1
|
Li K, Green JEF, Tronnolone H, Tam AKY, Black AJ, Gardner JM, Sundstrom JF, Jiranek V, Binder BJ. An off-lattice discrete model to characterise filamentous yeast colony morphology. PLoS Comput Biol 2024; 20:e1012605. [PMID: 39570980 PMCID: PMC11620580 DOI: 10.1371/journal.pcbi.1012605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/05/2024] [Accepted: 11/03/2024] [Indexed: 12/07/2024] Open
Abstract
We combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevisiae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and bud end-to-end. This budding asymmetry yields spatially non-uniform growth, where filaments extend away from the colony centre, foraging for food. We use approximate Bayesian computation to quantify how individual cell budding mechanisms give rise to spatial patterns observed in experiments. We apply this method of parameter inference to experimental images of colonies of two strains of S. cerevisiae, in low and high nutrient environments. The colony size at the transition from sated to pseudohyphal growth, and a forking mechanism for pseudohyphal cell proliferation are the key features driving colony morphology. Simulations run with the most likely inferred parameters produce colony morphologies that closely resemble experimental results.
Collapse
Affiliation(s)
- Kai Li
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide SA, Australia
| | - J. Edward F. Green
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide SA, Australia
| | - Hayden Tronnolone
- College of Science and Engineering, Flinders University, Adelaide SA, Australia
| | | | - Andrew J. Black
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide SA, Australia
| | - Jennifer M. Gardner
- Discipline of Wine Science, Waite Campus, University of Adelaide, Urrbrae SA, Australia
| | - Joanna F. Sundstrom
- Discipline of Wine Science, Waite Campus, University of Adelaide, Urrbrae SA, Australia
| | - Vladimir Jiranek
- Discipline of Wine Science, Waite Campus, University of Adelaide, Urrbrae SA, Australia
- School of Biological Sciences, The University of Southampton, Southampton, United Kingdom
| | - Benjamin J. Binder
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide SA, Australia
| |
Collapse
|
2
|
A Sustainable Approach Based on the Use of Unripe Grape Frozen Musts to Modulate Wine Characteristics as a Proof of Concept. BEVERAGES 2022. [DOI: 10.3390/beverages8040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aiming to develop a sustainable methodology for must acidity correction in winemaking, particularly needed in warm regions, the present study intends to fulfill the circular economy values. Antão Vaz white wines were produced using two different strategies for must acidity correction: (i) the addition of a mixture of organic acids (Mix*) commonly used in winemaking; and (ii) the addition of previously produced unripe grape must (UM*) from the same grape variety. In addition, a testimonial (T*) sample was produced with no acidity correction. For all wines produced, oenological parameters were determined, and both amino acid (AA) content and volatile composition were evaluated. A higher AA content was found in the Antão Vaz T* wine, followed by UM* wines. The volatile profile was also affected, and LDA demonstrates a clear separation of wines with different acidity corrections. Results obtained indicate that unripe grape musts—a vital waste product containing several compounds with important biological activity—can be used to increase musts acidity without a negative impact on wine characteristics. Furthermore, this work also shows that the use of unripe must may be a valuable tool for reducing the alcoholic content of wines.
Collapse
|
3
|
Impact of Two Commercial S. cerevisiae Strains on the Aroma Profiles of Different Regional Musts. BEVERAGES 2022. [DOI: 10.3390/beverages8040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present research is aimed at investigating the potential of two commercial Saccharomyces cerevisiae strains (EC1118 and AWRI796) to generate wine-specific volatile molecule fingerprinting in relation to the initial must applied. To eliminate the effects of all the process variables and obtain more reliable results, comparative fermentations on interlaboratory scale of five different regional red grape musts were carried out by five different research units (RUs). For this purpose, the two S. cerevisiae strains were inoculated separately at the same level and under the same operating conditions. The wines were analyzed by means of SPME-GC/MS. Quali-quantitative multivariate approaches (two-way joining, MANOVA and PCA) were used to explain the contribution of strain, must, and their interaction to the final wine volatile fingerprinting. Our results showed that the five wines analyzed for volatile compounds, although characterized by a specific aromatic profile, were mainly affected by the grape used, in interaction with the inoculated Saccharomyces strain. In particular, the AWRI796 strain generally exerted a greater influence on the aromatic component resulting in a higher level of alcohols and esters. This study highlighted that the variable strain could have a different weight, with some musts experiencing a different trend depending on the strain (i.e., Negroamaro or Magliocco musts).
Collapse
|
4
|
Predictive Potential of MALDI-TOF Analyses for Wine and Brewing Yeast. Microorganisms 2022; 10:microorganisms10020265. [PMID: 35208719 PMCID: PMC8875952 DOI: 10.3390/microorganisms10020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/04/2022] Open
Abstract
The potential of MALDI-TOF profiling for predicting potential applications of yeast strains in the beverage sector was assessed. A panel of 59 commercial yeasts (47 wine and 12 brewing yeasts) was used to validate the concept whereby 2 culture media (YPD agar and YPD broth), as well as two mass ranges m/z 500–4000 and m/z 2000–20,000, were evaluated for the best fit. Three machine learning-based algorithms, PCA, MDS, and UMAP, in addition to a hierarchical clustering method, were employed. Profiles derived from broth cultures yielded more peaks, but these were less well-defined compared with those from agar cultures. Hierarchical clustering more clearly resolved different species and gave a broad overview of potential strain utility, but more nuanced insights were provided by MDS and UMAP analyses. PCA-based displays were less informative. The potential of MALDI-TOF proteomics in predicting the utility of yeast strains of commercial benefit is supported in this study, provided appropriate approaches are used for data generation and analysis.
Collapse
|
5
|
Han Y, Du J, Wang Y. Effect of bentonite and calcium chloride on apple wine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:425-433. [PMID: 34143901 DOI: 10.1002/jsfa.11373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/23/2021] [Accepted: 06/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Apple wine is a popular alcoholic beverage for its nutrition and fresh taste. However, the methanol existing in apple wine restricts its quality. Unfortunately, there are no methods to reduce the methanol content in fruit wine. To this end, bentonite (B), calcium chloride (CC) and their combination (B&CC) were added into apple juice in this study. The treated juice (0) and supernatant obtained by standing the juice at 25 °C for 24 h were fermented at 25 °C and 10 °C, respectively. RESULTS Bentonite was an excellent methanol interrupter, a pectin retainer and a wine quality defender both at 25 and 10 °C. The lowest methanol content of 1.41 mg L-1 and higher pectin content of 84.74 mg L-1 were reached in the finished wine by B0 at 10 °C. Calcium chloride decreased pectin content, elevated methanol content and changed the profile of individual organic acids. In fact, the wine by B&CC0 at 25 °C showed dramatic changes in individual organic acids. The content of l-malic acid and succinic acid was only 2.22% and 6.29% of the control, respectively, while the lactic acid content was 17.72 times that of the control. CONCLUSIONS It is suggested that B0 and fermented at 10 °C was the most effective way to decrease methanol content, retain pectin content and defend wine quality. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingying Han
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jinhua Du
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yan Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
6
|
Machine Learning Techniques Disclose the Combined Effect of Fermentation Conditions on Yeast Mixed-Culture Dynamics and Wine Quality. Microorganisms 2022; 10:microorganisms10010107. [PMID: 35056556 PMCID: PMC8781278 DOI: 10.3390/microorganisms10010107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023] Open
Abstract
The use of yeast starter cultures consisting of a blend of Saccharomyces cerevisiae and non-Saccharomyces yeasts has increased in recent years as a mean to address consumers’ demands for diversified wines. However, this strategy is currently limited by the lack of a comprehensive knowledge regarding the factors that determine the balance between the yeast-yeast interactions and their responses triggered in complex environments. Our previous studies demonstrated that the strain Hanseniaspora guilliermondii UTAD222 has potential to be used as an adjunct of S. cerevisiae in the wine industry due to its positive impact on the fruity and floral character of wines. To rationalize the use of this yeast consortium, this study aims to understand the influence of production factors such as sugar and nitrogen levels, fermentation temperature, and the level of co-inoculation of H. guilliermondii UTAD222 in shaping fermentation and wine composition. For that purpose, a Central Composite experimental Design was applied to investigate the combined effects of the four factors on fermentation parameters and metabolites produced. The patterns of variation of the response variables were analyzed using machine learning methods, to describe their clustered behavior and model the evolution of each cluster depending on the experimental conditions. The innovative data analysis methodology adopted goes beyond the traditional univariate approach, being able to incorporate the modularity, heterogeneity, and hierarchy inherent to metabolic systems. In this line, this study provides preliminary data and insights, enabling the development of innovative strategies to increase the aromatic and fermentative potential of H. guilliermondii UTAD222 by modulating temperature and the availability of nitrogen and/or sugars in the medium. Furthermore, the strategy followed gathered knowledge to guide the rational development of mixed blends that can be used to obtain a particular wine style, as a function of fermentation conditions.
Collapse
|
7
|
Zhang J, Plowman JE, Tian B, Clerens S, On SLW. The influence of growth conditions on MALDI-TOF MS spectra of winemaking yeast: implications for industry applications. J Microbiol Methods 2021; 188:106280. [PMID: 34274408 DOI: 10.1016/j.mimet.2021.106280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Previous studies have shown MALDI-TOF MS to be a powerful tool in wine yeast identification and potential prediction of application. However, it is also established that substrate composition influences protein expression, but the degree to which this may affect MALDI-TOF spectra (and analytical results thereof) has not been fully explored. To further inform assay optimisation, the influence on MALDI-TOF spectra was determined using eight Saccharomyces strains of diverse origins cultivated on grape juices from Pinot Noir and Chardonnay varieties, synthetic grape juice, and laboratory-grade artificial culture media (YPD broth and agar). Our results demonstrated significant influences of culture media on strain MALDI-TOF spectra. Yeast culture on YPD agar is recommended for taxonomic studies, with YPD broth culture of S. cerevisiae offering improved intra-subspecific differentiation Furthermore, our data supported a correlation between MALDI spectra and the potential industrial application of individual yeast strains.
Collapse
Affiliation(s)
- Junwen Zhang
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85054, Lincoln, New Zealand
| | | | - Bin Tian
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85054, Lincoln, New Zealand
| | - Stefan Clerens
- AgResearch Ltd, Lincoln Research Centre, Lincoln, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Stephen L W On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85054, Lincoln, New Zealand.
| |
Collapse
|
8
|
Basile A, De Pascale F, Bianca F, Rossi A, Frizzarin M, De Bernardini N, Bosaro M, Baldisseri A, Antoniali P, Lopreiato R, Treu L, Campanaro S. Large-scale sequencing and comparative analysis of oenological Saccharomyces cerevisiae strains supported by nanopore refinement of key genomes. Food Microbiol 2021; 97:103753. [PMID: 33653526 DOI: 10.1016/j.fm.2021.103753] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/09/2020] [Accepted: 01/27/2021] [Indexed: 12/30/2022]
Abstract
Saccharomyces cerevisiae has long been part of human activities related to the production of food and wine. The industrial demand for fermented beverages with well-defined and stable characteristics boosted the isolation and selection of strains conferring a distinctive aroma profile to the final product. To uncover variants characterizing oenological strains, the sequencing of 65 new S. cerevisiae isolates, and the comparison with other 503 publicly available genomes were performed. A hybrid approach based on short Illumina and long Oxford Nanopore reads allowed the in-depth investigation of eleven genomes and the identification of putative laterally transferred regions and structural variants. A comparative analysis between clusters of strains belonging to different datasets allowed the identification of novel relevant genetic features including single nucleotide polymorphisms, insertions and structural variants. Detection of oenological single nucleotide variants shed light on the existence of different levels of modulation for the mevalonate pathway relevant for the biosynthesis of aromatic compounds.
Collapse
Affiliation(s)
- Arianna Basile
- Department of Biology, University of Padua, 35131, Padova, Italy
| | - Fabio De Pascale
- Department of Biology, University of Padua, 35131, Padova, Italy
| | - Federico Bianca
- Department of Biology, University of Padua, 35131, Padova, Italy
| | - Alessandro Rossi
- Department of Biology, University of Padua, 35131, Padova, Italy
| | - Martina Frizzarin
- Department of Biomedical Sciences, University of Padua, 35131, Padova, Italy; Italiana Biotecnologie, Via Vigazzolo 112, 36054, Montebello Vicentino, Italy
| | | | - Matteo Bosaro
- Italiana Biotecnologie, Via Vigazzolo 112, 36054, Montebello Vicentino, Italy
| | - Anna Baldisseri
- Department of Biomedical Sciences, University of Padua, 35131, Padova, Italy
| | - Paolo Antoniali
- Italiana Biotecnologie, Via Vigazzolo 112, 36054, Montebello Vicentino, Italy
| | - Raffaele Lopreiato
- Department of Biomedical Sciences, University of Padua, 35131, Padova, Italy
| | - Laura Treu
- Department of Biology, University of Padua, 35131, Padova, Italy.
| | - Stefano Campanaro
- Department of Biology, University of Padua, 35131, Padova, Italy; CRIBI Biotechnology Center, University of Padua, 35121, Padova, Italy
| |
Collapse
|
9
|
Curation and Analysis of a Saccharomyces cerevisiae Genome-Scale Metabolic Model for Predicting Production of Sensory Impact Molecules under Enological Conditions. Processes (Basel) 2020. [DOI: 10.3390/pr8091195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One approach for elucidating strain-to-strain metabolic differences is the use of genome-scale metabolic models (GSMMs). To date GSMMs have not focused on the industrially important area of flavor production and, as such; do not cover all the pathways relevant to flavor formation in yeast. Moreover, current models for Saccharomyces cerevisiae generally focus on carbon-limited and/or aerobic systems, which is not pertinent to enological conditions. Here, we curate a GSMM (iWS902) to expand on the existing Ehrlich pathway and ester formation pathways central to aroma formation in industrial winemaking, in addition to the existing sulfur metabolism and medium-chain fatty acid (MCFA) pathways that also contribute to production of sensory impact molecules. After validating the model using experimental data, we predict key differences in metabolism for a strain (EC 1118) in two distinct growth conditions, including differences for aroma impact molecules such as acetic acid, tryptophol, and hydrogen sulfide. Additionally, we propose novel targets for metabolic engineering for aroma profile modifications employing flux variability analysis with the expanded GSMM. The model provides mechanistic insights into the key metabolic pathways underlying aroma formation during alcoholic fermentation and provides a potential framework to contribute to new strategies to optimize the aroma of wines.
Collapse
|
10
|
Brisson VL, Zhuang WQ, Alvarez-Cohen L. Metabolomic Analysis Reveals Contributions of Citric and Citramalic Acids to Rare Earth Bioleaching by a Paecilomyces Fungus. Front Microbiol 2020; 10:3008. [PMID: 31993037 PMCID: PMC6971059 DOI: 10.3389/fmicb.2019.03008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022] Open
Abstract
Conventional methods for extracting rare earth elements from monazite ore require high energy inputs and produce environmentally damaging waste streams. Bioleaching offers a potentially more environmentally friendly alternative extraction process. In order to better understand bioleaching mechanisms, we conducted an exo-metabolomic analysis of a previously isolated rare earth bioleaching fungus from the genus Paecilomyces (GenBank accession numbers KM874779 and KM 874781) to identify contributions of compounds exuded by this fungus to bioleaching activity. Exuded compounds were compared under two growth conditions: growth with monazite ore as the only phosphate source, and growth with a soluble phosphate source (K2HPO4) added. Overall metabolite profiling, in combination with glucose consumption and biomass accumulation data, reflected a lag in growth when this organism was grown with only monazite. We analyzed the relationships between metabolite concentrations, rare earth solubilization, and growth conditions, and identified several metabolites potentially associated with bioleaching. Further investigation using laboratory prepared solutions of 17 of these metabolites indicated statistically significant leaching contributions from both citric and citramalic acids. These contributions (16.4 and 15.0 mg/L total rare earths solubilized) accounted for a portion, but not all, of the leaching achieved with direct bioleaching (42 ± 15 mg/L final rare earth concentration). Additionally, citramalic acid released significantly less of the radioactive element thorium than did citric acid (0.25 ± 0.01 mg/L compared to 1.18 ± 0.01 mg/L), suggesting that citramalic acid may have preferable leaching properties for a monazite bioleaching process.
Collapse
Affiliation(s)
- Vanessa L Brisson
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States.,Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
11
|
Yun J, Zhao F, Zhang W, Yan H, Zhao F, Ai D. Monitoring the microbial community succession and diversity of Liangzhou fumigated vinegar during solid-state fermentation with next-generation sequencing. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-018-1418-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
12
|
Martins C, Brandão T, Almeida A, Rocha SM. Metabolomics strategy for the mapping of volatile exometabolome from Saccharomyces
spp. widely used in the food industry based on comprehensive two-dimensional gas chromatography. J Sep Sci 2017; 40:2228-2237. [DOI: 10.1002/jssc.201601296] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Cátia Martins
- Departamento de Química & QOPNA; Universidade de Aveiro; Aveiro Portugal
- Departamento de Biologia & CESAM; Universidade de Aveiro; Aveiro Portugal
| | - Tiago Brandão
- Unicer Bebidas, SA; Rua do Mosteiro; Leça do Balio Portugal
| | - Adelaide Almeida
- Departamento de Biologia & CESAM; Universidade de Aveiro; Aveiro Portugal
| | - Sílvia M. Rocha
- Departamento de Química & QOPNA; Universidade de Aveiro; Aveiro Portugal
| |
Collapse
|
13
|
Exploration of genetic and phenotypic diversity within Saccharomyces uvarum for driving strain improvement in winemaking. Appl Microbiol Biotechnol 2016; 101:2507-2521. [PMID: 27933455 DOI: 10.1007/s00253-016-8008-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/31/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022]
Abstract
The selection and genetic improvement of wine yeast is an ongoing process, since yeast strains should match new technologies in winemaking to satisfy evolving consumer preferences. A large genetic background is the necessary starting point for any genetic improvement programme. For this reason, we collected and characterized a large number of strains belonging to Saccharomyces uvarum. In particular, 70 strains were isolated from cold-stored must samples: they were identified and compared to S. uvarum strains originating from different collections, regarding fermentation profile, spore viability and stress response. The results demonstrate a large biodiversity among the new isolates, with particular emphasis to fermentation performances, genotypes and high spore viability, making the isolates suitable for further genetic improvement programmes. Furthermore, few of them are competitive with Saccharomyces cerevisiae and per se, suitable for wine fermentation, due to their resistance to stress, short lag phase and fermentation by-products.
Collapse
|
14
|
Capece A, Granchi L, Guerrini S, Mangani S, Romaniello R, Vincenzini M, Romano P. Diversity of Saccharomyces cerevisiae Strains Isolated from Two Italian Wine-Producing Regions. Front Microbiol 2016; 7:1018. [PMID: 27446054 PMCID: PMC4928102 DOI: 10.3389/fmicb.2016.01018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/15/2016] [Indexed: 11/13/2022] Open
Abstract
Numerous studies, based on different molecular techniques analyzing DNA polymorphism, have provided evidence that indigenous Saccharomyces cerevisiae populations display biogeographic patterns. Since the differentiated populations of S. cerevisiae seem to be responsible for the regional identity of wine, the aim of this work was to assess a possible relationship between the diversity and the geographical origin of indigenous S. cerevisiae isolates from two different Italian wine-producing regions (Tuscany and Basilicata). For this purpose, sixty-three isolates from Aglianico del Vulture grape must (main cultivar in the Basilicata region) and from Sangiovese grape must (main cultivar in the Tuscany region) were characterized genotypically, by mitochondrial DNA restriction analysis and MSP-PCR by using (GTG)5 primers, and phenotypically, by determining technological properties and metabolic compounds of oenological interest after alcoholic fermentation. All the S. cerevisiae isolates from each region were inoculated both in must obtained from Aglianico grape and in must obtained from Sangiovese grape to carry out fermentations at laboratory-scale. Numerical analysis of DNA patterns resulting from both molecular methods and principal component analysis of phenotypic data demonstrated a high diversity among the S. cerevisiae strains. Moreover, a correlation between genotypic and phenotypic groups and geographical origin of the strains was found, supporting the concept that there can be a microbial aspect to terroir. Therefore, exploring the diversity of indigenous S. cerevisiae strains can allow developing tailored strategies to select wine yeast strains better adapted to each viticultural area.
Collapse
Affiliation(s)
- Angela Capece
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, PotenzaItaly
| | - Lisa Granchi
- Department of Management of Agricultural, Food and Forestry Systems, University of Florence, FlorenceItaly
| | - Simona Guerrini
- Department of Management of Agricultural, Food and Forestry Systems, University of Florence, FlorenceItaly
| | - Silvia Mangani
- Department of Management of Agricultural, Food and Forestry Systems, University of Florence, FlorenceItaly
| | - Rossana Romaniello
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, PotenzaItaly
| | - Massimo Vincenzini
- Department of Management of Agricultural, Food and Forestry Systems, University of Florence, FlorenceItaly
| | - Patrizia Romano
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, PotenzaItaly
| |
Collapse
|
15
|
New integrative computational approaches unveil the Saccharomyces cerevisiae pheno-metabolomic fermentative profile and allow strain selection for winemaking. Food Chem 2016; 211:509-20. [PMID: 27283661 DOI: 10.1016/j.foodchem.2016.05.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/10/2016] [Accepted: 05/12/2016] [Indexed: 11/23/2022]
Abstract
During must fermentation by Saccharomyces cerevisiae strains thousands of volatile aroma compounds are formed. The objective of the present work was to adapt computational approaches to analyze pheno-metabolomic diversity of a S. cerevisiae strain collection with different origins. Phenotypic and genetic characterization together with individual must fermentations were performed, and metabolites relevant to aromatic profiles were determined. Experimental results were projected onto a common coordinates system, revealing 17 statistical-relevant multi-dimensional modules, combining sets of most-correlated features of noteworthy biological importance. The present method allowed, as a breakthrough, to combine genetic, phenotypic and metabolomic data, which has not been possible so far due to difficulties in comparing different types of data. Therefore, the proposed computational approach revealed as successful to shed light into the holistic characterization of S. cerevisiae pheno-metabolome in must fermentative conditions. This will allow the identification of combined relevant features with application in selection of good winemaking strains.
Collapse
|
16
|
Knight S, Klaere S, Fedrizzi B, Goddard MR. Regional microbial signatures positively correlate with differential wine phenotypes: evidence for a microbial aspect to terroir. Sci Rep 2015; 5:14233. [PMID: 26400688 PMCID: PMC4585847 DOI: 10.1038/srep14233] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/20/2015] [Indexed: 12/31/2022] Open
Abstract
Many crops display differential geographic phenotypes and sensorial signatures, encapsulated by the concept of terroir. The drivers behind these differences remain elusive, and the potential contribution of microbes has been ignored until recently. Significant genetic differentiation between microbial communities and populations from different geographic locations has been demonstrated, but crucially it has not been shown whether this correlates with differential agricultural phenotypes or not. Using wine as a model system, we utilize the regionally genetically differentiated population of Saccharomyces cerevisiae in New Zealand and objectively demonstrate that these populations differentially affect wine phenotype, which is driven by a complex mix of chemicals. These findings reveal the importance of microbial populations for the regional identity of wine, and potentially extend to other important agricultural commodities. Moreover, this suggests that long-term implementation of methods maintaining differential biodiversity may have tangible economic imperatives as well as being desirable in terms of employing agricultural practices that increase responsible environmental stewardship.
Collapse
Affiliation(s)
- Sarah Knight
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Steffen Klaere
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
- Department of Statistics, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Bruno Fedrizzi
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Matthew R. Goddard
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
- The School of Life Sciences, The University of Lincoln, Lincoln, LN6 7DL, United Kingdom
| |
Collapse
|
17
|
Silva LP, Northen TR. Exometabolomics and MSI: deconstructing how cells interact to transform their small molecule environment. Curr Opin Biotechnol 2015; 34:209-16. [DOI: 10.1016/j.copbio.2015.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/22/2015] [Indexed: 01/06/2023]
|
18
|
Pinu FR, Edwards PJ, Gardner RC, Villas-Boas SG. Nitrogen and carbon assimilation bySaccharomyces cerevisiaeduring Sauvignon blanc juice fermentation. FEMS Yeast Res 2014; 14:1206-22. [DOI: 10.1111/1567-1364.12222] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/25/2014] [Accepted: 10/07/2014] [Indexed: 02/03/2023] Open
Affiliation(s)
- Farhana R. Pinu
- Centre for Microbial Innovation; School of Biological Sciences; University of Auckland; Auckland New Zealand
| | - Patrick J.B. Edwards
- Institute of Fundamental Sciences; Massey University; Palmerston North New Zealand
| | - Richard C. Gardner
- Centre for Microbial Innovation; School of Biological Sciences; University of Auckland; Auckland New Zealand
- Wine Science Programme; School of Chemical Sciences; University of Auckland; Auckland New Zealand
| | - Silas G. Villas-Boas
- Centre for Microbial Innovation; School of Biological Sciences; University of Auckland; Auckland New Zealand
| |
Collapse
|
19
|
Parts L. Genome-wide mapping of cellular traits using yeast. Yeast 2014; 31:197-205. [PMID: 24700360 DOI: 10.1002/yea.3010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 11/09/2022] Open
Abstract
Yeast has long enjoyed superiority as a genetic model because of its short generation time and ease of generating alleles for genetic analysis. However, recent developments of guided nucleases for genome editing in higher eukaryotes, and funding pressures for translational findings, force all model organism communities to reaffirm and rearticulate the advantages of their chosen creature. Here I examine the utility of budding yeast for understanding the genetic basis of cellular traits, using natural variation as well as classical genetic perturbations, and its future prospects compared to undertaking the work in human cell lines. Will yeast remain central, or will it join the likes of phage as an early model that is no longer widely used to answer the pressing questions?
Collapse
Affiliation(s)
- Leopold Parts
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| |
Collapse
|
20
|
Barbosa C, Lage P, Vilela A, Mendes-Faia A, Mendes-Ferreira A. Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts. AMB Express 2014; 4:39. [PMID: 24949272 PMCID: PMC4052691 DOI: 10.1186/s13568-014-0039-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 01/04/2023] Open
Abstract
Currently, pursuing yeast strains that display both a high potential fitness for alcoholic fermentation and a favorable impact on quality is a major goal in the alcoholic beverage industry. This considerable industrial interest has led to many studies characterizing the phenotypic and metabolic traits of commercial yeast populations. In this study, 20 Saccharomyces cerevisiae strains from different geographical origins exhibited high phenotypic diversity when their response to nine biotechnologically relevant conditions was examined. Next, the fermentation fitness and metabolic traits of eight selected strains with a unique phenotypic profile were evaluated in a high-sugar synthetic medium under two nitrogen regimes. Although the strains exhibited significant differences in nitrogen requirements and utilization rates, a direct relationship between nitrogen consumption, specific growth rate, cell biomass, cell viability, acetic acid and glycerol formation was only observed under high-nitrogen conditions. In contrast, the strains produced more succinic acid under the low-nitrogen regime, and a direct relationship with the final cell biomass was established. Glucose and fructose utilization patterns depended on both yeast strain and nitrogen availability. For low-nitrogen fermentation, three strains did not fully degrade the fructose. This study validates phenotypic and metabolic diversity among commercial wine yeasts and contributes new findings on the relationship between nitrogen availability, yeast cell growth and sugar utilization. We suggest that measuring nitrogen during the stationary growth phase is important because yeast cells fermentative activity is not exclusively related to population size, as previously assumed, but it is also related to the quantity of nitrogen consumed during this growth phase.
Collapse
Affiliation(s)
- Catarina Barbosa
- Institute for Biotechnology and Bioengeneering – Centre of Genomics and Biotechnology, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Patrícia Lage
- Institute for Biotechnology and Bioengeneering – Centre of Genomics and Biotechnology, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Alice Vilela
- Institute for Biotechnology and Bioengeneering – Centre of Genomics and Biotechnology, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Arlete Mendes-Faia
- Institute for Biotechnology and Bioengeneering – Centre of Genomics and Biotechnology, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Ana Mendes-Ferreira
- Institute for Biotechnology and Bioengeneering – Centre of Genomics and Biotechnology, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
21
|
Wine yeast typing by MALDI-TOF MS. Appl Microbiol Biotechnol 2014; 98:3737-52. [DOI: 10.1007/s00253-014-5586-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
|