1
|
Bizarria R, Creagh JW, Badigian TJ, Corrêa Dos Santos RA, Coss SA, Tekle RT, Fredstrom N, Ytreberg FM, Dunham MJ, Rodrigues A, Rowley PA. The Prevalence of Killer Yeasts in the Gardens of Fungus-Growing Ants and the Discovery of Novel Killer Toxin named Ksino. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618321. [PMID: 39463942 PMCID: PMC11507743 DOI: 10.1101/2024.10.14.618321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Killer toxins are proteinaceous antifungal molecules produced by yeasts, with activity against a wide range of human and plant pathogenic fungi. Fungus gardens of attine ants in Brazil were surveyed to determine the presence of killer toxin-producing yeasts and to define their antifungal activities and ecological importance. Our results indicate that up to 46% of yeasts isolated from specific fungal gardens can be killer yeasts, with an overall prevalence of 17% across all strains tested. Killer yeasts were less likely to inhibit the growth of yeasts isolated from the same environment but more effective at inhibiting yeast isolated from other environments, supporting a role for killer yeasts in shaping community composition. All killer yeasts harbored genome-encoded killer toxins due to the lack of cytoplasmic toxin-encoding elements (i.e., double-stranded RNA satellites and linear double-stranded DNAs). Of all the killer yeasts identified, an isolate of Candida sinolaborantium showed a broad spectrum of antifungal activities against 57% of yeast strains tested for toxin susceptibility. The complete genome sequence of C. sinolaborantium identified a new killer toxin, Ksino, with primary and tertiary structure homology to the Saccharomyces cerevisiae killer toxin named Klus. Genome-encoded homologs of Ksino were found in yeast strains of Saccharomycetes and Pichiomycetes, as well as other species of Ascomycota and Basidiomycota filamentous fungi. This demonstrates that killer yeasts can be widespread in attine ant fungus gardens, possibly influencing fungal community composition and the importance of these complex microbial communities for discovering novel antifungal molecules.
Collapse
Affiliation(s)
- Rodolfo Bizarria
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Department of General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, São Paulo, Brazil
| | - Jack W Creagh
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Tanner J Badigian
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Renato A Corrêa Dos Santos
- Laboratory of Computational, Evolutionary, and Systems Biology, Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Sarah A Coss
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Rim T Tekle
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Noah Fredstrom
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - F Marty Ytreberg
- Department of Physics, University of Idaho, Moscow, ID, 83844, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83844, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Andre Rodrigues
- Department of General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, São Paulo, Brazil
| | - Paul A Rowley
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83844, USA
| |
Collapse
|
2
|
Vijayraghavan S, Kozmin SG, Strope PK, Skelly DA, Magwene PM, Dietrich FS, McCusker JH. RNA viruses, M satellites, chromosomal killer genes, and killer/nonkiller phenotypes in the 100-genomes S. cerevisiae strains. G3 (BETHESDA, MD.) 2023; 13:jkad167. [PMID: 37497616 PMCID: PMC10542562 DOI: 10.1093/g3journal/jkad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
We characterized previously identified RNA viruses (L-A, L-BC, 20S, and 23S), L-A-dependent M satellites (M1, M2, M28, and Mlus), and M satellite-dependent killer phenotypes in the Saccharomyces cerevisiae 100-genomes genetic resource population. L-BC was present in all strains, albeit in 2 distinct levels, L-BChi and L-BClo; the L-BC level is associated with the L-BC genotype. L-BChi, L-A, 20S, 23S, M1, M2, and Mlus (M28 was absent) were in fewer strains than the similarly inherited 2µ plasmid. Novel L-A-dependent phenotypes were identified. Ten M+ strains exhibited M satellite-dependent killing (K+) of at least 1 of the naturally M0 and cured M0 derivatives of the 100-genomes strains; in these M0 strains, sensitivities to K1+, K2+, and K28+ strains varied. Finally, to complement our M satellite-encoded killer toxin analysis, we assembled the chromosomal KHS1 and KHR1 killer genes and used naturally M0 and cured M0 derivatives of the 100-genomes strains to assess and characterize the chromosomal killer phenotypes.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stanislav G Kozmin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Pooja K Strope
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Daniel A Skelly
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Paul M Magwene
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Fred S Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - John H McCusker
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
3
|
Travers-Cook TJ, Jokela J, Buser CC. The evolutionary ecology of fungal killer phenotypes. Proc Biol Sci 2023; 290:20231108. [PMID: 37583325 PMCID: PMC10427833 DOI: 10.1098/rspb.2023.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Ecological interactions influence evolutionary dynamics by selecting upon fitness variation within species. Antagonistic interactions often promote genetic and species diversity, despite the inherently suppressive effect they can have on the species experiencing them. A central aim of evolutionary ecology is to understand how diversity is maintained in systems experiencing antagonism. In this review, we address how certain single-celled and dimorphic fungi have evolved allelopathic killer phenotypes that engage in antagonistic interactions. We discuss the evolutionary pathways to the production of lethal toxins, the functions of killer phenotypes and the consequences of competition for toxin producers, their competitors and toxin-encoding endosymbionts. Killer phenotypes are powerful models because many appear to have evolved independently, enabling across-phylogeny comparisons of the origins, functions and consequences of allelopathic antagonism. Killer phenotypes can eliminate host competitors and influence evolutionary dynamics, yet the evolutionary ecology of killer phenotypes remains largely unknown. We discuss what is known and what remains to be ascertained about killer phenotype ecology and evolution, while bringing their model system properties to the reader's attention.
Collapse
Affiliation(s)
- Thomas J. Travers-Cook
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Jukka Jokela
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Claudia C. Buser
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| |
Collapse
|
4
|
Taggart NT, Crabtree AM, Creagh JW, Bizarria R, Li S, de la Higuera I, Barnes JE, Shipley MA, Boyer JM, Stedman KM, Ytreberg FM, Rowley PA. Novel viruses of the family Partitiviridae discovered in Saccharomyces cerevisiae. PLoS Pathog 2023; 19:e1011418. [PMID: 37285383 PMCID: PMC10281585 DOI: 10.1371/journal.ppat.1011418] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/20/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
It has been 49 years since the last discovery of a new virus family in the model yeast Saccharomyces cerevisiae. A large-scale screen to determine the diversity of double-stranded RNA (dsRNA) viruses in S. cerevisiae has identified multiple novel viruses from the family Partitiviridae that have been previously shown to infect plants, fungi, protozoans, and insects. Most S. cerevisiae partitiviruses (ScPVs) are associated with strains of yeasts isolated from coffee and cacao beans. The presence of partitiviruses was confirmed by sequencing the viral dsRNAs and purifying and visualizing isometric, non-enveloped viral particles. ScPVs have a typical bipartite genome encoding an RNA-dependent RNA polymerase (RdRP) and a coat protein (CP). Phylogenetic analysis of ScPVs identified three species of ScPV, which are most closely related to viruses of the genus Cryspovirus from the mammalian pathogenic protozoan Cryptosporidium parvum. Molecular modeling of the ScPV RdRP revealed a conserved tertiary structure and catalytic site organization when compared to the RdRPs of the Picornaviridae. The ScPV CP is the smallest so far identified in the Partitiviridae and has structural homology with the CP of other partitiviruses but likely lacks a protrusion domain that is a conspicuous feature of other partitivirus particles. ScPVs were stably maintained during laboratory growth and were successfully transferred to haploid progeny after sporulation, which provides future opportunities to study partitivirus-host interactions using the powerful genetic tools available for the model organism S. cerevisiae.
Collapse
Affiliation(s)
- Nathan T Taggart
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Angela M Crabtree
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Jack W Creagh
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Rodolfo Bizarria
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Shunji Li
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Ignacio de la Higuera
- Center for Life in Extreme Environments, Department of Biology, Portland State University, Portland, Oregon, United States of America
| | - Jonathan E Barnes
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
| | - Mason A Shipley
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Josephine M Boyer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Kenneth M Stedman
- Center for Life in Extreme Environments, Department of Biology, Portland State University, Portland, Oregon, United States of America
| | - F Marty Ytreberg
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| | - Paul A Rowley
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
5
|
Crabtree AM, Taggart NT, Lee MD, Boyer JM, Rowley PA. The prevalence of killer yeasts and double-stranded RNAs in the budding yeast Saccharomyces cerevisiae. FEMS Yeast Res 2023; 23:foad046. [PMID: 37935474 PMCID: PMC10664976 DOI: 10.1093/femsyr/foad046] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Killer toxins are antifungal proteins produced by many species of "killer" yeasts, including the brewer's and baker's yeast Saccharomyces cerevisiae. Screening 1270 strains of S. cerevisiae for killer toxin production found that 50% are killer yeasts, with a higher prevalence of yeasts isolated from human clinical samples and winemaking processes. Since many killer toxins are encoded by satellite double-stranded RNAs (dsRNAs) associated with mycoviruses, S. cerevisiae strains were also assayed for the presence of dsRNAs. This screen identified that 51% of strains contained dsRNAs from the mycovirus families Totiviridae and Partitiviridae, as well as satellite dsRNAs. Killer toxin production was correlated with the presence of satellite dsRNAs but not mycoviruses. However, in most killer yeasts, whole genome analysis identified the killer toxin gene KHS1 as significantly associated with killer toxin production. Most killer yeasts had unique spectrums of antifungal activities compared to canonical killer toxins, and sequence analysis identified mutations that altered their antifungal activities. The prevalence of mycoviruses and killer toxins in S. cerevisiae is important because of their known impact on yeast fitness, with implications for academic research and industrial application of this yeast species.
Collapse
Affiliation(s)
- Angela M Crabtree
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
| | - Nathan T Taggart
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
| | - Mark D Lee
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
| | - Josie M Boyer
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
| | - Paul A Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
| |
Collapse
|
6
|
Lukša J, Celitan E, Servienė E, Serva S. Association of ScV-LA Virus with Host Protein Metabolism Determined by Proteomics Analysis and Cognate RNA Sequencing. Viruses 2022; 14:v14112345. [PMID: 36366443 PMCID: PMC9697790 DOI: 10.3390/v14112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 02/01/2023] Open
Abstract
Saccharomyces yeasts are highly dispersed in the environment and microbiota of higher organisms. The yeast killing phenotype, encoded by the viral system, was discovered to be a significant property for host survival. Minor alterations in transcription patterns underpin the reciprocal relationship between LA and M viruses and their hosts, suggesting the fine-tuning of the transcriptional landscape. To uncover the principal targets of both viruses, we performed proteomics analysis of virus-enriched subsets of host proteins in virus type-specific manner. The essential pathways of protein metabolism-from biosynthesis and folding to degradation-were found substantially enriched in virus-linked subsets. The fractionation of viruses allowed separation of virus-linked host RNAs, investigated by high-content RNA sequencing. Ribosomal RNA was found to be inherently associated with LA-lus virus, along with other RNAs essential for ribosome biogenesis. This study provides a unique portrayal of yeast virions through the characterization of the associated proteome and cognate RNAs, and offers a background for understanding ScV-LA viral infection persistency.
Collapse
Affiliation(s)
- Juliana Lukša
- Department of Biochemistry and Molecular Biology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Laboratory of Genetics, Nature Research Centre, LT-08412 Vilnius, Lithuania
| | - Enrika Celitan
- Department of Biochemistry and Molecular Biology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Elena Servienė
- Laboratory of Genetics, Nature Research Centre, LT-08412 Vilnius, Lithuania
| | - Saulius Serva
- Department of Biochemistry and Molecular Biology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Correspondence:
| |
Collapse
|
7
|
Bizarria R, de Castro Pietrobon T, Rodrigues A. Uncovering the Yeast Communities in Fungus-Growing Ant Colonies. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02099-1. [PMID: 35962280 DOI: 10.1007/s00248-022-02099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Yeast-insect interactions are compelling models to study the evolution, ecology, and diversification of yeasts. Fungus-growing (attine) ants are prominent insects in the Neotropics that evolved an ancient fungiculture of basidiomycete fungi over 55-65 million years, supplying an environment for a hidden yeast diversity. Here we assessed the yeast diversity in the attine ant environment by thoroughly sampling fungus gardens across four out of five ant fungiculture systems: Acromyrmex coronatus and Mycetomoellerius tucumanus standing for leaf-cutting and higher-attine fungicultures, respectively; Apterostigma sp., Mycetophylax sp., and Mycocepurus goeldii as ants from the lower-attine fungiculture. Among the fungus gardens of all fungus-growing ants examined, we found taxonomically unique and diverse microbial yeast communities across the different fungicultures. Ascomycete yeasts were the core taxa in fungus garden samples, with Saccharomycetales as the most frequent order. The genera Aureobasidium, Candida, Papiliotrema, Starmerella, and Sugiyamaella had the highest incidence in fungus gardens. Despite the expected similarity within the same fungiculture system, colonies of the same ant species differed in community structure. Among Saccharomycotina yeasts, few were distinguishable as killer yeasts, with a classical inhibition pattern for the killer phenotype, differing from earlier observations in this environment, which should be further investigated. Yeast mycobiome in fungus gardens is distinct between colonies of the same fungiculture and each ant colony harbors a distinguished and unique yeast community. Fungus gardens of attine ants are emergent environments to study the diversity and ecology of yeasts associated with insects.
Collapse
Affiliation(s)
- Rodolfo Bizarria
- Department of General and Applied Biology, São Paulo State University (UNESP), Bela Vista, Avenida 24-A, n. 1515SP 13.506-900, Rio Claro, Brazil
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Tatiane de Castro Pietrobon
- Department of General and Applied Biology, São Paulo State University (UNESP), Bela Vista, Avenida 24-A, n. 1515SP 13.506-900, Rio Claro, Brazil
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Andre Rodrigues
- Department of General and Applied Biology, São Paulo State University (UNESP), Bela Vista, Avenida 24-A, n. 1515SP 13.506-900, Rio Claro, Brazil.
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
8
|
Adaptive Response of Saccharomyces Hosts to Totiviridae L-A dsRNA Viruses Is Achieved through Intrinsically Balanced Action of Targeted Transcription Factors. J Fungi (Basel) 2022; 8:jof8040381. [PMID: 35448612 PMCID: PMC9028071 DOI: 10.3390/jof8040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Totiviridae L-A virus is a widespread yeast dsRNA virus. The persistence of the L-A virus alone appears to be symptomless, but the concomitant presence of a satellite M virus provides a killer trait for the host cell. The presence of L-A dsRNA is common in laboratory, industrial, and wild yeasts, but little is known about the impact of the L-A virus on the host’s gene expression. In this work, based on high-throughput RNA sequencing data analysis, the impact of the L-A virus on whole-genome expression in three different Saccharomyces paradoxus and S. cerevisiae host strains was analyzed. In the presence of the L-A virus, moderate alterations in gene expression were detected, with the least impact on respiration-deficient cells. Remarkably, the transcriptional adaptation of essential genes was limited to genes involved in ribosome biogenesis. Transcriptional responses to L-A maintenance were, nevertheless, similar to those induced upon stress or nutrient availability. Based on these data, we further dissected yeast transcriptional regulators that, in turn, modulate the cellular L-A dsRNA levels. Our findings point to totivirus-driven fine-tuning of the transcriptional landscape in yeasts and uncover signaling pathways employed by dsRNA viruses to establish the stable, yet allegedly profitless, viral infection of fungi.
Collapse
|
9
|
Expression of the K74 Killer Toxin from Saccharomyces paradoxus Is Modulated by the Toxin-Encoding M74 Double-Stranded RNA 5' Untranslated Terminal Region. Appl Environ Microbiol 2022; 88:e0203021. [PMID: 35389250 DOI: 10.1128/aem.02030-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast killer toxins are widely distributed in nature, conferring a competitive advantage to the producer yeasts over nonkiller ones when nutrients are scarce. Most of these toxins are encoded on double-stranded RNAs (dsRNAs) generically called M. L-A members of the viral family Totiviridae act as helper viruses to maintain M, providing the virion proteins that separately encapsidate and replicate L-A and M genomes. M genomes are organized in three regions, a 5' region coding the preprotoxin, followed by an internal poly(A) stretch and a 3' noncoding region. In this work, we report the characterization of K74 toxin encoded on M74 dsRNA from Saccharomyces paradoxus Q74.4. In M74, there is a 5' upstream sequence of 141 nucleotides (nt), which contains regulatory signals for internal translation of the preprotoxin open reading frame (ORF) at the second AUG codon. The first AUG close to the 5' end is not functional. For K74 analysis, M74 viruses were first introduced into laboratory strains of Saccharomyces cerevisiae. We show here that the mature toxin is an α/β heterodimer linked by disulfide bonds. Though the toxin (or preprotoxin) confers immunity to the carrier, cells with increased K74 loads have a sick phenotype that may lead to cell death. Thus, a fine-tuning of K74 production by the upstream regulatory sequence is essential for the host cell to benefit from the toxin it produces and, at the same time, to safely avoid damage by an excess of toxin. IMPORTANCE Killer yeasts produce toxins to which they are immune by mechanisms not well understood. This self-immunity, however, is compromised in certain strains, which secrete an excess of toxin, leading to sick cells or suicidal phenotypes. Thus, a fine-tuning of toxin production has to be achieved to reach a balance between the beneficial effect of toxin production and the stress imposed on the host metabolism. K74 toxin from S. paradoxus is very active against Saccharomyces uvarum, among other yeasts, but an excess of toxin production is deleterious for the host. Here, we report that the presence of a 5' 141-nt upstream sequence downregulates K74 toxin precursor translation, decreasing toxin levels 3- to 5-fold. Thus, this is a special case of translation regulation performed by sequences on the M74 genome itself, which have been presumably incorporated into the viral RNA during evolution for that purpose.
Collapse
|
10
|
Forehand AL, Myagmarsuren D, Chen Z, Murphy HA. Variation in pH gradients and FLO11 expression in mat biofilms from environmental isolates of the yeast Saccharomyces cerevisiae. Microbiologyopen 2022; 11:e1277. [PMID: 35478280 PMCID: PMC9059236 DOI: 10.1002/mbo3.1277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Saccharomyces cerevisiae produces a multicellular phenotype, known as a mat, on a semi-solid medium. This biofilm phenotype was first described in the lab strain Σ1278b and has been analyzed mostly in this same background. Yeast cells form a mat by spreading across the medium and adhering to each other and the surface, in part through the variegated expression of the cell adhesion, FLO11. This process creates a characteristic floral pattern and generates pH and glucose gradients outward from the center of the mat. Mats are encapsulated in a liquid which may aid in surface spreading and diffusion. Here, we examine thirteen environmental isolates that vary visually in the phenotype. We predicted that mat properties were universal and increased morphological complexity would be associated with more extreme trait values. Our results showed that pH varied significantly among strains, but was not correlated to mat complexity. Only two isolates generated significant liquid boundaries and neither produced visually complex mats. In five isolates, we tracked the initiation of FLO11 using green fluorescent protein (GFP) under the control of the endogenous promoter. Strains varied in when and how much GFP was detected, with increased signal associated with increased morphological complexity. Generally, the signal was strongest in the center of the mat and absent at the expanding edge. Our results show that traits discovered in one background vary and exist independently of mat complexity in natural isolates. The environment may favor different sets of traits, which could have implications for how this yeast adapts to its many ecological niches.
Collapse
Affiliation(s)
- Amy L. Forehand
- Department of BiologyWilliam & MaryWilliamsburgVirginiaUSA,Present address:
Amy L. Forehand, Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | - Ziyan Chen
- Department of BiologyWilliam & MaryWilliamsburgVirginiaUSA,Present address:
Ziyan Chen, School of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | |
Collapse
|
11
|
Boynton PJ, Wloch‐Salamon D, Landermann D, Stukenbrock EH. Forest Saccharomyces paradoxus are robust to seasonal biotic and abiotic changes. Ecol Evol 2021; 11:6604-6619. [PMID: 34141244 PMCID: PMC8207440 DOI: 10.1002/ece3.7515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 01/02/2023] Open
Abstract
Microorganisms are famous for adapting quickly to new environments. However, most evidence for rapid microbial adaptation comes from laboratory experiments or domesticated environments, and it is unclear how rates of adaptation scale from human-influenced environments to the great diversity of wild microorganisms. We examined potential monthly-scale selective pressures in the model forest yeast Saccharomyces paradoxus. Contrary to expectations of seasonal adaptation, the S. paradoxus population was stable over four seasons in the face of abiotic and biotic environmental changes. While the S. paradoxus population was diverse, including 41 unique genotypes among 192 sampled isolates, there was no correlation between S. paradoxus genotypes and seasonal environments. Consistent with observations from other S. paradoxus populations, the forest population was highly clonal and inbred. This lack of recombination, paired with population stability, implies that selection is not acting on the forest S. paradoxus population on a seasonal timescale. Saccharomyces paradoxus may instead have evolved generalism or phenotypic plasticity with regard to seasonal environmental changes long ago. Similarly, while the forest population included diversity among phenotypes related to intraspecific interference competition, there was no evidence for active coevolution among these phenotypes. At least ten percent of the forest S. paradoxus individuals produced "killer toxins," which kill sensitive Saccharomyces cells, but the presence of a toxin-producing isolate did not predict resistance to the toxin among nearby isolates. How forest yeasts acclimate to changing environments remains an open question, and future studies should investigate the physiological responses that allow microbial cells to cope with environmental fluctuations in their native habitats.
Collapse
Affiliation(s)
- Primrose J. Boynton
- Biology DepartmentWheaton CollegeNortonMAUSA
- Environmental Genomics Research GroupMax‐Planck Institute for Evolutionary BiologyPlönGermany
| | - Dominika Wloch‐Salamon
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Doreen Landermann
- Environmental Genomics Research GroupMax‐Planck Institute for Evolutionary BiologyPlönGermany
| | - Eva H. Stukenbrock
- Environmental Genomics Research GroupMax‐Planck Institute for Evolutionary BiologyPlönGermany
- Botanical InstituteChristian‐Albrechts UniversitätKielGermany
| |
Collapse
|
12
|
Buser CC, Jokela J, Martin OY. Scent of a killer: How could killer yeast boost its dispersal? Ecol Evol 2021; 11:5809-5814. [PMID: 34141185 PMCID: PMC8207343 DOI: 10.1002/ece3.7534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023] Open
Abstract
Vector-borne parasites often manipulate hosts to attract uninfected vectors. For example, parasites causing malaria alter host odor to attract mosquitoes. Here, we discuss the ecology and evolution of fruit-colonizing yeast in a tripartite symbiosis-the so-called "killer yeast" system. "Killer yeast" consists of Saccharomyces cerevisiae yeast hosting two double-stranded RNA viruses (M satellite dsRNAs, L-A dsRNA helper virus). When both dsRNA viruses occur in a yeast cell, the yeast converts to lethal toxin‑producing "killer yeast" phenotype that kills uninfected yeasts. Yeasts on ephemeral fruits attract insect vectors to colonize new habitats. As the viruses have no extracellular stage, they depend on the same insect vectors as yeast for their dispersal. Viruses also benefit from yeast dispersal as this promotes yeast to reproduce sexually, which is how viruses can transmit to uninfected yeast strains. We tested whether insect vectors are more attracted to killer yeasts than to non‑killer yeasts. In our field experiment, we found that killer yeasts were more attractive to Drosophila than non-killer yeasts. This suggests that vectors foraging on yeast are more likely to transmit yeast with a killer phenotype, allowing the viruses to colonize those uninfected yeast strains that engage in sexual reproduction with the killer yeast. Beyond insights into the basic ecology of the killer yeast system, our results suggest that viruses could increase transmission success by manipulating the insect vectors of their host.
Collapse
Affiliation(s)
- Claudia C. Buser
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of Aquatic EcologyEawagDübendorfSwitzerland
| | - Jukka Jokela
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of Aquatic EcologyEawagDübendorfSwitzerland
| | - Oliver Y. Martin
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of BiologyETH ZürichZürichSwitzerland
| |
Collapse
|
13
|
Fredericks LR, Lee MD, Crabtree AM, Boyer JM, Kizer EA, Taggart NT, Roslund CR, Hunter SS, Kennedy CB, Willmore CG, Tebbe NM, Harris JS, Brocke SN, Rowley PA. The Species-Specific Acquisition and Diversification of a K1-like Family of Killer Toxins in Budding Yeasts of the Saccharomycotina. PLoS Genet 2021; 17:e1009341. [PMID: 33539346 PMCID: PMC7888664 DOI: 10.1371/journal.pgen.1009341] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/17/2021] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus. The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non-Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S. cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.
Collapse
Affiliation(s)
- Lance R. Fredericks
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Mark D. Lee
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Angela M. Crabtree
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Josephine M. Boyer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Emily A. Kizer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Nathan T. Taggart
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Cooper R. Roslund
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Samuel S. Hunter
- iBEST Genomics Core, University of Idaho, Moscow, Idaho, United States of America
| | - Courtney B. Kennedy
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Cody G. Willmore
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Nova M. Tebbe
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Jade S. Harris
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Sarah N. Brocke
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Paul A. Rowley
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
14
|
Aitmanaitė L, Konovalovas A, Medvedevas P, Servienė E, Serva S. Specificity Determination in Saccharomyces cerevisiae Killer Virus Systems. Microorganisms 2021; 9:microorganisms9020236. [PMID: 33498746 PMCID: PMC7912047 DOI: 10.3390/microorganisms9020236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/09/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Saccharomyces yeasts are widely distributed in the environment and microbiota of higher organisms. The killer phenotype of yeast, encoded by double-stranded RNA (dsRNA) virus systems, is a valuable trait for host survival. The mutual relationship between the different yet clearly defined LA and M virus pairs suggests complex fitting context. To define the basis of this compatibility, we established a system devoted to challenging inherent yeast viruses using viral proteins expressed in trans. Virus exclusion by abridged capsid proteins was found to be complete and nonspecific, indicating the presence of generic mechanisms of Totiviridae maintenance in yeast cells. Indications of specificity in both the exclusion of LA viruses and the maintenance of M viruses by viral capsid proteins expressed in trans were observed. This precise specificity was further established by demonstrating the importance of the satellite virus in the maintenance of LA virus, suggesting the selfish behavior of M dsRNA.
Collapse
Affiliation(s)
- Lina Aitmanaitė
- Laboratory of Nucleic Acid Biochemistry, Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania; (L.A.); (A.K.); (P.M.)
| | - Aleksandras Konovalovas
- Laboratory of Nucleic Acid Biochemistry, Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania; (L.A.); (A.K.); (P.M.)
| | - Povilas Medvedevas
- Laboratory of Nucleic Acid Biochemistry, Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania; (L.A.); (A.K.); (P.M.)
| | - Elena Servienė
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania;
| | - Saulius Serva
- Laboratory of Nucleic Acid Biochemistry, Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania; (L.A.); (A.K.); (P.M.)
- Correspondence: ; Tel.: +370-5239-8244
| |
Collapse
|
15
|
Buskirk SW, Rokes AB, Lang GI. Adaptive evolution of nontransitive fitness in yeast. eLife 2020; 9:62238. [PMID: 33372653 PMCID: PMC7886323 DOI: 10.7554/elife.62238] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/25/2020] [Indexed: 12/25/2022] Open
Abstract
A common misconception is that evolution is a linear ‘march of progress’, where each organism along a line of descent is more fit than all those that came before it. Rejecting this misconception implies that evolution is nontransitive: a series of adaptive events will, on occasion, produce organisms that are less fit compared to a distant ancestor. Here we identify a nontransitive evolutionary sequence in a 1000-generation yeast evolution experiment. We show that nontransitivity arises due to adaptation in the yeast nuclear genome combined with the stepwise deterioration of an intracellular virus, which provides an advantage over viral competitors within host cells. Extending our analysis, we find that nearly half of our ~140 populations experience multilevel selection, fixing adaptive mutations in both the nuclear and viral genomes. Our results provide a mechanistic case-study for the adaptive evolution of nontransitivity due to multilevel selection in a 1000-generation host/virus evolution experiment. It is widely accepted in biology that all life on Earth gradually evolved over billions of years from a single ancestor. Yet, there is still much about this process that is not fully understood. Evolution is often thought of as progressing in a linear fashion, with each new generation being better adapted to its environment than the last. But it has been proposed that evolution is also nontransitive: this means even if each generation is ‘fitter’ than its immediate predecessor, these series of adaptive changes will occasionally result in organisms that are less fit than their distant ancestors. Laboratory experiments of evolution are a good way to test evolutionary theories because they allow researchers to create scenarios that are impossible to observe in natural populations, such as an organism competing against its extinct ancestors. Buskirk et al. set up such an experiment using yeast to determine whether nontransitive effects can be observed in the direct descendants of an organism. At the start of the experiment, the yeast cells were host to a non-infectious ‘killer’ virus that is common among yeast. Cells containing the virus produce a toxin that destroys other yeast that lack the virus. The populations of yeast were given a nutrient-rich broth in which to grow and subjected to a simple evolutionary pressure: to grow fast, which limits the amount of resources available. As the yeast evolved, they gained beneficial genetic mutations that allowed them to outcompete their neighbors, and they passed these traits down to their descendants. Some of these mutations occurred not in the yeast genome, but in the genome of the killer virus, and this stopped the yeast infected with the virus from producing the killer toxin. Over time, other mutations resulted in the infected yeast no longer being immune to the toxin. Thus, when Buskirk et al. pitted these yeast against their distant ancestors, the new generation were destroyed by the toxins the older generation produced. These findings provide the first experimental evidence for nontransitivity along a line of descent. The results have broad implications for our understanding of how evolution works, casting doubts over the idea that evolution always involves a direct progression towards new, improved traits.
Collapse
Affiliation(s)
- Sean W Buskirk
- Department of Biological Sciences, Lehigh University, Bethlehem, United States
| | - Alecia B Rokes
- Department of Biological Sciences, Lehigh University, Bethlehem, United States
| | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, United States
| |
Collapse
|
16
|
Xu S, Yamamoto N. Anti-infective nitazoxanide disrupts transcription of ribosome biogenesis-related genes in yeast. Genes Genomics 2020; 42:915-926. [PMID: 32524281 DOI: 10.1007/s13258-020-00958-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Nitazoxanide is a broad-spectrum, anti-parasitic, anti-protozoal, anti-viral drug, whose mechanisms of action have remained elusive. OBJECTIVE In this study, we aimed to provide insight into the mechanisms of action of nitazoxanide and the related eukaryotic host responses by characterizing transcriptome profiles of Saccharomyces cerevisiae exposed to nitazoxanide. METHODS RNA-Seq was used to investigate the transcriptome profiles of three strains of S. cerevisiae with dsRNA virus-like elements, including a strain that hosts M28 encoding the toxic protein K28. From the strain with M28, an additional sub-strain was prepared by excluding M28 using a nitazoxanide treatment. RESULTS Our transcriptome analysis revealed the effects of nitazoxanide on ribosome biogenesis. Many genes related to the UTP A, UTP B, Mpp10-Imp3-Imp4, and Box C/D snoRNP complexes were differentially regulated by nitazoxanide exposure in all of the four tested strains/sub-strains. Examples of the differentially regulated genes included UTP14, UTP4, NOP4, UTP21, UTP6, and IMP3. The comparison between the M28-laden and non-M28-laden sub-strains showed that the mitotic cell cycle was more significantly affected by nitazoxanide exposure in the non-M28-laden sub-strain. CONCLUSIONS Overall, our study reveals that nitazoxanide disrupts regulation of ribosome biogenesis-related genes in yeast.
Collapse
Affiliation(s)
- Siyu Xu
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, South Korea
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Naomichi Yamamoto
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, South Korea.
- Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
17
|
Chance and necessity in the pleiotropic consequences of adaptation for budding yeast. Nat Ecol Evol 2020; 4:601-611. [PMID: 32152531 PMCID: PMC8063891 DOI: 10.1038/s41559-020-1128-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Mutations that a population accumulates during evolution in one 'home' environment may cause fitness gains or losses in other environments. Such pleiotropic fitness effects determine the evolutionary fate of the population in variable environments and can lead to ecological specialization. It is unclear how the pleiotropic outcomes of evolution are shaped by the intrinsic randomness of the evolutionary process and by the deterministic variation in selection pressures across environments. Here, to address this question, we evolved 20 replicate populations of the yeast Saccharomyces cerevisiae in 11 laboratory environments and measured their fitness across multiple conditions. We found that evolution led to diverse pleiotropic fitness gains and losses, driven by multiple types of mutations. Approximately 60% of this variation is explained by the home environment of a clone and the most common parallel genetic changes, whereas about 40% is attributed to the stochastic accumulation of mutations whose pleiotropic effects are unpredictable. Although populations are typically specialized to their home environment, generalists also evolved in almost all of the conditions. Our results suggest that the mutations that accumulate during evolution incur a variety of pleiotropic costs and benefits with different probabilities. Thus, whether a population evolves towards a specialist or a generalist phenotype is heavily influenced by chance.
Collapse
|
18
|
Boynton PJ. The ecology of killer yeasts: Interference competition in natural habitats. Yeast 2019; 36:473-485. [PMID: 31050852 DOI: 10.1002/yea.3398] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022] Open
Abstract
Killer yeasts are ubiquitous in the environment: They have been found in diverse habitats ranging from ocean sediment to decaying cacti to insect bodies and on all continents including Antarctica. However, environmental killer yeasts are poorly studied compared with laboratory and domesticated killer yeasts. Killer yeasts secrete so-called killer toxins that inhibit nearby sensitive yeasts, and the toxins are frequently assumed to be tools for interference competition in diverse yeast communities. The diversity and ubiquity of killer yeasts imply that interference competition is crucial for shaping yeast communities. Additionally, these toxins may have ecological functions beyond use in interference competition. This review introduces readers to killer yeasts in environmental systems, with a focus on what is and is not known about their ecology and evolution. It also explores how results from experimental killer systems in laboratories can be extended to understand how competitive strategies shape yeast communities in nature. Overall, killer yeasts are likely to occur everywhere yeasts are found, and the killer phenotype has the potential to radically shape yeast diversity in nature.
Collapse
Affiliation(s)
- Primrose J Boynton
- Max-Planck Institute for Evolutionary Biology, Environmental Genomics Group, Plön, Germany
| |
Collapse
|
19
|
Mannazzu I, Domizio P, Carboni G, Zara S, Zara G, Comitini F, Budroni M, Ciani M. Yeast killer toxins: from ecological significance to application. Crit Rev Biotechnol 2019; 39:603-617. [PMID: 31023102 DOI: 10.1080/07388551.2019.1601679] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Killer toxins are proteins that are often glycosylated and bind to specific receptors on the surface of their target microorganism, which is then killed through a target-specific mode of action. The killer phenotype is widespread among yeast and about 100 yeast killer species have been described to date. The spectrum of action of the killer toxins they produce targets spoilage and pathogenic microorganisms. Thus, they have potential as natural antimicrobials in food and for biological control of plant pathogens, as well as therapeutic agents against animal and human infections. In spite of this wide range of possible applications, their exploitation on the industrial level is still in its infancy. Here, we initially briefly report on the biodiversity of killer toxins and the ecological significance of their production. Their actual and possible applications in the agro-food industry are discussed, together with recent advances in their heterologous production and the manipulation for development of peptide-based therapeutic agents.
Collapse
Affiliation(s)
- Ilaria Mannazzu
- a Department of Agriculture , University of Sassari , Sassari , Italy
| | - Paola Domizio
- b Department of Agricultural , Food and Forestry Systems (GESAAF) , Firenze , Italy
| | - Gavino Carboni
- a Department of Agriculture , University of Sassari , Sassari , Italy
| | - Severino Zara
- a Department of Agriculture , University of Sassari , Sassari , Italy
| | - Giacomo Zara
- a Department of Agriculture , University of Sassari , Sassari , Italy
| | - Francesca Comitini
- c Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| | - Marilena Budroni
- a Department of Agriculture , University of Sassari , Sassari , Italy
| | - Maurizio Ciani
- c Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| |
Collapse
|
20
|
Crabtree AM, Kizer EA, Hunter SS, Van Leuven JT, New DD, Fagnan MW, Rowley PA. A Rapid Method for Sequencing Double-Stranded RNAs Purified from Yeasts and the Identification of a Potent K1 Killer Toxin Isolated from Saccharomyces cerevisiae. Viruses 2019; 11:v11010070. [PMID: 30654470 PMCID: PMC6356530 DOI: 10.3390/v11010070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/13/2022] Open
Abstract
Mycoviruses infect a large number of diverse fungal species, but considering their prevalence, relatively few high-quality genome sequences have been determined. Many mycoviruses have linear double-stranded RNA genomes, which makes it technically challenging to ascertain their nucleotide sequence using conventional sequencing methods. Different specialist methodologies have been developed for the extraction of double-stranded RNAs from fungi and the subsequent synthesis of cDNAs for cloning and sequencing. However, these methods are often labor-intensive, time-consuming, and can require several days to produce cDNAs from double-stranded RNAs. Here, we describe a comprehensive method for the rapid extraction and sequencing of dsRNAs derived from yeasts, using short-read next generation sequencing. This method optimizes the extraction of high-quality double-stranded RNAs from yeasts and 3′ polyadenylation for the initiation of cDNA synthesis for next-generation sequencing. We have used this method to determine the sequence of two mycoviruses and a double-stranded RNA satellite present within a single strain of the model yeast Saccharomyces cerevisiae. The quality and depth of coverage was sufficient to detect fixed and polymorphic mutations within viral populations extracted from a clonal yeast population. This method was also able to identify two fixed mutations within the alpha-domain of a variant K1 killer toxin encoded on a satellite double-stranded RNA. Relative to the canonical K1 toxin, these newly reported mutations increased the cytotoxicity of the K1 toxin against a specific species of yeast.
Collapse
Affiliation(s)
- Angela M Crabtree
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| | - Emily A Kizer
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| | - Samuel S Hunter
- IBEST Genomics Core, University of Idaho, Moscow, ID 83843, USA.
| | - James T Van Leuven
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| | - Daniel D New
- IBEST Genomics Core, University of Idaho, Moscow, ID 83843, USA.
| | - Matthew W Fagnan
- IBEST Genomics Core, University of Idaho, Moscow, ID 83843, USA.
| | - Paul A Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|
21
|
Deschaine BM, Heysel AR, Lenhart BA, Murphy HA. Biofilm formation and toxin production provide a fitness advantage in mixed colonies of environmental yeast isolates. Ecol Evol 2018; 8:5541-5550. [PMID: 29938072 PMCID: PMC6010761 DOI: 10.1002/ece3.4082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023] Open
Abstract
Microbes can engage in social interactions ranging from cooperation to warfare. Biofilms are structured, cooperative microbial communities. Like all cooperative communities, they are susceptible to invasion by selfish individuals who benefit without contributing. However, biofilms are pervasive and ancient, representing the first fossilized life. One hypothesis for the stability of biofilms is spatial structure: Segregated patches of related cooperative cells are able to outcompete unrelated cells. These dynamics have been explored computationally and in bacteria; however, their relevance to eukaryotic microbes remains an open question. The complexity of eukaryotic cell signaling and communication suggests the possibility of different social dynamics. Using the tractable model yeast, Saccharomyces cerevisiae, which can form biofilms, we investigate the interactions of environmental isolates with different social phenotypes. We find that biofilm strains spatially exclude nonbiofilm strains and that biofilm spatial structure confers a consistent and robust fitness advantage in direct competition. Furthermore, biofilms may protect against killer toxin, a warfare phenotype. During biofilm formation, cells are susceptible to toxin from nearby competitors; however, increased spatial use may provide an escape from toxin producers. Our results suggest that yeast biofilms represent a competitive strategy and that principles elucidated for the evolution and stability of bacterial biofilms may apply to more complex eukaryotes.
Collapse
Affiliation(s)
| | - Angela R. Heysel
- Department of BiologyThe College of William and MaryWilliamsburgVirginia
| | - B. Adam Lenhart
- Department of BiologyThe College of William and MaryWilliamsburgVirginia
| | - Helen A. Murphy
- Department of BiologyThe College of William and MaryWilliamsburgVirginia
| |
Collapse
|
22
|
Variation and Distribution of L-A Helper Totiviruses in Saccharomyces sensu stricto Yeasts Producing Different Killer Toxins. Toxins (Basel) 2017; 9:toxins9100313. [PMID: 29019944 PMCID: PMC5666360 DOI: 10.3390/toxins9100313] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022] Open
Abstract
Yeasts within the Saccharomyces sensu stricto cluster can produce different killer toxins. Each toxin is encoded by a medium size (1.5-2.4 Kb) M dsRNA virus, maintained by a larger helper virus generally called L-A (4.6 Kb). Different types of L-A are found associated to specific Ms: L-A in K1 strains and L-A-2 in K2 strains. Here, we extend the analysis of L-A helper viruses to yeasts other than S. cerevisiae, namely S. paradoxus, S. uvarum and S. kudriavzevii. Our sequencing data from nine new L-A variants confirm the specific association of each toxin-producing M and its helper virus, suggesting co-evolution. Their nucleotide sequences vary from 10% to 30% and the variation seems to depend on the geographical location of the hosts, suggesting cross-species transmission between species in the same habitat. Finally, we transferred by genetic methods different killer viruses from S. paradoxus into S. cerevisiae or viruses from S. cerevisiae into S. uvarum or S. kudriavzevii. In the foster hosts, we observed no impairment for their stable transmission and maintenance, indicating that the requirements for virus amplification in these species are essentially the same. We also characterized new killer toxins from S. paradoxus and constructed "superkiller" strains expressing them.
Collapse
|
23
|
Different Metabolic Pathways Are Involved in Response of Saccharomyces cerevisiae to L-A and M Viruses. Toxins (Basel) 2017; 9:toxins9080233. [PMID: 28757599 PMCID: PMC5577567 DOI: 10.3390/toxins9080233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
Competitive and naturally occurring yeast killer phenotype is governed by coinfection with dsRNA viruses. Long-term relationship between the host cell and viruses appear to be beneficial and co-adaptive; however, the impact of viral dsRNA on the host gene expression has barely been investigated. Here, we determined the transcriptomic profiles of the host Saccharomyces cerevisiae upon the loss of the M-2 dsRNA alone and the M-2 along with the L-A-lus dsRNAs. We provide a comprehensive study based on the high-throughput RNA-Seq data, Gene Ontology and the analysis of the interaction networks. We identified 486 genes differentially expressed after curing yeast cells of the M-2 dsRNA and 715 genes affected by the elimination of both M-2 and L-A-lus dsRNAs. We report that most of the transcriptional responses induced by viral dsRNAs are moderate. Differently expressed genes are related to ribosome biogenesis, mitochondrial functions, stress response, biosynthesis of lipids and amino acids. Our study also provided insight into the virus–host and virus–virus interplays.
Collapse
|
24
|
Power provides protection: Genetic robustness in yeast depends on the capacity to generate energy. PLoS Genet 2017; 13:e1006768. [PMID: 28493864 PMCID: PMC5444853 DOI: 10.1371/journal.pgen.1006768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/25/2017] [Accepted: 04/19/2017] [Indexed: 11/19/2022] Open
Abstract
The functional basis of genetic robustness, the ability of organisms to suppress the effects of mutations, remains incompletely understood. We exposed a set of 15 strains of Saccharomyces cerevisiae form diverse environments to increasing doses of the chemical mutagen EMS. The number of the resulting random mutations was similar for all tested strains. However, there were differences in immediate mortality after the mutagenic treatment and in defective growth of survivors. An analysis of gene expression revealed that immediate mortality was lowest in strains with lowest expression of transmembrane proteins, which are rich in thiol groups and thus vulnerable to EMS. A signal of genuine genetic robustness was detected for the other trait, the ability to grow well despite bearing non-lethal mutations. Increased tolerance of such mutations correlated with high expression of genes responsible for the oxidative energy metabolism, suggesting that the negative effect of mutations can be buffered if enough energy is available. We confirmed this finding in three additional tests of the ability to grow on (i) fermentable or non-fermentable sources of carbon, (ii) under chemical inhibition of the electron transport chain and (iii) during overexpression of its key component, cytochrome c. Our results add the capacity to generate energy as a general mechanism of genetic robustness. The ability to suppress phenotypic effects of mutations is termed genetic robustness. Its functional basis and evolutionary origin remain insufficiently understood despite decades of research. In fact, it is still largely untested whether genetic robustness is a trait of substantial, within-species variation. We used a model organism, Saccharomyces cerevisiae, to study both phenotypic signs and functional underpinnings of genetic robustness. We introduced random mutations into a set of well-characterized yeast strain. There was considerable variation in the growth rate among clones recovered after mutagenesis, which is an indication of genetic robustness. Using available data on gene expression for our strains, we found that genetic robustness was strongest among strains with enhanced expression of genes related to the energy metabolism. We reasoned that, regardless of the specific mutations, the capacity to generate metabolic energy may be a general underlying mechanism for buffering the effects of random mutations across the genome. We confirmed this hypothesis in further experiments in which we showed that genetic robustness decreases when the energy metabolism is compromised and increases when it is boosted.
Collapse
|
25
|
Pieczynska MD, Korona R, De Visser JAGM. Experimental tests of host-virus coevolution in natural killer yeast strains. J Evol Biol 2017; 30:773-781. [PMID: 28117504 DOI: 10.1111/jeb.13044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/06/2017] [Accepted: 01/16/2017] [Indexed: 01/08/2023]
Abstract
Fungi may carry cytoplasmic viruses that encode anticompetitor toxins. These so-called killer viruses may provide competitive benefits to their host, but also incur metabolic costs associated with viral replication, toxin production and immunity. Mechanisms responsible for the stable maintenance of these endosymbionts are insufficiently understood. Here, we test whether co-adaptation of host and killer virus underlies their stable maintenance in seven natural and one laboratory strain of the genus Saccharomyces. We employ cross-transfection of killer viruses, all encoding the K1-type toxin, to test predictions from host-virus co-adaptation. These tests support local adaptation of hosts and/or their killer viruses. First, new host-virus combinations have strongly reduced killing ability against a standard sensitive strain when compared with re-constructed native combinations. Second, viruses are more likely to be lost from new than from original hosts upon repeated bottlenecking or the application of stressful conditions. Third, host fitness is increased after the re-introduction of native viruses, but decreased after the introduction of new viruses. Finally, rather than a trade-off, original combinations show a positive correlation between killing ability and fitness. Together, these results suggest that natural yeast killer strains and their viruses have co-adapted, allowing the transition from a parasitic to a mutualistic symbiosis.
Collapse
Affiliation(s)
- M D Pieczynska
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands.,Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
| | - R Korona
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
| | - J A G M De Visser
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
26
|
Relationships and Evolution of Double-Stranded RNA Totiviruses of Yeasts Inferred from Analysis of L-A-2 and L-BC Variants in Wine Yeast Strain Populations. Appl Environ Microbiol 2017; 83:AEM.02991-16. [PMID: 27940540 DOI: 10.1128/aem.02991-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/05/2016] [Indexed: 02/04/2023] Open
Abstract
Saccharomyces cerevisiae killer strains secrete a protein toxin active on nonkiller strains of the same (or other) yeast species. Different killer toxins, K1, K2, K28, and Klus, have been described. Each toxin is encoded by a medium-size (1.5- to 2.3-kb) M double-stranded RNA (dsRNA) located in the cytoplasm. M dsRNAs require L-A helper virus for maintenance. L-A belongs to the Totiviridae family, and its dsRNA genome of 4.6 kb codes for the major capsid protein Gag and a minor Gag-Pol protein, which form the virions that separately encapsidate L-A or the M satellites. Different L-A variants exist in nature; on average, 24% of their nucleotides are different. Previously, we reported that L-A-lus was specifically associated with Mlus, suggesting coevolution, and proposed a role of the toxin-encoding M dsRNAs in the appearance of new L-A variants. Here we confirm this by analyzing the helper virus in K2 killer wine strains, which we named L-A-2. L-A-2 is required for M2 maintenance, and neither L-A nor L-A-lus shows helper activity for M2 in the same genetic background. This requirement is overcome when coat proteins are provided in large amounts by a vector or in ski mutants. The genome of another totivirus, L-BC, frequently accompanying L-A in the same cells shows a lower degree of variation than does L-A (about 10% of nucleotides are different). Although L-BC has no helper activity for M dsRNAs, distinct L-BC variants are associated with a particular killer strain. The so-called L-BC-lus (in Klus strains) and L-BC-2 (in K2 strains) are analyzed. IMPORTANCE Killer strains of S. cerevisiae secrete protein toxins that kill nonkiller yeasts. The "killer phenomenon" depends on two dsRNA viruses: L-A and M. M encodes the toxin, and L-A, the helper virus, provides the capsids for both viruses. Different killer toxins exist: K1, K2, K28, and Klus, encoded on different M viruses. Our data indicate that each M dsRNA depends on a specific helper virus; these helper viruses have nucleotide sequences that may be as much as 26% different, suggesting coevolution. In wine environments, K2 and Klus strains frequently coexist. We have previously characterized the association of Mlus and L-A-lus. Here we sequence and characterize L-A-2, the helper virus of M2, establishing the helper virus requirements of M2, which had not been completely elucidated. We also report the existence of two specific L-BC totiviruses in Klus and K2 strains with about 10% of their nucleotides different, suggesting different evolutionary histories from those of L-A viruses.
Collapse
|
27
|
Chang SL, Leu JY, Chang TH. A population study of killer viruses reveals different evolutionary histories of two closely related Saccharomyces sensu stricto yeasts. Mol Ecol 2015; 24:4312-22. [PMID: 26179470 DOI: 10.1111/mec.13310] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 12/25/2022]
Abstract
Microbes have evolved ways of interference competition to gain advantage over their ecological competitors. The use of secreted killer toxins by yeast cells through acquiring double-stranded RNA viruses is one such prominent example. Although the killer behaviour has been well studied in laboratory yeast strains, our knowledge regarding how killer viruses are spread and maintained in nature and how yeast cells co-evolve with viruses remains limited. We investigated these issues using a panel of 81 yeast populations belonging to three Saccharomyces sensu stricto species isolated from diverse ecological niches and geographic locations. We found that killer strains are rare among all three species. In contrast, killer toxin resistance is widespread in Saccharomyces paradoxus populations, but not in Saccharomyces cerevisiae or Saccharomyces eubayanus populations. Genetic analyses revealed that toxin resistance in S. paradoxus is often caused by dominant alleles that have independently evolved in different populations. Molecular typing identified one M28 and two types of M1 killer viruses in those killer strains. We further showed that killer viruses of the same type could lead to distinct killer phenotypes under different host backgrounds, suggesting co-evolution between the viruses and hosts in different populations. Taken together, our data suggest that killer viruses vary in their evolutionary histories even within closely related yeast species.
Collapse
Affiliation(s)
- Shang-Lin Chang
- Genomics Research Center, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Taipei, 115, Taiwan
| | - Tien-Hsien Chang
- Genomics Research Center, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| |
Collapse
|
28
|
Abstract
Killing is perhaps the most definite form of communication possible. Microbes such as yeasts and gut bacteria have been shown to exhibit killer phenotypes. The killer strains are able to kill other microbes occupying the same ecological niche, and do so with impunity. It would therefore be expected that, wherever a killer phenotype has arisen, all members of the population would soon be killers or dead. Surprisingly, (1) one can find both killer and sensitive strains in coexistence, both in the wild and in in vitro experiments, and (2) the absolute fitness cost of the killer phenotype often seems to be very small. We present an explicit model of such coexistence in a fragmented or discrete environment. A killer strain may kill all sensitive cells in one patch (one piece of rotting fruit, one cave or one human gut, for example), allowing sensitives to exist only in the absence of killer strains on the same patch. In our model, populations spread easily between patches, but in a stochastic manner: one can imagine spores borne by the wind over a field of untended apple trees, or enteric disease transmission in a region in which travel is effectively unrestricted. What we show is that coexistence is not only possible, but that it is possible even if the absolute fitness advantage of the sensitive strain over the killer strain is arbitrarily small. We do this by performing a specifically targeted mathematical analysis on our model, rather than via simulations. Our model does not assume large population densities, and may thus be useful in the context of understanding the ecology of extreme environments.
Collapse
Affiliation(s)
- Robert M Sinclair
- Mathematical Biology Unit, Okinawa Institute of Science and Technology Okinawa, Japan
| |
Collapse
|