system, wherein the product accumulates intracellularly. Accordingly, we constructed E. coli systems with genes, such as acetolactate synthase gene (alsS), ketol-acid reductoisomerase gene (ilvC), dihydroxyl-acid dehydratase (ilvD), and alpha-ketoisovalerate decarboxylase gene (kivD), for isobutanol production and genes, such as tryptophanase gene (tnaA) and flavin-containing monooxygenase gene (FMO), for indigo production. This system produced isobutanol and indigo simultaneously while accumulating indigo within cells. The production of isobutanol and indigo exhibited a strong linear correlation up to 72 h of production time; however, the pattern of isobutanol and indigo production varied. To our knowledge, this study is the first to simultaneously produce isobutanol and indigo and can potentially enhance the economy of biochemical production.
Collapse
Affiliation(s)
- Do Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, South Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea.
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, South Korea.
| |
Collapse
|
3
|
Geng B, Jia X, Peng X, Han Y. Biosynthesis of value-added bioproducts from hemicellulose of biomass through microbial metabolic engineering. Metab Eng Commun 2022; 15:e00211. [PMID: 36311477 PMCID: PMC9597109 DOI: 10.1016/j.mec.2022.e00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Hemicellulose is the second most abundant carbohydrate in lignocellulosic biomass and has extensive applications. In conventional biomass refinery, hemicellulose is easily converted to unwanted by-products in pretreatment and therefore can't be fully utilized. The present study aims to summarize the most recent development of lignocellulosic polysaccharide degradation and fully convert it to value-added bioproducts through microbial and enzymatic catalysis. Firstly, bioprocess and microbial metabolic engineering for enhanced utilization of lignocellulosic carbohydrates were discussed. The bioprocess for degradation and conversion of natural lignocellulose to monosaccharides and organic acids using anaerobic thermophilic bacteria and thermostable glycoside hydrolases were summarized. Xylose transmembrane transporting systems in natural microorganisms and the latest strategies for promoting the transporting capacity by metabolic engineering were summarized. The carbon catabolite repression effect restricting xylose utilization in microorganisms, and metabolic engineering strategies developed for co-utilization of glucose and xylose were discussed. Secondly, the metabolic pathways of xylose catabolism in microorganisms were comparatively analyzed. Microbial metabolic engineering for converting xylose to value-added bioproducts based on redox pathways, non-redox pathways, pentose phosphate pathway, and improving inhibitors resistance were summarized. Thirdly, strategies for degrading lignocellulosic polysaccharides and fully converting hemicellulose to value-added bioproducts through microbial metabolic engineering were proposed.
Collapse
Affiliation(s)
- Biao Geng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojing Jia
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Stovicek V, Dato L, Almqvist H, Schöpping M, Chekina K, Pedersen LE, Koza A, Figueira D, Tjosås F, Ferreira BS, Forster J, Lidén G, Borodina I. Rational and evolutionary engineering of Saccharomyces cerevisiae for production of dicarboxylic acids from lignocellulosic biomass and exploring genetic mechanisms of the yeast tolerance to the biomass hydrolysate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:22. [PMID: 35219341 PMCID: PMC8882276 DOI: 10.1186/s13068-022-02121-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/12/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Lignosulfonates are significant wood chemicals with a $700 million market, produced by sulfite pulping of wood. During the pulping process, spent sulfite liquor (SSL) is generated, which in addition to lignosulfonates contains hemicellulose-derived sugars-in case of hardwoods primarily the pentose sugar xylose. The pentoses are currently underutilized. If they could be converted into value-added chemicals, overall economic profitability of the process would increase. SSLs are typically very inhibitory to microorganisms, which presents a challenge for a biotechnological process. The aim of the present work was to develop a robust yeast strain able to convert xylose in SSL to carboxylic acids. RESULTS The industrial strain Ethanol Red of the yeast Saccharomyces cerevisiae was engineered for efficient utilization of xylose in a Eucalyptus globulus lignosulfonate stream at low pH using CRISPR/Cas genome editing and adaptive laboratory evolution. The engineered strain grew in synthetic medium with xylose as sole carbon source with maximum specific growth rate (µmax) of 0.28 1/h. Selected evolved strains utilized all carbon sources in the SSL at pH 3.5 and grew with µmax between 0.05 and 0.1 1/h depending on a nitrogen source supplement. Putative genetic determinants of the increased tolerance to the SSL were revealed by whole genome sequencing of the evolved strains. In particular, four top-candidate genes (SNG1, FIT3, FZF1 and CBP3) were identified along with other gene candidates with predicted important roles, based on the type and distribution of the mutations across different strains and especially the best performing ones. The developed strains were further engineered for production of dicarboxylic acids (succinic and malic acid) via overexpression of the reductive branch of the tricarboxylic acid cycle (TCA). The production strain produced 0.2 mol and 0.12 mol of malic acid and succinic acid, respectively, per mol of xylose present in the SSL. CONCLUSIONS The combined metabolic engineering and adaptive evolution approach provided a robust SSL-tolerant industrial strain that converts fermentable carbon content of the SSL feedstock into malic and succinic acids at low pH.in production yields reaching 0.1 mol and 0.065 mol per mol of total consumed carbon sources.. Moreover, our work suggests potential genetic background of the tolerance to the SSL stream pointing out potential gene targets for improving the tolerance to inhibitory industrial feedstocks.
Collapse
Affiliation(s)
- Vratislav Stovicek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Laura Dato
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.,River Stone Biotech ApS, Fruebjergvej 3, 2100, Copenhagen, Denmark
| | - Henrik Almqvist
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Marie Schöpping
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden.,Chr. Hansen A/S, Boge Alle 10-12, 2970, Hørsholm, Denmark.,Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Ksenia Chekina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Anna Koza
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.,Chr. Hansen A/S, Boge Alle 10-12, 2970, Hørsholm, Denmark
| | - Diogo Figueira
- Biotrend S.A., Biocant Park Núcleo 04, Lote 2, 3060-197, Cantanhede, Portugal
| | - Freddy Tjosås
- Borregaard ApS, Hjalmar Wessels vei 6, 1721, Sarpsborg, Norway
| | | | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Lee YJ, Hoang Nguyen Tran P, Ko JK, Gong G, Um Y, Han SO, Lee SM. Glucose/Xylose Co-Fermenting Saccharomyces cerevisiae Increases the Production of Acetyl-CoA Derived n-Butanol From Lignocellulosic Biomass. Front Bioeng Biotechnol 2022; 10:826787. [PMID: 35252135 PMCID: PMC8889018 DOI: 10.3389/fbioe.2022.826787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Efficient xylose catabolism in engineered Saccharomyces cerevisiae enables more economical lignocellulosic biorefinery with improved production yields per unit of biomass. Yet, the product profile of glucose/xylose co-fermenting S. cerevisiae is mainly limited to bioethanol and a few other chemicals. Here, we introduced an n-butanol-biosynthesis pathway into a glucose/xylose co-fermenting S. cerevisiae strain (XUSEA) to evaluate its potential on the production of acetyl-CoA derived products. Higher n-butanol production of glucose/xylose co-fermenting strain was explained by the transcriptomic landscape, which revealed strongly increased acetyl-CoA and NADPH pools when compared to a glucose fermenting wild-type strain. The acetate supplementation expected to support acetyl-CoA pool further increased n-butanol production, which was also validated during the fermentation of lignocellulosic hydrolysates containing acetate. Our findings imply the feasibility of lignocellulosic biorefinery for producing fuels and chemicals derived from a key intermediate of acetyl-CoA through glucose/xylose co-fermentation.
Collapse
Affiliation(s)
- Yeon-Jung Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Department of Biotechnology, Korea University, Seoul, South Korea
| | - Phuong Hoang Nguyen Tran
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, South Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, South Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, South Korea
- Green School, Korea University, Seoul, South Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul, South Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, South Korea
- Green School, Korea University, Seoul, South Korea
- *Correspondence: Sun-Mi Lee,
| |
Collapse
|
6
|
Lakshmi NM, Binod P, Sindhu R, Awasthi MK, Pandey A. Microbial engineering for the production of isobutanol: current status and future directions. Bioengineered 2021; 12:12308-12321. [PMID: 34927549 PMCID: PMC8809953 DOI: 10.1080/21655979.2021.1978189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fermentation-derived alcohols have gained much attention as an alternate fuel due to its minimal effects on atmosphere. Besides its application as biofuel it is also used as raw material for coating resins, deicing fluid, additives in polishes, etc. Among the liquid alcohol type of fuels, isobutanol has more advantage than ethanol. Isobutanol production is reported in native yeast strains, but the production titer is very low which is about 200 mg/L. In order to improve the production, several genetic and metabolic engineering approaches have been carried out. Genetically engineered organism has been reported to produce maximum of 50 g/L of isobutanol which is far more than the native strain without any modification. In bacteria mostly last two steps in Ehrlich pathway, catalyzed by enzymes ketoisovalerate decarboxylase and alcohol dehydrogenase, are heterologously expressed to improve the production. Native Saccharomyces cerevisiae can produce isobutanol in negligible amount since it possesses the pathway for its production through valine degradation pathway. Further modifications in the existing pathways made the improvement in isobutanol production in many microbial strains. Fermentation using cost-effective lignocellulosic biomass and an efficient downstream process can yield isobutanol in environment friendly and sustainable manner. The present review describes the various genetic and metabolic engineering practices adopted to improve the isobutanol production in microbial strains and its downstream processing.
Collapse
Affiliation(s)
- Nair M Lakshmi
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (Csir-niist), Thiruvananthapuram Kerala, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad, Uttar Pradesh India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (Csir-niist), Thiruvananthapuram Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (Csir-niist), Thiruvananthapuram Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West a & F University, Yangling, Shaanxi China
| | - Ashok Pandey
- Centre for Innovation and Translational Research CSIR-Indian Institute of Toxicology Research (Csir-iitr), Lucknow India.,Centre for Energy and Environmental Sustainability, Lucknow Uttar Pradesh, India
| |
Collapse
|
7
|
Lee SB, Tremaine M, Place M, Liu L, Pier A, Krause DJ, Xie D, Zhang Y, Landick R, Gasch AP, Hittinger CT, Sato TK. Crabtree/Warburg-like aerobic xylose fermentation by engineered Saccharomyces cerevisiae. Metab Eng 2021; 68:119-130. [PMID: 34592433 DOI: 10.1016/j.ymben.2021.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/29/2022]
Abstract
Bottlenecks in the efficient conversion of xylose into cost-effective biofuels have limited the widespread use of plant lignocellulose as a renewable feedstock. The yeast Saccharomyces cerevisiae ferments glucose into ethanol with such high metabolic flux that it ferments high concentrations of glucose aerobically, a trait called the Crabtree/Warburg Effect. In contrast to glucose, most engineered S. cerevisiae strains do not ferment xylose at economically viable rates and yields, and they require respiration to achieve sufficient xylose metabolic flux and energy return for growth aerobically. Here, we evolved respiration-deficient S. cerevisiae strains that can grow on and ferment xylose to ethanol aerobically, a trait analogous to the Crabtree/Warburg Effect for glucose. Through genome sequence comparisons and directed engineering, we determined that duplications of genes encoding engineered xylose metabolism enzymes, as well as TKL1, a gene encoding a transketolase in the pentose phosphate pathway, were the causative genetic changes for the evolved phenotype. Reengineered duplications of these enzymes, in combination with deletion mutations in HOG1, ISU1, GRE3, and IRA2, increased the rates of aerobic and anaerobic xylose fermentation. Importantly, we found that these genetic modifications function in another genetic background and increase the rate and yield of xylose-to-ethanol conversion in industrially relevant switchgrass hydrolysate, indicating that these specific genetic modifications may enable the sustainable production of industrial biofuels from yeast. We propose a model for how key regulatory mutations prime yeast for aerobic xylose fermentation by lowering the threshold for overflow metabolism, allowing mutations to increase xylose flux and to redirect it into fermentation products.
Collapse
Affiliation(s)
- Sae-Byuk Lee
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI, USA; Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA; Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| | - Mary Tremaine
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI, USA
| | - Michael Place
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA; Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| | - Lisa Liu
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI, USA
| | - Austin Pier
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI, USA
| | - David J Krause
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI, USA; Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA; Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| | - Dan Xie
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI, USA
| | - Yaoping Zhang
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI, USA
| | - Robert Landick
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Audrey P Gasch
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA; Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI, USA; Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA; Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA.
| | - Trey K Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI, USA.
| |
Collapse
|
8
|
Co-Production of Isobutanol and Ethanol from Prairie Grain Starch Using Engineered Saccharomyces cerevisiae. FERMENTATION 2021. [DOI: 10.3390/fermentation7030150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Isobutanol is an important and valuable platform chemical and an appealing biofuel that is compatible with contemporary combustion engines and existing fuel distribution infrastructure. The present study aimed to compare the potential of triticale, wheat and barley starch as feedstock for isobutanol production using an engineered strain of Saccharomyces cerevisiae. A simultaneous saccharification and fermentation (SSF) approach showed that all three starches were viable feedstock for co-production of isobutanol and ethanol and could produce titres similar to that produced using purified sugar as feedstock. A fed-batch process using triticale starch yielded 0.006 g isobutanol and 0.28 g ethanol/g starch. Additionally, it is demonstrated that Fusarium graminearum infected grain starch contaminated with mycotoxin can be used as an effective feedstock for isobutanol and ethanol co-production. These findings demonstrate the potential for triticale as a purpose grown energy crop and show that mycotoxin-contaminated grain starch can be used as feedstock for isobutanol biosynthesis, thus adding value to a grain that would otherwise be of limited use.
Collapse
|
9
|
Qaseem MF, Shaheen H, Wu AM. Cell wall hemicellulose for sustainable industrial utilization. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2021; 144:110996. [DOI: 10.1016/j.rser.2021.110996] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
11
|
Biorefinery: The Production of Isobutanol from Biomass Feedstocks. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Environmental issues have prompted the vigorous development of biorefineries that use agricultural waste and other biomass feedstock as raw materials. However, most current biorefinery products are cellulosic ethanol. There is an urgent need for biorefineries to expand into new bioproducts. Isobutanol is an important bulk chemical with properties that are close to gasoline, making it a very promising biofuel. The use of microorganisms to produce isobutanol has been extensively studied, but there is still a considerable gap to achieving the industrial production of isobutanol from biomass. This review summarizes current metabolic engineering strategies that have been applied to biomass isobutanol production and recent advances in the production of isobutanol from different biomass feedstocks.
Collapse
|
12
|
Promdonkoy P, Mhuantong W, Champreda V, Tanapongpipat S, Runguphan W. Improvement in d-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering. ACTA ACUST UNITED AC 2020; 47:497-510. [DOI: 10.1007/s10295-020-02281-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022]
Abstract
Abstract
As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce our dependence on fossil fuels as well as lower the emissions of greenhouse gases. Over the past 2 decades, a considerable amount of work has led to the development of microbial strains for the production of advanced fuel compounds from both C5 and C6 sugars. In this work, we combined two strategies—adaptive laboratory evolution and rational metabolic engineering—to improve the yeast Saccharomyces cerevisiae’s ability to utilize d-xylose, a major C5 sugar in biomass, and produce the advanced biofuel isobutanol. Whole genome resequencing of several evolved strains followed by reverse engineering identified two single nucleotide mutations, one in CCR4 and another in TIF1, that improved the yeast’s specific growth rate by 23% and 14%, respectively. Neither one of these genes has previously been implicated to play a role in utilization of d-xylose. Fine-tuning the expression levels of the bottleneck enzymes in the isobutanol pathway further improved the evolved strain’s isobutanol titer to 92.9 ± 4.4 mg/L (specific isobutanol production of 50.2 ± 2.6 mg/g DCW), a 90% improvement in titer and a 110% improvement in specific production over the non-evolved strain. We hope that our work will set the stage for an economic route to the advanced biofuel isobutanol and enable efficient utilization of xylose-containing biomass.
Collapse
Affiliation(s)
- Peerada Promdonkoy
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| | - Wuttichai Mhuantong
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| | - Verawat Champreda
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| | - Sutipa Tanapongpipat
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| | - Weerawat Runguphan
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| |
Collapse
|
13
|
Lane S, Zhang Y, Yun EJ, Ziolkowski L, Zhang G, Jin YS, Avalos JL. Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae. Biotechnol Bioeng 2019; 117:372-381. [PMID: 31631318 DOI: 10.1002/bit.27202] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/17/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022]
Abstract
Bioconversion of xylose-the second most abundant sugar in nature-into high-value fuels and chemicals by engineered Saccharomyces cerevisiae has been a long-term goal of the metabolic engineering community. Although most efforts have heavily focused on the production of ethanol by engineered S. cerevisiae, yields and productivities of ethanol produced from xylose have remained inferior as compared with ethanol produced from glucose. However, this entrenched focus on ethanol has concealed the fact that many aspects of xylose metabolism favor the production of nonethanol products. Through reduced overall metabolic flux, a more respiratory nature of consumption, and evading glucose signaling pathways, the bioconversion of xylose can be more amenable to redirecting flux away from ethanol towards the desired target product. In this report, we show that coupling xylose consumption via the oxidoreductive pathway with a mitochondrially-targeted isobutanol biosynthesis pathway leads to enhanced product yields and titers as compared to cultures utilizing glucose or galactose as a carbon source. Through the optimization of culture conditions, we achieve 2.6 g/L of isobutanol in the fed-batch flask and bioreactor fermentations. These results suggest that there may be synergistic benefits of coupling xylose assimilation with the production of nonethanol value-added products.
Collapse
Affiliation(s)
- Stephan Lane
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yanfei Zhang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Eun Ju Yun
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Leah Ziolkowski
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Guochang Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey.,Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey.,Department of Molecular Biology, Princeton University, Princeton, New Jersey
| |
Collapse
|
14
|
Promdonkoy P, Siripong W, Downes JJ, Tanapongpipat S, Runguphan W. Systematic improvement of isobutanol production from D-xylose in engineered Saccharomyces cerevisiae. AMB Express 2019; 9:160. [PMID: 31599368 PMCID: PMC6787123 DOI: 10.1186/s13568-019-0885-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/24/2019] [Indexed: 11/11/2022] Open
Abstract
As the importance of reducing carbon emissions as a means to limit the serious effects of global climate change becomes apparent, synthetic biologists and metabolic engineers are looking to develop renewable sources for transportation fuels and petroleum-derived chemicals. In recent years, microbial production of high-energy fuels has emerged as an attractive alternative to the traditional production of transportation fuels. In particular, the Baker’s yeast Saccharomyces cerevisiae, a highly versatile microbial chassis, has been engineered to produce a wide array of biofuels. Nevertheless, a key limitation of S. cerevisiae is its inability to utilize xylose, the second most abundant sugar in lignocellulosic biomass, for both growth and chemical production. Therefore, the development of a robust S. cerevisiae strain that is able to use xylose is of great importance. Here, we engineered S. cerevisiae to efficiently utilize xylose as a carbon source and produce the advanced biofuel isobutanol. Specifically, we screened xylose reductase (XR) and xylose dehydrogenase (XDH) variants from different xylose-metabolizing yeast strains to identify the XR–XDH combination with the highest activity. Overexpression of the selected XR–XDH variants, a xylose-specific sugar transporter, xylulokinase, and isobutanol pathway enzymes in conjunction with the deletions of PHO13 and GRE3 resulted in an engineered strain that is capable of producing isobutanol at a titer of 48.4 ± 2.0 mg/L (yield of 7.0 mg/g d-xylose). This is a 36-fold increase from the previous report by Brat and Boles and, to our knowledge, is the highest isobutanol yield from d-xylose in a microbial system. We hope that our work will set the stage for an economic route for the production of advanced biofuel isobutanol and enable efficient utilization of lignocellulosic biomass.
Collapse
|
15
|
Zhang Y, Lane S, Chen JM, Hammer SK, Luttinger J, Yang L, Jin YS, Avalos JL. Xylose utilization stimulates mitochondrial production of isobutanol and 2-methyl-1-butanol in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:223. [PMID: 31548865 PMCID: PMC6753614 DOI: 10.1186/s13068-019-1560-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/31/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Branched-chain higher alcohols (BCHAs), including isobutanol and 2-methyl-1-butanol, are promising advanced biofuels, superior to ethanol due to their higher energy density and better compatibility with existing gasoline infrastructure. Compartmentalizing the isobutanol biosynthetic pathway in yeast mitochondria is an effective way to produce BCHAs from glucose. However, to improve the sustainability of biofuel production, there is great interest in developing strains and processes to utilize lignocellulosic biomass, including its hemicellulose component, which is mostly composed of the pentose xylose. RESULTS In this work, we rewired the xylose isomerase assimilation and mitochondrial isobutanol production pathways in the budding yeast Saccharomyces cerevisiae. We then increased the flux through these pathways by making gene deletions of BAT1, ALD6, and PHO13, to develop a strain (YZy197) that produces as much as 4 g/L of BCHAs (3.10 ± 0.18 g isobutanol/L and 0.91 ± 0.02 g 2-methyl-1-butanol/L) from xylose. This represents approximately a 28-fold improvement on the highest isobutanol titers obtained from xylose previously reported in yeast and the first report of 2-methyl-1-butanol produced from xylose. The yield of total BCHAs is 57.2 ± 5.2 mg/g xylose, corresponding to ~ 14% of the maximum theoretical yield. Respirometry experiments show that xylose increases mitochondrial activity by as much as 7.3-fold compared to glucose. CONCLUSIONS The enhanced levels of mitochondrial BCHA production achieved, even without disrupting ethanol byproduct formation, arise mostly from xylose activation of mitochondrial activity and are correlated with slow rates of sugar consumption.
Collapse
Affiliation(s)
- Yanfei Zhang
- Department of Chemical and Biological Engineering, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ 08544 USA
| | - Stephan Lane
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Jhong-Min Chen
- Department of Chemical and Biological Engineering, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ 08544 USA
| | - Sarah K. Hammer
- Department of Chemical and Biological Engineering, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ 08544 USA
| | - Jake Luttinger
- Department of Chemical and Biological Engineering, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ 08544 USA
| | - Lifeng Yang
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
- Department of Chemistry, Princeton University, Princeton, NJ USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - José L. Avalos
- Department of Chemical and Biological Engineering, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ 08544 USA
- Andlinger Center for Energy and the Environment, Princeton, NJ USA
- Department of Molecular Biology, Princeton University, Princeton, NJ USA
| |
Collapse
|
16
|
Li X, Chen Y, Nielsen J. Harnessing xylose pathways for biofuels production. Curr Opin Biotechnol 2019; 57:56-65. [PMID: 30785001 DOI: 10.1016/j.copbio.2019.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 01/02/2023]
Abstract
Energy security, environmental pollution, and economic development drive the development of alternatives to fossil fuels as an urgent global priority. Lignocellulosic biomass has the potential to contribute to meeting the demand for biofuel production via hydrolysis and fermentation of released sugars, such as glucose, xylose, and arabinose. Construction of robust cell factories requires introducing and rewiring of their metabolism to efficiently use all these sugars. Here, we review recent advances in re-constructing pathways for metabolism of pentoses, with special focus on xylose metabolism in the most widely used cell factories Saccharomyces cerevisiae and Escherichia coli. We also highlight engineering advanced biofuels-synthesis pathways and describes progress toward overcoming the challenges facing adoption of large-scale biofuel production.
Collapse
Affiliation(s)
- Xiaowei Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark; Wallenberg Center for Protein Research, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
17
|
Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnol Adv 2018; 37:271-283. [PMID: 30553928 DOI: 10.1016/j.biotechadv.2018.12.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/13/2018] [Accepted: 12/12/2018] [Indexed: 11/20/2022]
Abstract
Numerous metabolic engineering strategies have allowed yeasts to efficiently assimilate xylose, the second most abundant sugar component of lignocellulosic biomass. During the investigation of xylose utilization by yeasts, a global rewiring of metabolic networks upon xylose cultivation has been captured, as opposed to a pattern of glucose repression. A clear understanding of the xylose-induced metabolic reprogramming in yeast would shed light on the optimization of yeast-based bioprocesses to produce biofuels and chemicals using xylose. In this review, we delved into the characteristics of yeast xylose metabolism, and potential benefits of using xylose as a carbon source to produce various biochemicals with examples. Transcriptomic and metabolomic patterns of xylose-grown yeast cells were distinct from those on glucose-a conventional sugar of industrial biotechnology-and the gap might lead to opportunities to produce biochemicals efficiently. Indeed, limited glycolytic metabolic fluxes during xylose utilization could result in enhanced production of metabolites whose biosynthetic pathways compete for precursors with ethanol fermentation. Also, alleviation of glucose repression on cytosolic acetyl coenzyme A (acetyl-CoA) synthesis, and respiratory energy metabolism during xylose utilization enhanced production of acetyl-CoA derivatives. Consideration of singular properties of xylose metabolism, such as redox cofactor imbalance between xylose reductase and xylitol dehydrogenase, is necessary to maximize these positive xylose effects. This review argues the importance and benefits of xylose utilization as not only a way of expanding a substrate range, but also an effective environmental perturbation for the efficient production of advanced biofuels and chemicals in yeasts.
Collapse
|
18
|
Microbial conversion of xylose into useful bioproducts. Appl Microbiol Biotechnol 2018; 102:9015-9036. [PMID: 30141085 DOI: 10.1007/s00253-018-9294-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Microorganisms can produce a number of different bioproducts from the sugars in plant biomass. One challenge is devising processes that utilize all of the sugars in lignocellulosic hydrolysates. D-xylose is the second most abundant sugar in these hydrolysates. The microbial conversion of D-xylose to ethanol has been studied extensively; only recently, however, has conversion to bioproducts other than ethanol been explored. Moreover, in the case of yeast, D-xylose may provide a better feedstock for the production of bioproducts other than ethanol, because the relevant pathways are not subject to glucose-dependent repression. In this review, we discuss how different microorganisms are being used to produce novel bioproducts from D-xylose. We also discuss how D-xylose could be potentially used instead of glucose for the production of value-added bioproducts.
Collapse
|
19
|
Lane S, Dong J, Jin YS. Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2018; 260:380-394. [PMID: 29655899 DOI: 10.1016/j.biortech.2018.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 05/26/2023]
Abstract
The substantial research efforts into lignocellulosic biofuels have generated an abundance of valuable knowledge and technologies for metabolic engineering. In particular, these investments have led to a vast growth in proficiency of engineering the yeast Saccharomyces cerevisiae for consuming lignocellulosic sugars, enabling the simultaneous assimilation of multiple carbon sources, and producing a large variety of value-added products by introduction of heterologous metabolic pathways. While microbial conversion of cellulosic sugars into large-volume low-value biofuels is not currently economically feasible, there may still be opportunities to produce other value-added chemicals as regulation of cellulosic sugar metabolism is quite different from glucose metabolism. This review summarizes these recent advances with an emphasis on employing engineered yeast for the bioconversion of lignocellulosic sugars into a variety of non-ethanol value-added products.
Collapse
Affiliation(s)
- Stephan Lane
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jia Dong
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
20
|
Miao R, Liu X, Englund E, Lindberg P, Lindblad P. Isobutanol production in Synechocystis PCC 6803 using heterologous and endogenous alcohol dehydrogenases. Metab Eng Commun 2017; 5:45-53. [PMID: 29188183 PMCID: PMC5699533 DOI: 10.1016/j.meteno.2017.07.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 12/24/2022] Open
Abstract
Isobutanol is a flammable compound that can be used as a biofuel due to its high energy density and suitable physical and chemical properties. In this study, we examined the capacity of engineered strains of Synechocystis PCC 6803 containing the α-ketoisovalerate decarboxylase from Lactococcus lactis and different heterologous and endogenous alcohol dehydrogenases (ADH) for isobutanol production. A strain expressing an introduced kivd without any additional copy of ADH produced 3 mg L-1 OD750-1 isobutanol in 6 days. After the cultures were supplemented with external addition of isobutyraldehyde, the substrate for ADH, 60.8 mg L-1 isobutanol was produced after 24 h when OD750 was 0.8. The in vivo activities of four different ADHs, two heterologous and two putative endogenous in Synechocystis, were examined and the Synechocystis endogenous ADH encoded by slr1192 showed the highest efficiency for isobutanol production. Furthermore, the strain overexpressing the isobutanol pathway on a self-replicating vector with the strong Ptrc promoter showed significantly higher gene expression and isobutanol production compared to the corresponding strains expressing the same operon introduced on the genome. Hence, this study demonstrates that Synechocystis endogenous AHDs have a high capacity for isobutanol production, and identifies kivd encoded α-ketoisovalerate decarboxylase as one of the likely bottlenecks for further isobutanol production.
Collapse
Affiliation(s)
| | | | | | | | - Peter Lindblad
- Microbial chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| |
Collapse
|
21
|
Jin YS, Cate JHD. Metabolic engineering of yeast for lignocellulosic biofuel production. Curr Opin Chem Biol 2017; 41:99-106. [DOI: 10.1016/j.cbpa.2017.10.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 01/04/2023]
|
22
|
Martins GM, Bocchini-Martins DA, Bezzerra-Bussoli C, Pagnocca FC, Boscolo M, Monteiro DA, Silva RD, Gomes E. The isolation of pentose-assimilating yeasts and their xylose fermentation potential. Braz J Microbiol 2017; 49:162-168. [PMID: 28888830 PMCID: PMC5790582 DOI: 10.1016/j.bjm.2016.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/05/2016] [Accepted: 11/13/2016] [Indexed: 11/19/2022] Open
Abstract
For the implementation of cellulosic ethanol technology, the maximum use of lignocellulosic materials is important to increase efficiency and to reduce costs. In this context, appropriate use of the pentose released by hemicellulose hydrolysis could improve de economic viability of this process. Since the Saccharomyces cerevisiae is unable to ferment the pentose, the search for pentose-fermenting microorganisms could be an alternative. In this work, the isolation of yeast strains from decaying vegetal materials, flowers, fruits and insects and their application for assimilation and alcoholic fermentation of xylose were carried out. From a total of 30 isolated strains, 12 were able to assimilate 30 g L−1 of xylose in 120 h. The strain Candida tropicalis S4 produced 6 g L−1 of ethanol from 56 g L−1 of xylose, while the strain C. tropicalis E2 produced 22 g L−1 of xylitol. The strains Candida oleophila G10.1 and Metschnikowia koreensis G18 consumed significant amount of xylose in aerobic cultivation releasing non-identified metabolites. The different materials in environment were source for pentose-assimilating yeast with variable metabolic profile.
Collapse
Affiliation(s)
- Gisele Marta Martins
- Universidade Estadual Paulista(UNESP), Instituto de Pesquisa em Bioenergia-IPBen, Laboratório de Microbiologia aplicada, São José do Rio Preto, SP, Brazil
| | | | - Carolina Bezzerra-Bussoli
- Universidade Estadual Paulista(UNESP), Instituto de Pesquisa em Bioenergia-IPBen, Laboratório de Microbiologia aplicada, São José do Rio Preto, SP, Brazil
| | - Fernando Carlos Pagnocca
- Universidade Estadual Paulista-UNESP, Centro de Estudos de Insetos Sociais-Ceis, Campus of Rio Claro, SP, Brazil
| | - Maurício Boscolo
- Universidade Estadual Paulista(UNESP), Instituto de Pesquisa em Bioenergia-IPBen, Laboratório de Microbiologia aplicada, São José do Rio Preto, SP, Brazil
| | - Diego Alves Monteiro
- Universidade Estadual Paulista(UNESP), Instituto de Pesquisa em Bioenergia-IPBen, Laboratório de Microbiologia aplicada, São José do Rio Preto, SP, Brazil
| | - Roberto da Silva
- Universidade Estadual Paulista(UNESP), Instituto de Pesquisa em Bioenergia-IPBen, Laboratório de Microbiologia aplicada, São José do Rio Preto, SP, Brazil
| | - Eleni Gomes
- Universidade Estadual Paulista(UNESP), Instituto de Pesquisa em Bioenergia-IPBen, Laboratório de Microbiologia aplicada, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
23
|
Sorokina KN, Samoylova YV, Piligaev AV, Sivakumar U, Parmon VN. New methods for the one-pot processing of polysaccharide components (cellulose and hemicelluloses) of lignocellulose biomass into valuable products. Part 3: Products synthesized via the biotechnological conversion of poly- and monosaccharides of biomass. CATALYSIS IN INDUSTRY 2017. [DOI: 10.1134/s2070050417030138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Kwak S, Jin YS. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb Cell Fact 2017; 16:82. [PMID: 28494761 PMCID: PMC5425999 DOI: 10.1186/s12934-017-0694-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 05/02/2017] [Indexed: 02/06/2023] Open
Abstract
Efficient xylose utilization is one of the most important pre-requisites for developing an economic microbial conversion process of terrestrial lignocellulosic biomass into biofuels and biochemicals. A robust ethanol producing yeast Saccharomyces cerevisiae has been engineered with heterologous xylose assimilation pathways. A two-step oxidoreductase pathway consisting of NAD(P)H-linked xylose reductase and NAD+-linked xylitol dehydrogenase, and one-step isomerase pathway using xylose isomerase have been employed to enable xylose assimilation in engineered S. cerevisiae. However, the resulting engineered yeast exhibited inefficient and slow xylose fermentation. In order to improve the yield and productivity of xylose fermentation, expression levels of xylose assimilation pathway enzymes and their kinetic properties have been optimized, and additional optimizations of endogenous or heterologous metabolisms have been achieved. These efforts have led to the development of engineered yeast strains ready for the commercialization of cellulosic bioethanol. Interestingly, xylose metabolism by engineered yeast was preferably respiratory rather than fermentative as in glucose metabolism, suggesting that xylose can serve as a desirable carbon source capable of bypassing metabolic barriers exerted by glucose repression. Accordingly, engineered yeasts showed superior production of valuable metabolites derived from cytosolic acetyl-CoA and pyruvate, such as 1-hexadecanol and lactic acid, when the xylose assimilation pathway and target synthetic pathways were optimized in an adequate manner. While xylose has been regarded as a sugar to be utilized because it is present in cellulosic hydrolysates, potential benefits of using xylose instead of glucose for yeast-based biotechnological processes need to be realized.
Collapse
Affiliation(s)
- Suryang Kwak
- Department of Food Science and Human Nutrition and Carl R. Woose Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition and Carl R. Woose Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
25
|
Increasing isobutanol yield by double-gene deletion of PDC6 and LPD1 in Saccharomyces cerevisiae. Chin J Chem Eng 2016. [DOI: 10.1016/j.cjche.2016.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Milne N, Wahl SA, van Maris AJA, Pronk JT, Daran JM. Excessive by-product formation: A key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains. Metab Eng Commun 2016; 3:39-51. [PMID: 29142820 PMCID: PMC5678825 DOI: 10.1016/j.meteno.2016.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/16/2015] [Accepted: 01/19/2016] [Indexed: 11/16/2022] Open
Abstract
It is theoretically possible to engineer Saccharomyces cerevisiae strains in which isobutanol is the predominant catabolic product and high-yielding isobutanol-producing strains are already reported by industry. Conversely, isobutanol yields of engineered S. cerevisiae strains reported in the scientific literature typically remain far below 10% of the theoretical maximum. This study explores possible reasons for these suboptimal yields by a mass-balancing approach. A cytosolically located, cofactor-balanced isobutanol pathway, consisting of a mosaic of bacterial enzymes whose in vivo functionality was confirmed by complementation of null mutations in branched-chain amino acid metabolism, was expressed in S. cerevisiae. Product formation by the engineered strain was analysed in shake flasks and bioreactors. In aerobic cultures, the pathway intermediate isobutyraldehyde was oxidized to isobutyrate rather than reduced to isobutanol. Moreover, significant concentrations of the pathway intermediates 2,3-dihydroxyisovalerate and α-ketoisovalerate, as well as diacetyl and acetoin, accumulated extracellularly. While the engineered strain could not grow anaerobically, micro-aerobic cultivation resulted in isobutanol formation at a yield of 0.018±0.003 mol/mol glucose. Simultaneously, 2,3-butanediol was produced at a yield of 0.649±0.067 mol/mol glucose. These results identify massive accumulation of pathway intermediates, as well as overflow metabolites derived from acetolactate, as an important, previously underestimated contributor to the suboptimal yields of 'academic' isobutanol strains. The observed patterns of by-product formation is consistent with the notion that in vivo activity of the iron-sulphur-cluster-requiring enzyme dihydroxyacid dehydratase is a key bottleneck in the present and previously described 'academic' isobutanol-producing yeast strains.
Collapse
Affiliation(s)
- N Milne
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - S A Wahl
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - A J A van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - J T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - J M Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
27
|
Qi X, Zha J, Liu GG, Zhang W, Li BZ, Yuan YJ. Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae. Front Microbiol 2015; 6:1165. [PMID: 26539187 PMCID: PMC4612707 DOI: 10.3389/fmicb.2015.01165] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/08/2015] [Indexed: 12/24/2022] Open
Abstract
Xylose utilization is one key issue for the bioconversion of lignocelluloses. It is a promising approach to engineering heterologous pathway for xylose utilization in Saccharomyces cerevisiae. Here, we constructed a xylose-fermenting yeast SyBE001 through combinatorial fine-tuning the expression of XylA and endogenous XKS1. Additional overexpression of genes RKI1, RPE1, TKL1, and TAL1 in the non-oxidative pentose phosphate pathway (PPP) in SyBE001 increased the xylose consumption rate by 1.19-fold. By repetitive adaptation, the xylose utilization rate was further increased by ∼10-fold in the resultant strain SyBE003. Gene expression analysis identified a variety of genes with significantly changed expression in the PPP, glycolysis and the tricarboxylic acid cycle in SyBE003.
Collapse
Affiliation(s)
- Xin Qi
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University Tianjin, China
| | - Jian Zha
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University Tianjin, China
| | - Gao-Gang Liu
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University Tianjin, China
| | - Weiwen Zhang
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University Tianjin, China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University Tianjin, China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University Tianjin, China
| |
Collapse
|
28
|
Petrovič U. Next-generation biofuels: a new challenge for yeast. Yeast 2015; 32:583-93. [DOI: 10.1002/yea.3082] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 11/11/2022] Open
Affiliation(s)
- Uroš Petrovič
- Jožef Stefan Institute; Department of Molecular and Biomedical Sciences; Ljubljana Slovenia
| |
Collapse
|
29
|
Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Curr Opin Biotechnol 2015; 33:1-7. [DOI: 10.1016/j.copbio.2014.09.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/09/2014] [Accepted: 09/17/2014] [Indexed: 11/22/2022]
|
30
|
Leite GB, Paranjape K, Abdelaziz AEM, Hallenbeck PC. Utilization of biodiesel-derived glycerol or xylose for increased growth and lipid production by indigenous microalgae. BIORESOURCE TECHNOLOGY 2015; 184:123-130. [PMID: 25466992 DOI: 10.1016/j.biortech.2014.10.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/21/2014] [Accepted: 10/24/2014] [Indexed: 05/20/2023]
Abstract
Microalgae are a promising alternative for sustainable biofuel production, but production yields and costs present a significant bottleneck. Here, the use of glycerol and xylose to boost the lipid yield was evaluated using ten strains from the Université de Montréal collection of microalgae. This report shows that some microalgal strains are capable of mixotrophic and heterotrophic growth on xylose, the major carbon source found in wastewater streams from pulp and paper industries, with an increase in growth rate of 2.8-fold in comparison to photoautotrophic growth, reaching up to μ=1.1/d. On glycerol, growth rates reached as high as μ=1.52/d. Lipid productivity increased up to 370% on glycerol and 180% on xylose for the strain LB1H10, showing the suitability of this strain for further development of biofuels production through mixotrophic cultivation.
Collapse
Affiliation(s)
- Gustavo B Leite
- Département de microbiologie, infectiologie, et immunologie, Université de Montréal, CP 6128, Centre-ville, Montréal, PQ H3C 3J7, Canada
| | - Kiran Paranjape
- Département de microbiologie, infectiologie, et immunologie, Université de Montréal, CP 6128, Centre-ville, Montréal, PQ H3C 3J7, Canada
| | - Ahmed E M Abdelaziz
- Département de microbiologie, infectiologie, et immunologie, Université de Montréal, CP 6128, Centre-ville, Montréal, PQ H3C 3J7, Canada
| | - Patrick C Hallenbeck
- Département de microbiologie, infectiologie, et immunologie, Université de Montréal, CP 6128, Centre-ville, Montréal, PQ H3C 3J7, Canada.
| |
Collapse
|
31
|
Becerra M, Cerdán ME, González-Siso MI. Biobutanol from cheese whey. Microb Cell Fact 2015; 14:27. [PMID: 25889728 PMCID: PMC4404668 DOI: 10.1186/s12934-015-0200-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/26/2015] [Indexed: 11/17/2022] Open
Abstract
At present, due to environmental and economic concerns, it is urgent to evolve efficient, clean and secure systems for the production of advanced biofuels from sustainable cheap sources. Biobutanol has proved better characteristics than the more widely used bioethanol, however the main disadvantage of biobutanol is that it is produced in low yield and titer by ABE (acetone-butanol-ethanol) fermentation, this process being not competitive from the economic point of view. In this review we summarize the natural metabolic pathways for biobutanol production by Clostridia and yeasts, together with the metabolic engineering efforts performed up to date with the aim of either enhancing the yield of the natural producer Clostridia or transferring the butanol production ability to other hosts with better attributes for industrial use and facilities for genetic manipulation. Molasses and starch-based feedstocks are main sources for biobutanol production at industrial scale hitherto. We also review herewith (and for the first time up to our knowledge) the research performed for the use of whey, the subproduct of cheese making, as another sustainable source for biobutanol production. This represents a promising alternative that still needs further research. The use of an abundant waste material like cheese whey, that would otherwise be considered an environmental pollutant, for biobutanol production, makes economy of the process more profitable.
Collapse
Affiliation(s)
- Manuel Becerra
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain.
| | - María Esperanza Cerdán
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain.
| | - María Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain.
| |
Collapse
|
32
|
Affiliation(s)
- Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
33
|
Xu W, Wang J, Li Q. Microarray studies on lager brewer's yeasts reveal cell status in the process of autolysis. FEMS Yeast Res 2014; 14:714-28. [DOI: 10.1111/1567-1364.12156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/22/2014] [Accepted: 04/03/2014] [Indexed: 12/01/2022] Open
Affiliation(s)
- Weina Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology of Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| |
Collapse
|
34
|
Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci U S A 2014; 111:5159-64. [PMID: 24706835 PMCID: PMC3986176 DOI: 10.1073/pnas.1323464111] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All known D-xylose transporters are competitively inhibited by D-glucose, which is one of the major reasons hampering simultaneous fermentation of D-glucose and D-xylose, two primary sugars present in lignocellulosic biomass. We have set up a yeast growth-based screening system for mutant D-xylose transporters that are insensitive to the presence of D-glucose. All of the identified variants had a mutation at either a conserved asparagine residue in transmembrane helix 8 or a threonine residue in transmembrane helix 5. According to a homology model of the yeast hexose transporter Gal2 deduced from the crystal structure of the D-xylose transporter XylE from Escherichia coli, both residues are found in the same region of the protein and are positioned slightly to the extracellular side of the central sugar-binding pocket. Therefore, it is likely that alterations sterically prevent D-glucose but not D-xylose from entering the pocket. In contrast, changing amino acids that are supposed to directly interact with the C6 hydroxymethyl group of D-glucose negatively affected transport of both D-glucose and D-xylose. Determination of kinetic properties of the mutant transporters revealed that Gal2-N376F had the highest affinity for D-xylose, along with a moderate transport velocity, and had completely lost the ability to transport hexoses. These transporter versions should prove valuable for glucose-xylose cofermentation in lignocellulosic hydrolysates by Saccharomyces cerevisiae and other biotechnologically relevant organisms. Moreover, our data contribute to the mechanistic understanding of sugar transport because the decisive role of the conserved asparagine residue for determining sugar specificity has not been recognized before.
Collapse
Affiliation(s)
- Alexander Farwick
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Stefan Bruder
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Virginia Schadeweg
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Mislav Oreb
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
35
|
Linck A, Vu XK, Essl C, Hiesl C, Boles E, Oreb M. On the role of GAPDH isoenzymes during pentose fermentation in engineered Saccharomyces cerevisiae. FEMS Yeast Res 2014; 14:389-98. [PMID: 24456572 DOI: 10.1111/1567-1364.12137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 11/28/2022] Open
Abstract
In the metabolic network of the cell, many intermediary products are shared between different pathways. d-Glyceraldehyde-3-phosphate, a glycolytic intermediate, is a substrate of GAPDH but is also utilized by transaldolase and transketolase in the scrambling reactions of the nonoxidative pentose phosphate pathway. Recent efforts to engineer baker's yeast strains capable of utilizing pentose sugars present in plant biomass rely on increasing the carbon flux through this pathway. However, the competition between transaldolase and GAPDH for d-glyceraldehyde-3-phosphate produced in the first transketolase reaction compromises the carbon balance of the pathway, thereby limiting the product yield. Guided by the hypothesis that reduction in GAPDH activity would increase the availability of d-glyceraldehyde-3-phosphate for transaldolase and thereby improve ethanol production during fermentation of pentoses, we performed a comprehensive characterization of the three GAPDH isoenzymes in baker's yeast, Tdh1, Tdh2, and Tdh3 and analyzed the effect of their deletion on xylose utilization by engineered strains. Our data suggest that overexpression of transaldolase is a more promising strategy than reduction in GAPDH activity to increase the flux through the nonoxidative pentose phosphate pathway.
Collapse
Affiliation(s)
- Annabell Linck
- Institute for Molecular Bioscience, Goethe University, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Branduardi P, de Ferra F, Longo V, Porro D. Microbialn-butanol production from Clostridia to non-Clostridial hosts. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200146] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Paola Branduardi
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza Milano Italy
| | - Francesca de Ferra
- Research Center for Non-Conventional Energy-Istituto Eni Donegani; Environmental Technologies; Via Maritano San Donato Milanese (MI) Italy
| | - Valeria Longo
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza Milano Italy
| | - Danilo Porro
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza Milano Italy
| |
Collapse
|
37
|
Branduardi P, Longo V, Berterame NM, Rossi G, Porro D. A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:68. [PMID: 23642236 PMCID: PMC3662618 DOI: 10.1186/1754-6834-6-68] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/25/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND The sustainable production of biofuels remains one of the major issues of the upcoming years. Among the number of most desirable molecules to be produced, butanol and isobutanol deserve a prominent place. They have superior liquid-fuel features in respect to ethanol. Particularly, butanol has similar properties to gasoline and thus it has the potential to be used as a substitute for gasoline in currently running engines. Clostridia are recognized as natural and good butanol producers and are employed in the industrial-scale production of solvents. Due to their complex metabolic characteristics and to the difficulty of performing genetic manipulations, in recent years the Clostridia butanol pathway was expressed in other microorganisms such as Escherichia coli and Saccharomyces cerevisiae, but in yeast the obtained results were not so promising. An alternative way for producing fusel alcohol is to exploit the degradation pathway of aminoacids released from protein hydrolysis, where proteins derive from exhausted microbial biomasses at the end of the fermentation processes. RESULTS It is known that wine yeasts can, at the end of the fermentation process, accumulate fusel alcohols, and butanol is among them. Despite it was quite obvious to correlate said production with aminoacid degradation, a putative native pathway was never proposed. Starting from literature data and combining information about different organisms, here we demonstrate how glycine can be the substrate for butanol and isobutanol production, individuating at least one gene encoding for the necessary activities leading to butanol accumulation. During a kinetic of growth using glycine as substrate, butanol and isobutanol accumulate in the medium up to 92 and 58 mg/L, respectively. CONCLUSIONS Here for the first time we demonstrate an alternative metabolic pathway for butanol and isobutanol production in the yeast S. cerevisiae, using glycine as a substrate. Doors are now opened for a number of optimizations, also considering that starting from an aminoacid mixture as a side stream process, a fusel alcohol blend can be generated.
Collapse
Affiliation(s)
- Paola Branduardi
- University of Milano Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Valeria Longo
- University of Milano Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | | | - Giorgia Rossi
- Current address: PTA (Schweiz) GmbH, Hohlstrasse 192, Zürich, CH-8004, Switzerland
| | - Danilo Porro
- University of Milano Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| |
Collapse
|
38
|
|