1
|
Rao BD, Gomez-Gil E, Peter M, Balogh G, Nunes V, MacRae JI, Chen Q, Rosenthal PB, Oliferenko S. Horizontal acquisition of prokaryotic hopanoid biosynthesis reorganizes membrane physiology driving lifestyle innovation in a eukaryote. Nat Commun 2025; 16:3291. [PMID: 40195311 PMCID: PMC11976957 DOI: 10.1038/s41467-025-58515-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Horizontal gene transfer is a source of metabolic innovation and adaptation to new environments. How new metabolic functionalities are integrated into host cell biology is largely unknown. Here, we probe this fundamental question using the fission yeast Schizosaccharomyces japonicus, which has acquired a squalene-hopene cyclase Shc1 through horizontal gene transfer. We show that Shc1-dependent production of hopanoids, mimics of eukaryotic sterols, allows S. japonicus to thrive in anoxia, where sterol biosynthesis is not possible. We demonstrate that glycerophospholipid fatty acyl asymmetry, prevalent in S. japonicus, is crucial for accommodating both sterols and hopanoids in membranes and explain how Shc1 functions alongside the sterol biosynthetic pathway to support membrane properties. Reengineering experiments in the sister species S. pombe show that hopanoids entail new traits in a naïve organism, but the acquisition of a new enzyme may trigger profound reorganization of the host metabolism and physiology.
Collapse
Affiliation(s)
- Bhagyashree Dasari Rao
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London, UK
- The Francis Crick Institute, London, UK
| | - Elisa Gomez-Gil
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London, UK
- The Francis Crick Institute, London, UK
| | - Maria Peter
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gabor Balogh
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | | | | | - Qu Chen
- The Francis Crick Institute, London, UK
| | | | - Snezhana Oliferenko
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Qu G, Song Y, Xu X, Liu Y, Li J, Du G, Liu L, Li Y, Lv X. De novo biosynthesis of mogroside V by multiplexed engineered yeasts. Metab Eng 2025; 88:160-171. [PMID: 39788182 DOI: 10.1016/j.ymben.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
High sugar intake has become a global health concern due to its association with various diseases. Mogroside V (MG-V), a zero-calorie sweetener with multiple medical properties, is emerging as a promising sugar substitute. However, its application is hindered by low natural abundance and the inefficiency of conventional plant extraction methods. In this study, two glycosyltransferases were introduced into an engineered mogrol-producing Saccharomyces cerevisiae strain to enable the first de novo MG-V biosynthesis. Then, MG-V titer increased by 2.3 × 104-fold through a series of efficient metabolic engineering strategies, including the enhancement of precursors, inhibition of the competitive pathway, and prevention of MG-V degradation. The challenges of enzyme spatial separation and high protein folding stress were addressed through lipid droplet (LD) compartmentalization and endoplasmic reticulum expansion, respectively. The ty1 transposon was employed to increase the copies of LD-targeted fusion protein AtCPR2-CYP87D18, which possessed higher CYP450 catalytic efficiency, resulting in an MG-V titer of 10.25 mg/L in shake flasks and 28.62 mg/L in a 5-L bioreactor. Overall, this study realized de novo MG-V synthesis in S. cerevisiae for the first time and provided a valuable reference for constructing microbial factories for triterpenoid saponin synthesis.
Collapse
Affiliation(s)
- Guanyi Qu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi, 214122, China
| | - Yunfei Song
- Guilin Layn Natural Ingredients Corp, Guilin, 541000, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, 214122, China
| | - Yangyang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
Xiong J, Lu H, Jiang Y. Mechanisms of Azole Potentiation: Insights from Drug Repurposing Approaches. ACS Infect Dis 2025; 11:305-322. [PMID: 39749640 DOI: 10.1021/acsinfecdis.4c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The emergence of azole resistance and tolerance in pathogenic fungi has emerged as a significant public health concern, emphasizing the urgency for innovative strategies to bolster the efficacy of azole-based treatments. Drug repurposing stands as a promising and practical avenue for advancing antifungal therapy, with the potential for swift clinical translation. This review offers a comprehensive overview of azole synergistic agents uncovered through drug repurposing strategies, alongside an in-depth exploration of the mechanisms by which these agents augment azole potency. Drawing from these mechanisms, we delineate strategies aimed at enhancing azole effectiveness, such as inhibiting efflux pumps to elevate azole concentrations within fungal cells, intensifying ergosterol synthesis inhibition, mitigating fungal cell resistance to azoles, and disrupting biological processes extending beyond ergosterol synthesis. This review is beneficial for the development of these potentiators, as it meticulously examines instances and provides nuanced discussions on the mechanisms underlying the progression of azole potentiators through drug repurposing strategies.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
4
|
Shalu S, Karthikanath PKR, Vaidyanathan VK, Blank LM, Germer A, Balakumaran PA. Microbial Squalene: A Sustainable Alternative for the Cosmetics and Pharmaceutical Industry - A Review. Eng Life Sci 2024; 24:e202400003. [PMID: 39391272 PMCID: PMC11464149 DOI: 10.1002/elsc.202400003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 08/04/2024] [Indexed: 10/12/2024] Open
Abstract
Squalene is a natural triterpenoid and a biosynthetic precursor of steroids and hopanoids in microorganisms, plants, humans, and other animals. Squalene has exceptional properties, such as its antioxidant activity, a high penetrability of the skin, and the ability to trigger the immune system, promoting its application in the cosmetic, sustenance, and pharmaceutical industries. Because sharks are the primary source of squalene, there is a need to identify low-cost, environment friendly, and sustainable alternatives for producing squalene commercially. This shift has prompted scientists to apply biotechnological advances to research microorganisms for synthesizing squalene. This review summarizes recent metabolic and bioprocess engineering strategies in various microorganisms for the biotechnological production of this valuable molecule.
Collapse
Affiliation(s)
- Saseendran Shalu
- Department of Molecular Biology and BiotechnologyCollege of AgricultureKerala Agricultural UniversityVellayaniKeralaIndia
| | - Panam Kunnel Raveendranathan Karthikanath
- Chemical Sciences and Technology DivisionCSIR ‐ National Institute for Interdisciplinary Science and Technology (CSIR‐NIIST)ThiruvananthapuramKeralaIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing LaboratoryDepartment of BiotechnologySchool of BioengineeringSRM Institute of Science and Technology (SRMIST)KattankulathurIndia
| | - Lars M. Blank
- iAMB ‐ Institute of Applied MicrobiologyABBt ‐ Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Andrea Germer
- iAMB ‐ Institute of Applied MicrobiologyABBt ‐ Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Palanisamy Athiyaman Balakumaran
- Chemical Sciences and Technology DivisionCSIR ‐ National Institute for Interdisciplinary Science and Technology (CSIR‐NIIST)ThiruvananthapuramKeralaIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
5
|
Krajciova D, Holic R. The Plasma Membrane H+-ATPase Promoter Driving the Expression of FADX Enables Highly Efficient Production of Punicic Acid in Rhodotorula toruloides Cultivated on Glucose and Crude Glycerol. J Fungi (Basel) 2024; 10:649. [PMID: 39330409 PMCID: PMC11433134 DOI: 10.3390/jof10090649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Punicic acid (PuA) is a conjugated fatty acid with a wide range of nutraceutical properties naturally present in pomegranate seed oil. To meet the rising demand for pomegranate seed oil, a single-cell oil enriched in PuA provides a sustainable biomass-derived alternative. This study describes the production of a PuA-enriched single-cell oil through the engineering of the red yeast Rhodotorula toruloides grown in glucose and a low-cost substrate, crude glycerol. The gene for Punica granatum fatty acid conjugase, PgFADX, was randomly integrated into the genome of R. toruloides without disrupting the carotenoid synthesis. In shake flask studies, the effects of three promoters (PPGI1, PNAR1, and PPMA1) on PuA production were evaluated. PuA titers of 105.77 mg/L and 72.81 mg/L were obtained from engineered cells expressing PgFADX from the PPMA1 promoter cultivated for 72 h in glucose and for 168 h in crude glycerol, respectively. Furthermore, the detailed lipid analysis revealed a high enrichment PuA in the triacylglycerol lipid structures, even without substantial modifications to the metabolic pathways. This report demonstrates the high potential of R. toruloides in the upcycling of a low-cost substrate, crude glycerol, into a value-added product such as PuA. The findings support the feasibility of using engineered R. toruloides for sustainable production of PuA-enriched single-cell oil.
Collapse
Affiliation(s)
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 84005 Bratislava, Slovakia;
| |
Collapse
|
6
|
Garaiova M, Ding Y, Holic R, Valachovic M, Zhang C, Hapala I, Liu P. Yeast perilipin Pet10p/Pln1p interacts with Erg6p in ergosterol metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159506. [PMID: 38734059 DOI: 10.1016/j.bbalip.2024.159506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Lipid droplets (LD) are highly dynamic organelles specialized for the regulation of energy storage and cellular homeostasis. LD consist of a neutral lipid core surrounded by a phospholipid monolayer membrane with embedded proteins, most of which are involved in lipid homeostasis. In this study, we focused on one of the major LD proteins, sterol C24-methyltransferase, encoded by ERG6. We found that the absence of Erg6p resulted in an increased accumulation of yeast perilipin Pet10p in LD, while the disruption of PET10 was accompanied by Erg6p LD over-accumulation. An observed reciprocal enrichment of Erg6p and Pet10p in pet10Δ and erg6Δ mutants in LD, respectively, was related to specific functional changes in the LD and was not due to regulation on the expression level. The involvement of Pet10p in neutral lipid homeostasis was observed in experiments that focused on the dynamics of neutral lipid mobilization as time-dependent changes in the triacylglycerols (TAG) and steryl esters (SE) content. We found that the kinetics of SE hydrolysis was reduced in erg6Δ cells and the mobilization of SE was completely lost in mutants that lacked both Erg6p and Pet10p. In addition, we observed that decreased levels of SE in erg6Δpet10Δ was linked to an overexpression of steryl ester hydrolase Yeh1p. Lipid analysis of erg6Δpet10Δ showed that PET10 deletion altered the composition of ergosterol intermediates which had accumulated in erg6Δ. In conclusion, yeast perilipin Pet10p functionally interacts with Erg6p during the metabolism of ergosterol.
Collapse
Affiliation(s)
- Martina Garaiova
- Department of Biochemistry of Biomembranes, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 840 05, Slovakia.
| | - Yunfeng Ding
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Roman Holic
- Department of Biochemistry of Biomembranes, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 840 05, Slovakia
| | - Martin Valachovic
- Department of Biochemistry of Biomembranes, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 840 05, Slovakia
| | - Congyan Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ivan Hapala
- Department of Biochemistry of Biomembranes, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 840 05, Slovakia
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Zemlianski V, Marešová A, Princová J, Holič R, Häsler R, Ramos Del Río MJ, Lhoste L, Zarechyntsava M, Převorovský M. Nitrogen availability is important for preventing catastrophic mitosis in fission yeast. J Cell Sci 2024; 137:jcs262196. [PMID: 38780300 DOI: 10.1242/jcs.262196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Mitosis is a crucial stage in the cell cycle, controlled by a vast network of regulators responding to multiple internal and external factors. The fission yeast Schizosaccharomyces pombe demonstrates catastrophic mitotic phenotypes due to mutations or drug treatments. One of the factors provoking catastrophic mitosis is a disturbed lipid metabolism, resulting from, for example, mutations in the acetyl-CoA/biotin carboxylase (cut6), fatty acid synthase (fas2, also known as lsd1) or transcriptional regulator of lipid metabolism (cbf11) genes, as well as treatment with inhibitors of fatty acid synthesis. It has been previously shown that mitotic fidelity in lipid metabolism mutants can be partially rescued by ammonium chloride supplementation. In this study, we demonstrate that mitotic fidelity can be improved by multiple nitrogen sources. Moreover, this improvement is not limited to lipid metabolism disturbances but also applies to a number of unrelated mitotic mutants. Interestingly, the partial rescue is not achieved by restoring the lipid metabolism state, but rather indirectly. Our results highlight a novel role for nitrogen availability in mitotic fidelity.
Collapse
Affiliation(s)
- Viacheslav Zemlianski
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Anna Marešová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Jarmila Princová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Roman Holič
- Centre of Biosciences SAS, Institute of Animal Biochemistry and Genetics, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Robert Häsler
- Center for Inflammatory Skin Diseases, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 9, 24105 Kiel, Germany
| | - Manuel José Ramos Del Río
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Laurane Lhoste
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Maryia Zarechyntsava
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| |
Collapse
|
8
|
Xu M, Yang N, Pan J, Hua Q, Li CX, Xu JH. Remodeling the Homologous Recombination Mechanism of Yarrowia lipolytica for High-Level Biosynthesis of Squalene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9984-9993. [PMID: 38635942 DOI: 10.1021/acs.jafc.4c01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Squalene is a high-value antioxidant with many commercial applications. The use of microbial cell factories to produce squalene as an alternative to plant and animal extracts could meet increasing market demand. Yarrowia lipolytica is an excellent host for squalene production due to its high levels of acetyl-CoA and a hydrophobic environment. However, the need for precise and complicated gene editing has hindered the industrialization of this strain. Herein, the rapid construction of a strain with high squalene production was achieved by enhancing the homologous recombination efficiency in Y. lipolytica. First, remodeling of the homologous recombination efficiency resulted in a 10-fold increase in the homologous recombination rate. Next, the whole mevalonate pathway was integrated into the chromosome to enhance squalene production. Then, a higher level of squalene accumulation was achieved by increasing the level of acetyl coenzyme A and regulating the downstream steroid synthesis pathway. Finally, the squalene production reached 35 g/L after optimizing the fermentation conditions and performing a fed-batch culture in a 5 L jar fermenter. This is the highest squalene production ever reported to date by de novo biosynthesis without adding any inhibitors, paving a new path toward the industrial production of squalene and its downstream products.
Collapse
Affiliation(s)
- Man Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Nan Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
9
|
Xu C, Xia B, Zhang Z, Lin Y, Li C, Lin L. Research progress in steroidal saponins from the genus Polygonatum: Chemical components, biosynthetic pathways and pharmacological effects. PHYTOCHEMISTRY 2023; 213:113731. [PMID: 37245687 DOI: 10.1016/j.phytochem.2023.113731] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
The genus Polygonatum Mill. belongs to the Liliaceae family, which is widely distributed all over the world. Modern studies have found that Polygonatum plants are very rich in chemical compounds such as saponins, polysaccharides and flavonoids. Steroidal saponins are the most commonly studied saponins in the genus Polygonatum and a total of 156 compounds have been isolated from 10 species of the genus. These molecules possess antitumor, immunoregulatory, anti-inflammatory, antibacterial, antiviral, hypoglycemic, lipid-lowering and anti-osteoporotic activities. In this review, we summarize recent advances in studies of the chemical constituents of steroidal saponins from Polygonatum, including their structural characteristics, possible biosynthetic pathways and pharmacological effects. Then, the relationship between the structure and some physiological activities is considered. This review aims to provide reference for further exploitation and utilization of the genus Polygonatum.
Collapse
Affiliation(s)
- Chunfang Xu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Yan Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, PR China.
| |
Collapse
|
10
|
Štefánek M, Garaiová M, Valček A, Jordao L, Bujdáková H. Comparative Analysis of Two Candida parapsilosis Isolates Originating from the Same Patient Harbouring the Y132F and R398I Mutations in the ERG11 Gene. Cells 2023; 12:1579. [PMID: 37371049 DOI: 10.3390/cells12121579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
This work presents a comparative analysis of two clinical isolates of C. parapsilosis, isolated from haemoculture (HC) and central venous catheter (CVC). Both strains harboured Y132F and R398I mutations in the gene ERG11 associated with resistance to fluconazole (FLC). Differences between the HC and CVC isolates were addressed in terms of virulence, resistance to FLC, and lipid distribution. Expression of the ERG6 and ERG9 genes, lipid analysis, fatty acid composition, and lipase activity were assessed via qPCR, thin-layer chromatography/high-performance liquid chromatography, gas chromatography, and spectrophotometry, respectively. Regulation of the ERG6 and ERG9 genes did not prove any impact on FLC resistance. Analysis of lipid metabolism showed a higher accumulation of lanosterol in both the isolates regardless of FLC presence. Additionally, a decreased level of triacylglycerols (TAG) with an impact on the composition of total fatty acids (FA) was observed for both isolates. The direct impact of the ERG11 mutations on lipid/FA analysis has not been confirmed. The higher lipase activity observed for C. parapsilosis HC isolate could be correlated with the significantly decreased level of TAG. The very close relatedness between both the isolates suggests that one isolate was derived from another after the initial infection of the host.
Collapse
Affiliation(s)
- Matúš Štefánek
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Martina Garaiová
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravska Cesta 9, 840 05 Bratislava, Slovakia
| | - Adam Valček
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Luisa Jordao
- Research and Development Unit, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| |
Collapse
|
11
|
Urbanikova V, Park YK, Krajciova D, Tachekort M, Certik M, Grigoras I, Holic R, Nicaud JM, Gajdos P. Yarrowia lipolytica as a Platform for Punicic Acid Production. Int J Mol Sci 2023; 24:ijms24108823. [PMID: 37240172 DOI: 10.3390/ijms24108823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Punicic acid (PuA) is a polyunsaturated fatty acid with significant medical, biological, and nutraceutical properties. The primary source of punicic acid is the pomegranate seed oil obtained from fruits of trees that are mainly cultivated in subtropical and tropical climates. To establish sustainable production of PuA, various recombinant microorganisms and plants have been explored as platforms with limited efficiencies. In this study, the oleaginous yeast Yarrowia lipolytica was employed as a host for PuA production. First, growth and lipid accumulation of Y. lipolytica were evaluated in medium supplemented with pomegranate seed oil, resulting in the accumulation of lipids up to 31.2%, consisting of 22% PuA esterified in the fraction of glycerolipids. In addition, lipid-engineered Y. lipolytica strains, transformed with the bifunctional fatty acid conjugase/desaturase from Punica granatum (PgFADX), showed the ability to accumulate PuA de novo. PuA was detected in both polar and neutral lipid fractions, especially in phosphatidylcholine and triacylglycerols. Promoter optimization for PgFADX expression resulted in improved accumulation of PuA from 0.9 to 1.8 mg/g of dry cell weight. The best-producing strain expressing PgFADX under the control of a strong erythritol-inducible promoter produced 36.6 mg/L PuA. These results demonstrate that the yeast Y. lipolytica is a promising host for PuA production.
Collapse
Grants
- APVV-20-0166 INRAE, the French National Research Institute for Agriculture, Food and Environment, Micalis Institute, the Slovak Research and Development Agency
- VEGA 2/0012/20 Ministry of Education, Science, Research, and Sport of the Slovak Republic, and the Slovak Academy of Sciences
- NA Genopole, University of Evry-val-d'Essonne, University of Paris-Saclay, Investissements d'Avenir
- NA New England BioLabs (NEB)
- NA Integrated DNA Technologies Inc. (IDT)
- NA Twist Biosciences
- NA SnapGene
- NA Macherey Nagel
- NA Zymo Research
- NA Promega
Collapse
Affiliation(s)
- Veronika Urbanikova
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, 81237 Bratislava, Slovakia
| | - Young-Kyoung Park
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Daniela Krajciova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005 Bratislava, Slovakia
| | - Mehdi Tachekort
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
- Université Paris-Saclay, Univ Evry, CNRS, CEA, Génomique métabolique, 91057 Evry-Courcouronnes, France
| | - Milan Certik
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, 81237 Bratislava, Slovakia
| | - Ioana Grigoras
- Université Paris-Saclay, Univ Evry, CNRS, CEA, Génomique métabolique, 91057 Evry-Courcouronnes, France
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005 Bratislava, Slovakia
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Peter Gajdos
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, 81237 Bratislava, Slovakia
| |
Collapse
|
12
|
Garaiova M, Hua Q, Holic R. Heterologous Production of Calendic Acid Naturally Found in Calendula officinalis by Recombinant Fission Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3842-3851. [PMID: 36795330 DOI: 10.1021/acs.jafc.2c08967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Calendic acid (CA) is a conjugated fatty acid with anti-cancer properties that is widely present in seed oil of Calendula officinalis. Using the co-expression of C. officinalis fatty acid conjugases (CoFADX-1 or CoFADX-2) and Punica granatum fatty acid desaturase (PgFAD2), we metabolically engineered the synthesis of CA in the yeast Schizosaccharomyces pombe without the need for linoleic acid (LA) supplementation. The highest CA titer and achieved accumulation were 4.4 mg/L and 3.7 mg/g of DCW in PgFAD2 + CoFADX-2 recombinant strain cultivated at 16 °C for 72 h, respectively. Further analyses revealed the accumulation of CA in free fatty acids (FFA) and downregulation of the lcf1 gene encoding long-chain fatty acyl-CoA synthetase. The developed recombinant yeast system represents an important tool for the future identification of the essential components of the channeling machinery to produce CA as a high-value conjugated fatty acid at an industrial level.
Collapse
Affiliation(s)
- Martina Garaiova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84005, Slovakia
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84005, Slovakia
| |
Collapse
|
13
|
Wang J, Hu H, Wang C, Jiang Y, Jiang W, Xin F, Zhang W, Jiang M. Advanced Strategies for the Efficient Production of Squalene by Microbial Fermentation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jingnan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Haibo Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Chenxi Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, P.R. China
| |
Collapse
|
14
|
Mukherjee M, Blair RH, Wang ZQ. Machine-learning guided elucidation of contribution of individual steps in the mevalonate pathway and construction of a yeast platform strain for terpenoid production. Metab Eng 2022; 74:139-149. [DOI: 10.1016/j.ymben.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
15
|
Metabolic recycling of storage lipids promotes squalene biosynthesis in yeast. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:108. [PMID: 36224649 PMCID: PMC9555684 DOI: 10.1186/s13068-022-02208-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Metabolic rewiring in microbes is an economical and sustainable strategy for synthesizing valuable natural terpenes. Terpenes are the largest class of nature-derived specialized metabolites, and many have valuable pharmaceutical or biological activity. Squalene, a medicinal terpene, is used as a vaccine adjuvant to improve the efficacy of vaccines, including pandemic coronavirus disease 2019 (COVID-19) vaccines, and plays diverse biological roles as an antioxidant and anticancer agent. However, metabolic rewiring interferes with inherent metabolic pathways, often in a way that impairs the cellular growth and fitness of the microbial host. In particular, as the key starting molecule for producing various compounds including squalene, acetyl-CoA is involved in numerous biological processes with tight regulation to maintain metabolic homeostasis, which limits redirection of metabolic fluxes toward desired products. RESULTS In this study, focusing on the recycling of surplus metabolic energy stored in lipid droplets, we show that the metabolic recycling of the surplus energy to acetyl-CoA can increase squalene production in yeast, concomitant with minimizing the metabolic interferences in inherent pathways. Moreover, by integrating multiple copies of the rate-limiting enzyme and implementing N-degron-dependent protein degradation to downregulate the competing pathway, we systematically rewired the metabolic flux toward squalene, enabling remarkable squalene production (1024.88 mg/L in a shake flask). Ultimately, further optimization of the fed-batch fermentation process enabled remarkable squalene production of 6.53 g/L. CONCLUSIONS Our demonstration of squalene production via engineered yeast suggests that plant- or animal-based supplies of medicinal squalene can potentially be complemented or replaced by industrial fermentation. This approach will also provide a universal strategy for the more stable and sustainable production of high-value terpenes.
Collapse
|
16
|
Lehmayer L, Bernauer L, Emmerstorfer-Augustin A. ‘Applying the auxin-based degron system for the inducible, reversible and complete protein degradation in Komagataella phaffii’. iScience 2022; 25:104888. [PMID: 36043049 PMCID: PMC9420516 DOI: 10.1016/j.isci.2022.104888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/10/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
The auxin-inducible degron (AID) system is a useful technique to rapidly deplete any protein of interest “on-demand.” In this study, we successfully established the AID system for the “biotech” yeast Komagataella phaffii. First, we tested different expression levels of TIR1 for auxin-induced degradation of the glycerol kinase Gut1. Moderate expression of TIR1 resulted in complete degradation of the target protein within several minutes. Second, we show that the absence of all three Wsc type sensors is detrimental to cell growth, which indicates that these are the dominant cell wall sensors this yeast. Third, down-regulation of Erg1, an essential enzyme of the ergosterol biosynthetic pathway, resulted in quick and efficient accumulation of squalene, a pharmaceutically relevant reagent. We conclude that AID is an extremely powerful tool that, for the first time, enables the analysis of gene essentiality and function in K. phaffii. Conditional AID mutants are generated in Komagataella phaffii expressing OsTIR1 Target proteins fused to AID are depleted rapidly on the addition of auxin The deletion of all three Wsc-type severely reduces the growth of K. phaffii Cells degrading Erg1 quickly and efficiently accumulated squalene
Collapse
Affiliation(s)
- Leonie Lehmayer
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14/II, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Lukas Bernauer
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14/II, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Anita Emmerstorfer-Augustin
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14/II, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- acib - Austrian Centre of Industrial Biotechnology, 8010 Graz, Austria
- Corresponding author
| |
Collapse
|
17
|
Rauf M, Ur-Rahman A, Arif M, Gul H, Ud-Din A, Hamayun M, Lee IJ. Immunomodulatory Molecular Mechanisms of Luffa cylindrica for Downy Mildews Resistance Induced by Growth-Promoting Endophytic Fungi. J Fungi (Basel) 2022; 8:689. [PMID: 35887445 PMCID: PMC9324744 DOI: 10.3390/jof8070689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
Downy mildew (DM), caused by P. cubensis, is harmful to cucurbits including luffa, with increased shortcomings associated with its control through cultural practices, chemical fungicides, and resistant cultivars; there is a prompt need for an effective, eco-friendly, economical, and safe biocontrol approach. Current research is therefore dealt with the biocontrol of luffa DM1 through the endophytic fungi (EF) consortium. Results revealed that T. harzianum (ThM9) and T. virens (TvA1) showed pathogen-dependent inducible metabolic production of squalene and gliotoxins by higher gene expression induction of SQS1/ERG9 (squalene synthase) and GliP (non-ribosomal peptide synthetase). Gene expression of lytic enzymes of EF was also induced with subsequently higher enzyme activities upon confrontation with P. cubensis. EF-inoculated luffa seeds showed efficient germination with enhanced growth potential and vigor of seedlings. EF-inoculated plants showed an increased level of growth-promoting hormone GA with higher gene expression of GA2OX8. EF-pre-inoculated seedlings were resistant to DM and showed an increased GSH content and antioxidant enzyme activities (SOD, CAT, POD). The level of MDA, H2O2, REL, and disease severity was reduced by EF. ACC, JA, ABA, and SA were overproduced along with higher gene expression of LOX, ERF, NCED2, and PAL. Expression of defense-marker genes (PPO, CAT2, SOD, APX, PER5, LOX, NBS-LRR, PSY, CAS, Ubi, MLP43) was also modulated in EF-inoculated infected plants. Current research supported the use of EF inoculation to effectively escalate the systemic immunity against DM corresponding to the significant promotion of induced systemic resistance (ISR) and systemic acquired resistance (SAR) responses through initiating the defense mechanism by SA, ABA, ET, and JA biosynthesis and signaling pathways in luffa.
Collapse
Affiliation(s)
- Mamoona Rauf
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - Asim Ur-Rahman
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - Muhammad Arif
- Department of Biotechnology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan
| | - Humaira Gul
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - Aziz Ud-Din
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21120, Pakistan;
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
18
|
Enhanced squalene production by modulation of pathways consuming squalene and its precursor. J Biosci Bioeng 2022; 134:1-6. [DOI: 10.1016/j.jbiosc.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022]
|
19
|
Patel A, Bettiga M, Rova U, Christakopoulos P, Matsakas L. Microbial genetic engineering approach to replace shark livering for squalene. Trends Biotechnol 2022; 40:1261-1273. [PMID: 35450778 DOI: 10.1016/j.tibtech.2022.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/23/2022]
Abstract
Squalene is generally sourced from the liver oil of deep sea sharks (Squalus spp.), in which it accounts for 40-70% of liver mass. To meet the growing demand for squalene because of its beneficial effects for human health, three to six million deep sea sharks are slaughtered each year, profoundly endangering marine ecosystems. To overcome this unsustainable practice, microbial sources of squalene might offer a viable alternative to plant- or animal-based squalene, although only a few microorganisms have been found that are capable of synthesizing up to 30% squalene of dry biomass by native biosynthetic pathways. These squalene biosynthetic pathways, on the other hand, can be genetically manipulated to transform microorganisms into 'cellular factories' for squalene overproduction.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| | - Maurizio Bettiga
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Bioeconomy Division, EviKrets Biobased Processes Consultants, Landvetter, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| |
Collapse
|
20
|
Recent advances in the microbial production of squalene. World J Microbiol Biotechnol 2022; 38:91. [PMID: 35426523 PMCID: PMC9010451 DOI: 10.1007/s11274-022-03273-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/30/2022] [Indexed: 11/06/2022]
Abstract
Squalene is a triterpene hydrocarbon, a biochemical precursor for all steroids in plants and animals. It is a principal component of human surface lipids, in particular of sebum. Squalene has several applications in the food, pharmaceutical, and medical sectors. It is essentially used as a dietary supplement, vaccine adjuvant, moisturizer, cardio-protective agent, anti-tumor agent and natural antioxidant. With the increased demand for squalene along with regulations on shark-derived squalene, there is a need to find alternatives for squalene production which are low-cost as well as sustainable. Microbial platforms are being considered as a potential option to meet such challenges. Considerable progress has been made using both wild-type and engineered microbial strains for improved productivity and yields of squalene. Native strains for squalene production are usually limited by low growth rates and lesser titers. Metabolic engineering, which is a rational strain engineering tool, has enabled the development of microbial strains such as Saccharomyces cerevisiae and Yarrowia lipolytica, to overproduce the squalene in high titers. This review focuses on key strain engineering strategies involving both in-silico and in-vitro techniques. Emphasis is made on gene manipulations for improved precursor pool, enzyme modifications, cofactor regeneration, up-regulation of limiting reactions, and downregulation of competing reactions during squalene production. Process strategies and challenges related to both upstream and downstream during mass cultivation are detailed.
Collapse
|
21
|
Comparative Proteomic Analysis of Rhizoctonia solani Isolates Identifies the Differentially Expressed Proteins with Roles in Virulence. J Fungi (Basel) 2022; 8:jof8040370. [PMID: 35448601 PMCID: PMC9029756 DOI: 10.3390/jof8040370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022] Open
Abstract
Sheath blight of rice is a destructive disease that could be calamitous to rice cultivation. The significant objective of this study is to contemplate the proteomic analysis of the high virulent and less virulent isolate of Rhizoctonia solani using a quantitative LC-MS/MS-based proteomic approach to identify the differentially expressed proteins promoting higher virulence. Across several rice-growing regions in Odisha, Eastern India, 58 Rhizoctonia isolates were obtained. All the isolates varied in their pathogenicity. The isolate RS15 was found to be the most virulent and RS22 was identified as the least virulent. The PCR amplification confirmed that the RS15 and RS22 belonged to the Rhizoctonia subgroup of AG1-IA with a specific primer. The proteomic information generated has been deposited in the PRIDE database with PXD023430. The virulent isolate consisted of 48 differentially abundant proteins, out of which 27 proteins had higher abundance, while 21 proteins had lower abundance. The analyzed proteins acquired functionality in fungal development, sporulation, morphology, pathogenicity, detoxification, antifungal activity, essential metabolism and transcriptional activities, protein biosynthesis, glycolysis, phosphorylation and catalytic activities in fungi. A Quantitative Real-Time PCR (qRT-PCR) was used to validate changes in differentially expressed proteins at the mRNA level for selected genes. The abundances of proteins and transcripts were positively correlated. This study provides the role of the proteome in the pathogenicity of R. solani AG1-IA in rice and underpins the mechanism behind the pathogen’s virulence in causing sheath blight disease.
Collapse
|
22
|
Káňovičová P, Čermáková P, Kubalová D, Bábelová L, Veselá P, Valachovič M, Zahumenský J, Horváth A, Malínský J, Balážová M. Blocking phosphatidylglycerol degradation in yeast defective in cardiolipin remodeling results in a new model of the Barth syndrome cellular phenotype. J Biol Chem 2021; 298:101462. [PMID: 34864056 PMCID: PMC8728584 DOI: 10.1016/j.jbc.2021.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/01/2022] Open
Abstract
Barth syndrome (BTHS) is an inherited mitochondrial disorder characterized by a decrease in total cardiolipin and the accumulation of its precursor monolysocardiolipin due to the loss of the transacylase enzyme tafazzin. However, the molecular basis of BTHS pathology is still not well understood. Here we characterize the double mutant pgc1Δtaz1Δ of Saccharomyces cerevisiae deficient in phosphatidylglycerol-specific phospholipase C and tafazzin as a new yeast model of BTHS. Unlike the taz1Δ mutant used to date, this model accumulates phosphatidylglycerol, thus better approximating the human BTHS cells. We demonstrate that increased phosphatidylglycerol in this strain leads to more pronounced mitochondrial respiratory defects and an increased incidence of aberrant mitochondria compared to the single taz1Δ mutant. We also show that the mitochondria of the pgc1Δtaz1Δ mutant exhibit a reduced rate of respiration due to decreased cytochrome c oxidase and ATP synthase activities. Finally, we determined that the mood-stabilizing anticonvulsant valproic acid has a positive effect on both lipid composition and mitochondrial function in these yeast BTHS models. Overall, our results show that the pgc1Δtaz1Δ mutant better mimics the cellular phenotype of BTHS patients than taz1Δ cells, both in terms of lipid composition and the degree of disruption of mitochondrial structure and function. This favors the new model for use in future studies.
Collapse
Affiliation(s)
- Paulína Káňovičová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Čermáková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Dominika Kubalová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lenka Bábelová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Veselá
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Valachovič
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jakub Zahumenský
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Jan Malínský
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Mária Balážová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
23
|
Watchaputi K, Somboon P, Phromma-in N, Ratanakhanokchai K, Soontorngun N. Actin cytoskeletal inhibitor 19,20-epoxycytochalasin Q sensitizes yeast cells lacking ERG6 through actin-targeting and secondarily through disruption of lipid homeostasis. Sci Rep 2021; 11:7779. [PMID: 33833332 PMCID: PMC8032726 DOI: 10.1038/s41598-021-87342-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Repetitive uses of antifungals result in a worldwide crisis of drug resistance; therefore, natural fungicides with minimal side-effects are currently sought after. This study aimed to investigate antifungal property of 19, 20-epoxycytochalasin Q (ECQ), derived from medicinal mushroom Xylaria sp. BCC 1067 of tropical forests. In a model yeast Saccharomyces cerevisiae, ECQ is more toxic in the erg6∆ strain, which has previously been shown to allow higher uptake of many hydrophilic toxins. We selected one pathway to study the effects of ECQ at very high levels on transcription: the ergosterol biosynthesis pathway, which is unlikely to be the primary target of ECQ. Ergosterol serves many functions that cholesterol does in human cells. ECQ's transcriptional effects were correlated with altered sterol and triacylglycerol levels. In the ECQ-treated Δerg6 strain, which presumably takes up far more ECQ than the wild-type strain, there was cell rupture. Increased actin aggregation and lipid droplets assembly were also found in the erg6∆ mutant. Thereby, ECQ is suggested to sensitize yeast cells lacking ERG6 through actin-targeting and consequently but not primarily led to disruption of lipid homeostasis. Investigation of cytochalasins may provide valuable insight with potential biopharmaceutical applications in treatments of fungal infection, cancer or metabolic disorder.
Collapse
Affiliation(s)
- Kwanrutai Watchaputi
- grid.412151.20000 0000 8921 9789Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, 10150 Thailand
| | - Pichayada Somboon
- grid.419784.70000 0001 0816 7508Division of Fermentation Technology, Faculty of Food Industry, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok, 10520 Thailand
| | - Nipatthra Phromma-in
- grid.412151.20000 0000 8921 9789Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, 10150 Thailand
| | - Khanok Ratanakhanokchai
- grid.412151.20000 0000 8921 9789Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, 10150 Thailand
| | - Nitnipa Soontorngun
- grid.412151.20000 0000 8921 9789Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, 10150 Thailand
| |
Collapse
|
24
|
Paramasivan K, A A, Gupta N, Mutturi S. Adaptive evolution of engineered yeast for squalene production improvement and its genome-wide analysis. Yeast 2021; 38:424-437. [PMID: 33648022 DOI: 10.1002/yea.3559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/12/2022] Open
Abstract
In the present study, the adaptive evolution of a metabolically engineered Saccharomyces cerevisiae strain in the presence of an enzyme inhibitor terbinafine for enhanced squalene accumulation via serial transfer leads to the development of robust strains. After adaptation for nearly 1500 h, a strain with higher squalene production efficiency was identified at a specific growth rate of 0.28 h-1 with a final squalene titer of 193 mg/L, which is 16.5-fold higher than the BY4741 and 3-fold higher over the metabolically engineered SK22 strain. Whole-genome sequencing comparison between the reference strain and the evolved variant SK23 has led to the identification of 462 single-nucleotide variants (SNVs) between both strains, with 102 SNVs affecting metabolism-related genes. It was also established that F420I mutation of ERG1 in S. cerevisiae improves squalene synthesis. Further, the effect of increased squalene on lipid droplet and neutral lipid pattern in the evolved mutant strains was investigated by fluorescent techniques proving that the neutral lipid content and clustering of lipid droplets increase with an increase in squalene.
Collapse
Affiliation(s)
- Kalaivani Paramasivan
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, India.,AcSIR-Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Aneesha A
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, India.,AcSIR-Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Nabarupa Gupta
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Sarma Mutturi
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, India.,AcSIR-Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
25
|
Multifunctional cationic surfactants with a labile amide linker as efficient antifungal agents-mechanisms of action. Appl Microbiol Biotechnol 2021; 105:1237-1251. [PMID: 33427932 DOI: 10.1007/s00253-020-11027-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 11/11/2020] [Accepted: 11/22/2020] [Indexed: 01/01/2023]
Abstract
Our research aimed to expand the knowledge of relationships between the structure of multifunctional cationic dicephalic surfactants with a labile linker-N,N-bis[3,3-(dimethylamine)propyl]alkylamide dihydrochlorides and N,N-bis[3,3-(trimethylammonio)propyl]alkylamide dibromides (alkyl: n-C9H19, n-C11H23, n-C13H27, n-C15H31)-and their possible mechanism of action on fungal cells using the model organism Saccharomyces cerevisiae. General studies performed on surfactants suggest that in most cases, their main mechanism of action is based on perforation of the cell membranes and cell disruption. Experiments carried out in this work with cationic dicephalic surfactants seem to modify our understanding of this issue. It was found that the investigated compounds did not cause perforation of the cell membrane and could only interact with it, increasing its permeability. The surfactants tested can probably penetrate inside the cells, causing numerous morphological changes, and contribute to disorders in the lipid metabolism of the cell resulting in the formation of lipid droplet aggregates. This research also showed that the compounds cause severe oxidative stress within the cells studied, including increased production of superoxide anion radicals and mitochondrial oxidative stress. Dicephalic cationic surfactants due to their biodegradability do not accumulate in the environment and in the future may be used as effective antifungal compounds in industry as well as medicine, which will be environmentally friendly. KEY POINTS: • Dicephalic cationic surfactants do not induce disruption of the cell membrane. • Surfactants could infiltrate into the cells and cause accumulation of lipids. • Surfactants could cause acute oxidative stress in yeast cells. • Compounds present multimodal mechanism of action. Graphical abstract.
Collapse
|
26
|
Godinho CP, Costa R, Sá‐Correia I. The ABC transporter Pdr18 is required for yeast thermotolerance due to its role in ergosterol transport and plasma membrane properties. Environ Microbiol 2021; 23:69-80. [PMID: 32985771 PMCID: PMC7891575 DOI: 10.1111/1462-2920.15253] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Among the mechanisms by which yeast overcomes multiple stresses is the expression of genes encoding ATP-binding cassette (ABC) transporters required for resistance to a wide range of toxic compounds. These substrates may include weak acids, alcohols, agricultural pesticides, polyamines, metal cations, as in the case of Pdr18. This pleotropic drug resistance transporter was previously proposed to transport ergosterol at the plasma membrane (PM) level contributing to the maintenance of PM lipid organization and reduced diffusional permeation induced by lipophilic compounds. The present work reports a novel phenotype associated with the putative drug/xenobiotic-efflux-pump transporter Pdr18: the resistance to heat shock and to long-term growth at supra-optimal temperatures. Cultivation at 40°C was demonstrated to lead to higher PM permeabilization of a pdr18Δ cell population with the PDR18 gene deleted compared with the parental strain population, as indicated by flow cytometry analysis of propidium iodide stained cells. Cells of pdr18Δ grown at 40°C also exhibited increased transcription levels from genes of the ergosterol biosynthetic pathway, compared with parental cells. However, this adaptive response at 40°C was not enough to maintain PM physiological ergosterol levels in the population lacking the Pdr18 transporter and free ergosterol precursors accumulate in the deletion mutant cells.
Collapse
Affiliation(s)
- Cláudia P. Godinho
- iBB ‐ Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisbonPortugal
| | - Rute Costa
- iBB ‐ Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisbonPortugal
- Department of BioengineeringInstituto Superior Técnico, Universidade de LisboaLisbonPortugal
| | - Isabel Sá‐Correia
- iBB ‐ Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisbonPortugal
- Department of BioengineeringInstituto Superior Técnico, Universidade de LisboaLisbonPortugal
| |
Collapse
|
27
|
Overexpression of Key Sterol Pathway Enzymes in Two Model Marine Diatoms Alters Sterol Profiles in Phaeodactylum tricornutum. Pharmaceuticals (Basel) 2020; 13:ph13120481. [PMID: 33371196 PMCID: PMC7766473 DOI: 10.3390/ph13120481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
Sterols are a class of triterpenoid molecules with diverse functional roles in eukaryotic cells, including intracellular signaling and regulation of cell membrane fluidity. Diatoms are a dominant eukaryotic phytoplankton group that produce a wide diversity of sterol compounds. The enzymes 3-hydroxy-3-methyl glutaryl CoA reductase (HMGR) and squalene epoxidase (SQE) have been reported to be rate-limiting steps in sterol biosynthesis in other model eukaryotes; however, the extent to which these enzymes regulate triterpenoid production in diatoms is not known. To probe the role of these two metabolic nodes in the regulation of sterol metabolic flux in diatoms, we independently over-expressed two versions of the native HMGR and a conventional, heterologous SQE gene in the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. Overexpression of these key enzymes resulted in significant differential accumulation of downstream sterol pathway intermediates in P. tricornutum. HMGR-mVenus overexpression resulted in the accumulation of squalene, cycloartenol, and obtusifoliol, while cycloartenol and obtusifoliol accumulated in response to heterologous NoSQE-mVenus overexpression. In addition, accumulation of the end-point sterol 24-methylenecholesta-5,24(24’)-dien-3β-ol was observed in all P. tricornutum overexpression lines, and campesterol increased three-fold in P. tricornutum lines expressing NoSQE-mVenus. Minor differences in end-point sterol composition were also found in T. pseudonana, but no accumulation of sterol pathway intermediates was observed. Despite the successful manipulation of pathway intermediates and individual sterols in P. tricornutum, total sterol levels did not change significantly in transformed lines, suggesting the existence of tight pathway regulation to maintain total sterol content.
Collapse
|
28
|
Wang Z, Zhang R, Yang Q, Zhang J, Zhao Y, Zheng Y, Yang J. Recent advances in the biosynthesis of isoprenoids in engineered Saccharomyces cerevisiae. ADVANCES IN APPLIED MICROBIOLOGY 2020; 114:1-35. [PMID: 33934850 DOI: 10.1016/bs.aambs.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Isoprenoids, as the largest group of chemicals in the domains of life, constitute more than 50,000 members. These compounds consist of different numbers of isoprene units (C5H8), by which they are typically classified into hemiterpenoids (C5), monoterpenoids (C10), sesquiterpenoids (C15), diterpenoids (C20), triterpenoids (C30), and tetraterpenoids (C40). In recent years, isoprenoids have been employed as food additives, in the pharmaceutical industry, as advanced biofuels, and so on. To realize the sufficient and efficient production of valuable isoprenoids on an industrial scale, fermentation using engineered microorganisms is a promising strategy compared to traditional plant extraction and chemical synthesis. Due to the advantages of mature genetic manipulation, robustness and applicability to industrial bioprocesses, Saccharomyces cerevisiae has become an attractive microbial host for biochemical production, including that of various isoprenoids. In this review, we summarized the advances in the biosynthesis of isoprenoids in engineered S. cerevisiae over several decades, including synthetic pathway engineering, microbial host engineering, and central carbon pathway engineering. Furthermore, the challenges and corresponding strategies towards improving isoprenoid production in engineered S. cerevisiae were also summarized. Finally, suggestions and directions for isoprenoid production in engineered S. cerevisiae in the future are discussed.
Collapse
Affiliation(s)
- Zhaobao Wang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Rubing Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Qun Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jintian Zhang
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Youxi Zhao
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yanning Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianming Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
29
|
Chua NK, Coates HW, Brown AJ. Squalene monooxygenase: a journey to the heart of cholesterol synthesis. Prog Lipid Res 2020; 79:101033. [DOI: 10.1016/j.plipres.2020.101033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
|
30
|
Lindo L, Cardoza RE, Lorenzana A, Casquero PA, Gutiérrez S. Identification of plant genes putatively involved in the perception of fungal ergosterol-squalene. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:927-947. [PMID: 31436383 PMCID: PMC7383801 DOI: 10.1111/jipb.12862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/30/2019] [Indexed: 05/27/2023]
Abstract
Trichoderma biocontrol strains establish a complex network of interactions with plants, in which diverse fungal molecules are involved in the recognition of these fungi as nonpathogenic organisms. These molecules act as microbial-associated molecular patterns that trigger plant responses. Previous studies have reported the importance of ergosterol produced by Trichoderma spp. for the ability of these fungi to induce plant growth and defenses. In addition, squalene, a sterol biosynthetic intermediate, seems to play an important role in these interactions. Here, we analyzed the effect of different concentrations of ergosterol and squalene on tomato (Solanum lycopersicum) growth and on the transcription level of defense- and growth-related genes. We used an RNA-seq strategy to identify several tomato genes encoding predicted pattern recognition receptor proteins or WRKY transcription factors, both of which are putatively involved in the perception and response to ergosterol and squalene. Finally, an analysis of Arabidopsis thaliana mutants lacking the genes homologous to these tomato candidates led to the identification of a WRKY40 transcription factor that negatively regulates salicylic acid-related genes and positively regulates ethylene- and jasmonate-related genes in the presence of ergosterol and squalene.
Collapse
Affiliation(s)
- Laura Lindo
- Area of MicrobiologyUniversity of León, Campus of PonferradaPonferradaSpain
- University Group of Research in Engineering and Sustainable AgricultureUniversity of LeónLeónSpain
| | - Rosa E. Cardoza
- Area of MicrobiologyUniversity of León, Campus of PonferradaPonferradaSpain
- University Group of Research in Engineering and Sustainable AgricultureUniversity of LeónLeónSpain
| | - Alicia Lorenzana
- University Group of Research in Engineering and Sustainable AgricultureUniversity of LeónLeónSpain
| | - Pedro A. Casquero
- University Group of Research in Engineering and Sustainable AgricultureUniversity of LeónLeónSpain
| | - Santiago Gutiérrez
- Area of MicrobiologyUniversity of León, Campus of PonferradaPonferradaSpain
- University Group of Research in Engineering and Sustainable AgricultureUniversity of LeónLeónSpain
| |
Collapse
|
31
|
Fang Y, Luo M, Song X, Shen Y, Xiao H. Improving the production of squalene-type triterpenoid 2,3;22,23-squalene dioxide by optimizing the expression of CYP505D13 in Saccharomyces cerevisiae. J Biosci Bioeng 2020; 130:265-271. [PMID: 32423728 DOI: 10.1016/j.jbiosc.2020.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/30/2020] [Accepted: 04/16/2020] [Indexed: 02/05/2023]
Abstract
The efficient bioproduction of squalene-type triterpenoids (STs) has attracted considerable attention due to their significant biological activities. In a previous study, we constructed a recombinant Saccharomyces cerevisiae capable of producing three STs; 4,8-dihydroxy-22,23-oxidosqualene (ST-1), 8-hydroxy-2,3;22,23-squalene dioxide (ST-2), and 2,3;22,23-squalene dioxide (ST-3). Here, we first evaluated the effects of these STs on the growth of human non-small cell lung cancer (NSCLC) cells, and found that ST-3 exhibited the greatest potency compared to the other two STs. To further enhance the bioproduction of ST-3, we adopted a tunable system to balance the expression of the Ganoderma lucidum cytochrome P450 gene CYP505D13 in S. cerevisiae, which significantly improved the ST-3 production titer. The most effective strain produced 78.61 mg/L of ST-3 after 62 h fermentation, which was 6.43 times higher than that of our previous study. The present study demonstrated that ST-3 effectively inhibits the proliferation of NSCLC cells, and provides insight into its efficient bioproduction.
Collapse
Affiliation(s)
- Yubo Fang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai 200240, China
| | - Mingyu Luo
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai 200240, China
| | - Ying Shen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Han Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai 200240, China.
| |
Collapse
|
32
|
Nham Tran TL, Miranda AF, Gupta A, Puri M, Ball AS, Adhikari B, Mouradov A. The Nutritional and Pharmacological Potential of New Australian Thraustochytrids Isolated from Mangrove Sediments. Mar Drugs 2020; 18:E151. [PMID: 32155832 PMCID: PMC7142457 DOI: 10.3390/md18030151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 01/07/2023] Open
Abstract
Mangrove sediments represent unique microbial ecosystems that act as a buffer zone, biogeochemically recycling marine waste into nutrient-rich depositions for marine and terrestrial species. Marine unicellular protists, thraustochytrids, colonizing mangrove sediments have received attention due to their ability to produce large amounts of long-chain ω3-polyunsaturated fatty acids. This paper represents a comprehensive study of two new thraustochytrids for their production of valuable biomolecules in biomass, de-oiled cakes, supernatants, extracellular polysaccharide matrixes, and recovered oil bodies. Extracted lipids (up to 40% of DW) rich in polyunsaturated fatty acids (up to 80% of total fatty acids) were mainly represented by docosahexaenoic acid (75% of polyunsaturated fatty acids). Cells also showed accumulation of squalene (up to 13 mg/g DW) and carotenoids (up to 72 µg/g DW represented by astaxanthin, canthaxanthin, echinenone, and β-carotene). Both strains showed a high concentration of protein in biomass (29% DW) and supernatants (2.7 g/L) as part of extracellular polysaccharide matrixes. Alkalinization of collected biomass represents a new and easy way to recover lipid-rich oil bodies in the form of an aqueous emulsion. The ability to produce added-value molecules makes thraustochytrids an important alternative to microalgae and plants dominating in the food, pharmacological, nutraceutical, and cosmetics industries.
Collapse
Affiliation(s)
- Thi Linh Nham Tran
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Ana F. Miranda
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Adarsha Gupta
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, 5042 Adelaide, Australia; (A.G.); (M.P.)
| | - Munish Puri
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, 5042 Adelaide, Australia; (A.G.); (M.P.)
| | - Andrew S. Ball
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Benu Adhikari
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Aidyn Mouradov
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| |
Collapse
|
33
|
Csáky Z, Garaiová M, Kodedová M, Valachovič M, Sychrová H, Hapala I. Squalene lipotoxicity in a lipid droplet‐less yeast mutant is linked to plasma membrane dysfunction. Yeast 2020; 37:45-62. [DOI: 10.1002/yea.3454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zsófia Csáky
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Martina Garaiová
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Marie Kodedová
- Department of Membrane Transport, Division BIOCEV Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Martin Valachovič
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Hana Sychrová
- Department of Membrane Transport, Division BIOCEV Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Ivan Hapala
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| |
Collapse
|
34
|
Tan X, Long W, Zeng L, Ding X, Cheng Y, Zhang X, Zou X. Melatonin-Induced Transcriptome Variation of Rapeseed Seedlings under Salt Stress. Int J Mol Sci 2019; 20:ijms20215355. [PMID: 31661818 PMCID: PMC6862158 DOI: 10.3390/ijms20215355] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
Salt stress inhibits the production of all crop species, including rapeseed (Brassica napus L.), the second most widely planted oil crop species. Although melatonin was confirmed to alleviate salt stress in rapeseed seedlings recently, the mechanism governing the expression levels remains unknown. Therefore, the melatonin-induced transcriptome variation of salt-stressed seedlings was explored. In this study, the transcriptomes of leaves and roots under control (CK), salt (125 mM NaCl, ST) and melatonin (125 mM NaCl plus 50 µM melatonin, MS) treatments were evaluated by using next-generation sequencing techniques. After conducting comparisons of gene expression in the roots and leaves between MS and ST, the differentially expressed gene (DEG) pools were screened. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses highlighted the significant pathways, which were mainly related to plant hormone synthesis and signal transduction, lignin and fatty acid metabolism. The functional genes in the objective KEGG pathways were identified. Furthermore, members of several transcription factor (TF) families participated in the response process. Combined with the hormone (campesterol (CS), jasmonic acid (JA), and gibberellic acid 3 (GA3)) contents measured in the seedlings, it could be concluded that melatonin induced changes in the intrinsic hormone metabolic network, which promoted seedling growth. Thus, this study identified new candidate genes and pathways active during the interactions between melatonin and salt stress, which provide clues for disclosing melatonin’s function in resistance to salt injury. Our results contribute to developing a practical method for sustainable agriculture on saline lands.
Collapse
Affiliation(s)
- Xiaoyu Tan
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- College of Plant Science and Technology of Huazhong Agricultural University, Wuhan 430070, China.
| | - Weihua Long
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture and Rural Affairs, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China.
| | - Liu Zeng
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Xiaoyu Ding
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Yong Cheng
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Xuekun Zhang
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Xiling Zou
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
35
|
Moser S, Leitner E, Plocek TJ, Vanhessche K, Pichler H. Engineering of Saccharomyces cerevisiae for the production of (+)-ambrein. Yeast 2019; 37:163-172. [PMID: 31606910 DOI: 10.1002/yea.3444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
The triterpenoid (+)-ambrein is the major component of ambergris, a coprolite of the sperm whale that can only be rarely found on shores. Upon oxidative degradation of (+)-ambrein, several fragrance molecules are formed, amongst them (-)-ambrox, one of the highest valued compounds in the perfume industry. In order to generate a Saccharomyces cerevisiae whole-cell biocatalyst for the production of (+)-ambrein, intracellular supply of the squalene was enhanced by overexpression of two central enzymes in the mevalonate and sterol biosynthesis pathway, namely the N-terminally truncated 3-hydroxy-3-methylglutaryl-CoA reductase 1 (tHMG) and the squalene synthase (ERG9). In addition, another key enzyme in sterol biosynthesis, squalene epoxidase (ERG1) was inhibited by an experimentally defined amount of the inhibitor terbinafine in order to reduce flux of squalene towards ergosterol biosynthesis while retaining sufficient activity to maintain cell viability and growth. Heterologous expression of a promiscuous variant of Bacillus megaterium tetraprenyl-β-curcumene cyclase (BmeTC-D373C), which has been shown to be able to catalyse the conversion of squalene to 3-deoxyachillol and then further to (+)-ambrein resulted in production of these triterpenoids in S. cerevisiae for the first time. Triterpenoid yields are comparable with the best microbial production chassis described in literature so far, the methylotrophic yeast Pichia pastoris. Consequently, we discuss similarities and differences of these two yeast species when applied for whole-cell (+)-ambrein production.
Collapse
Affiliation(s)
- Sandra Moser
- Austrian Centre of Industrial Biotechnology, Graz, Austria.,NAWI Graz, BioTechMed Graz, Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Erich Leitner
- NAWI Graz, Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria
| | | | | | - Harald Pichler
- Austrian Centre of Industrial Biotechnology, Graz, Austria.,NAWI Graz, BioTechMed Graz, Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
36
|
Kodedová M, Valachovič M, Csáky Z, Sychrová H. Variations in yeast plasma‐membrane lipid composition affect killing activity of three families of insect antifungal peptides. Cell Microbiol 2019; 21:e13093. [DOI: 10.1111/cmi.13093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Marie Kodedová
- Department of Membrane Transport, Division BIOCEVInstitute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Martin Valachovič
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and GeneticsCentre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Zsófia Csáky
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and GeneticsCentre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Hana Sychrová
- Department of Membrane Transport, Division BIOCEVInstitute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
37
|
Gohil N, Bhattacharjee G, Khambhati K, Braddick D, Singh V. Corrigendum: Engineering Strategies in Microorganisms for the Enhanced Production of Squalene: Advances, Challenges and Opportunities. Front Bioeng Biotechnol 2019; 7:114. [PMID: 31192199 PMCID: PMC6547300 DOI: 10.3389/fbioe.2019.00114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/07/2019] [Indexed: 01/05/2023] Open
Abstract
[This corrects the article DOI: 10.3389/fbioe.2019.00050.].
Collapse
Affiliation(s)
- Nisarg Gohil
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Gargi Bhattacharjee
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Khushal Khambhati
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Darren Braddick
- Department of R&D, Cementic S. A. S., Genopole, Paris, France
| | - Vijai Singh
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| |
Collapse
|
38
|
Chua NK, Hart-Smith G, Brown AJ. Non-canonical ubiquitination of the cholesterol-regulated degron of squalene monooxygenase. J Biol Chem 2019; 294:8134-8147. [PMID: 30940729 DOI: 10.1074/jbc.ra119.007798] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/11/2019] [Indexed: 12/21/2022] Open
Abstract
Squalene monooxygenase (SM) is a rate-limiting enzyme in cholesterol synthesis. The region comprising the first 100 amino acids, termed SM N100, represents the shortest cholesterol-responsive degron and enables SM to sense excess cholesterol in the endoplasmic reticulum (ER) membrane. Cholesterol accelerates the ubiquitination of SM by membrane-associated ring-CH type finger 6 (MARCH6), a key E3 ubiquitin ligase involved in ER-associated degradation. However, the ubiquitination site required for cholesterol regulation of SM N100 is unknown. Here, we used SM N100 fused to GFP as a model degron to recapitulate cholesterol-mediated SM degradation and show that neither SM lysine residues nor the N terminus impart instability. Instead, we discovered four serines (Ser-59, Ser-61, Ser-83, and Ser-87) that are critical for cholesterol-accelerated degradation, with MS analysis confirming Ser-83 as a ubiquitination site. Notably, these two clusters of closely spaced serine residues are located in disordered domains flanking a 12-amino acid-long amphipathic helix (residues Gln-62-Leu-73) that together confer cholesterol responsiveness. In summary, our findings reveal the degron architecture of SM N100, introducing the role of non-canonical ubiquitination sites and deepening our molecular understanding of how SM is degraded in response to cholesterol.
Collapse
Affiliation(s)
- Ngee Kiat Chua
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, New South Wales 2052, Australia
| | - Gene Hart-Smith
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, New South Wales 2052, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, New South Wales 2052, Australia.
| |
Collapse
|
39
|
Gohil N, Bhattacharjee G, Khambhati K, Braddick D, Singh V. Engineering Strategies in Microorganisms for the Enhanced Production of Squalene: Advances, Challenges and Opportunities. Front Bioeng Biotechnol 2019; 7:50. [PMID: 30968019 PMCID: PMC6439483 DOI: 10.3389/fbioe.2019.00050] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
The triterpene squalene is a natural compound that has demonstrated an extraordinary diversity of uses in pharmaceutical, nutraceutical, and personal care industries. Emboldened by this range of uses, novel applications that can gain profit from the benefits of squalene as an additive or supplement are expanding, resulting in its increasing demand. Ever since its discovery, the primary source has been the deep-sea shark liver, although recent declines in their populations and justified animal conservation and protection regulations have encouraged researchers to identify a novel route for squalene biosynthesis. This renewed scientific interest has profited from immense developments in synthetic biology, which now allows fine-tuning of a wider range of plants, fungi, and microorganisms for improved squalene production. There are numerous naturally squalene producing species and strains; although they generally do not make commercially viable yields as primary shark liver sources can deliver. The recent advances made toward improving squalene output from natural and engineered species have inspired this review. Accordingly, it will cover in-depth knowledge offered by the studies of the natural sources, and various engineering-based strategies that have been used to drive the improvements in the pathways toward large-scale production. The wide uses of squalene are also discussed, including the notable developments in anti-cancer applications and in augmenting influenza vaccines for greater efficacy.
Collapse
Affiliation(s)
- Nisarg Gohil
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Gargi Bhattacharjee
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Khushal Khambhati
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Darren Braddick
- Department of R&D, Cementic S. A. S., Genopole, Paris, France
| | - Vijai Singh
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| |
Collapse
|
40
|
Moser S, Strohmeier GA, Leitner E, Plocek TJ, Vanhessche K, Pichler H. Whole-cell (+)-ambrein production in the yeast Pichia pastoris. Metab Eng Commun 2018; 7:e00077. [PMID: 30197866 PMCID: PMC6127371 DOI: 10.1016/j.mec.2018.e00077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 11/30/2022] Open
Abstract
The triterpenoid (+)-ambrein is a natural precursor for (-)-ambrox, which constitutes one of the most sought-after fragrances and fixatives for the perfume industry. (+)-Ambrein is a major component of ambergris, an intestinal excretion of sperm whales that is found only serendipitously. Thus, the demand for (-)-ambrox is currently mainly met by chemical synthesis. A recent study described for the first time the applicability of an enzyme cascade consisting of two terpene cyclases, namely squalene-hopene cyclase from Alicyclobacillus acidocaldarius (AaSHC D377C) and tetraprenyl-β-curcumene cyclase from Bacillus megaterium (BmeTC) for in vitro (+)-ambrein production starting from squalene. Yeasts, such as Pichia pastoris, are natural producers of squalene and have already been shown in the past to be excellent hosts for the biosynthesis of hydrophobic compounds such as terpenoids. By targeting a central enzyme in the sterol biosynthesis pathway, squalene epoxidase Erg1, intracellular squalene levels in P. pastoris could be strongly enhanced. Heterologous expression of AaSHC D377C and BmeTC and, particularly, development of suitable methods to analyze all products of the engineered strain provided conclusive evidence of whole-cell (+)-ambrein production. Engineering of BmeTC led to a remarkable one-enzyme system that was by far superior to the cascade, thereby increasing (+)-ambrein levels approximately 7-fold in shake flask cultivation. Finally, upscaling to 5 L bioreactor yielded more than 100 mg L-1 of (+)-ambrein, demonstrating that metabolically engineered yeast P. pastoris represents a valuable, whole-cell system for high-level production of (+)-ambrein.
Collapse
Key Words
- (+)-ambrein
- AOX1, alcohol oxidase
- AaSHC, Alicyclobacillus acidocaldarius squalene-hopene cyclase
- BSM, basal salt medium
- BmeTC, Bacillus megaterium terpene cyclase
- CDW, cell dry weight
- FLD1, formaldehyde dehydrogenase 1
- HRP, horse radish peroxidase
- Metabolic engineering
- PTM1, Pichia trace metals
- Pichia pastoris
- Squalene
- Terpene cyclase
- Triterpenoid
- YNB, yeast nitrogen base
- YPD, yeast extract peptone dextrose medium
Collapse
Affiliation(s)
- Sandra Moser
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Gernot A Strohmeier
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.,Institute of Organic Chemistry, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Erich Leitner
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Thomas J Plocek
- ACS International S.A., 184 Route de St-Julien, CH-1228 Plan-les-Ouates, Switzerland
| | - Koenraad Vanhessche
- ACS International S.A., 184 Route de St-Julien, CH-1228 Plan-les-Ouates, Switzerland
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.,Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed Graz, Petersgasse 14/2, 8010 Graz, Austria
| |
Collapse
|
41
|
Paramasivan K, Rajagopal K, Mutturi S. Studies on Squalene Biosynthesis and the Standardization of Its Extraction Methodology from Saccharomyces cerevisiae. Appl Biochem Biotechnol 2018; 187:691-707. [DOI: 10.1007/s12010-018-2845-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
|
42
|
High-level recombinant production of squalene using selected Saccharomyces cerevisiae strains. ACTA ACUST UNITED AC 2018; 45:239-251. [DOI: 10.1007/s10295-018-2018-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
Abstract
For recombinant production of squalene, which is a triterpenoid compound with increasing industrial applications, in microorganisms generally recognized as safe, we screened Saccharomyces cerevisiae strains to determine their suitability. A strong strain dependence was observed in squalene productivity among Saccharomyces cerevisiae strains upon overexpression of genes important for isoprenoid biosynthesis. In particular, a high level of squalene production (400 ± 45 mg/L) was obtained in shake flasks with the Y2805 strain overexpressing genes encoding a bacterial farnesyl diphosphate synthase (ispA) and a truncated form of hydroxyl-3-methylglutaryl-CoA reductase (tHMG1). Partial inhibition of squalene epoxidase by terbinafine further increased squalene production by up to 1.9-fold (756 ± 36 mg/L). Furthermore, squalene production of 2011 ± 75 or 1026 ± 37 mg/L was obtained from 5-L fed-batch fermentations in the presence or absence of terbinafine supplementation, respectively. These results suggest that the Y2805 strain has potential as a new alternative source of squalene production.
Collapse
|
43
|
Paluch E, Piecuch A, Obłąk E, Lamch Ł, Wilk KA. Antifungal activity of newly synthesized chemodegradable dicephalic-type cationic surfactants. Colloids Surf B Biointerfaces 2018; 164:34-41. [PMID: 29413614 DOI: 10.1016/j.colsurfb.2018.01.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/18/2017] [Accepted: 01/15/2018] [Indexed: 12/16/2022]
Abstract
The studies were aimed to contribute to the elucidation of the relationships between structure of the double-headed cationic surfactants - N,N-bis[3,3'-(dimethylamine)propyl]alkylamide dihydrochlorides and N,N-bis[3,3'-(trimethylammonio)propyl]alkylamide dibromides (alkyl: n-C9H19, n-C11H23, n-C13H27, n-C15H31), which are of particular interest, as they contain a labile amide group in the molecule and their antifungal activity. Therefore, the minimal inhibitory and fungicidal concentrations (MIC and MFC) of dicephalic surfactants against various fungi were tested using standardized methods. Most of the tested fungi were resistant to the Cn(TAPABr)2 compounds. The strongest growth inhibition was caused by Cn(DAPACl)2 series, which MICs ranged from 6.5 to 16 μM. The influence of dicephalic surfactants on Candida albicans biofilm and adhesion to the various surfaces was investigated with crystal violet staining or colony counting. The reduction of fungal adhesion was also observed, especially to the glass surface. One of the compounds (C14(DAPACl)2) caused DNA leakage from C. albicans cells. Further studies showed the impact of dicephalic surfactants on ROS production, accumulation of lipid droplets and filament formation. This study points to the possibility of application of dicephalic surfactants as the surface-coating agents to prevent biofilm formation or as disinfectants. The results give an insight into the possible mechanism of action of newly synthesized dicephalic surfactants in yeast cells.
Collapse
Affiliation(s)
- E Paluch
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| | - A Piecuch
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| | - E Obłąk
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland.
| | - Ł Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - K A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
44
|
Sterol synthesis and cell size distribution under oscillatory growth conditions inSaccharomyces cerevisiaescale-down cultivations. Yeast 2017; 35:213-223. [DOI: 10.1002/yea.3281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 11/07/2022] Open
|
45
|
Mao X, Liu Z, Sun J, Lee SY. Metabolic engineering for the microbial production of marine bioactive compounds. Biotechnol Adv 2017; 35:1004-1021. [DOI: 10.1016/j.biotechadv.2017.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 01/22/2023]
|
46
|
Garaiova M, Mietkiewska E, Weselake RJ, Holic R. Metabolic engineering of Schizosaccharomyces pombe to produce punicic acid, a conjugated fatty acid with nutraceutic properties. Appl Microbiol Biotechnol 2017; 101:7913-7922. [DOI: 10.1007/s00253-017-8498-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/09/2017] [Accepted: 08/23/2017] [Indexed: 02/01/2023]
|
47
|
Zhang J, Li X, Lu F, Wang S, An Y, Su X, Li X, Ma L, Han G. De novo Sequencing and Transcriptome Analysis Reveal Key Genes Regulating Steroid Metabolism in Leaves, Roots, Adventitious Roots and Calli of Periploca sepium Bunge. FRONTIERS IN PLANT SCIENCE 2017; 8:594. [PMID: 28484475 PMCID: PMC5399629 DOI: 10.3389/fpls.2017.00594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Periploca sepium Bunge is a traditional medicinal plant, whose root bark is important for Chinese herbal medicine. Its major bioactive compounds are C21 steroids and periplocin, a kind of cardiac glycoside, which are derived from the steroid synthesis pathway. However, research on P. sepium genome or transcriptomes and their related genes has been lacking for a long time. In this study we estimated this species nuclear genome size at 170 Mb (using flow cytometry). Then, RNA sequencing of four different tissue samples of P. sepium (leaves, roots, adventitious roots, and calli) was done using the sequencing platform Illumina/Solexa Hiseq 2,500. After de novo assembly and quantitative assessment, 90,375 all-transcripts and 71,629 all-unigenes were finally generated. Annotation efforts that used a number of public databases resulted in detailed annotation information for the transcripts. In addition, differentially expressed genes (DEGs) were identified by using digital gene profiling based on the reads per kilobase of transcript per million reads mapped (RPKM) values. Compared with the leaf samples (L), up-regulated genes and down-regulated genes were eventually obtained. To deepen our understanding of these DEGs, we performed two enrichment analyses: gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Here, the analysis focused upon the expression characteristics of those genes involved in the terpene metabolic pathway and the steroid biosynthesis pathway, to better elucidate the molecular mechanism of bioactive steroid synthesis in P. sepium. The bioinformatics analysis enabled us to find many genes that are involved in bioactive steroid biosynthesis. These genes encoded acetyl-CoA acetyltransferase (ACAT), HMG-CoA synthase (HMGS), HMG-CoA reductase (HMGR), mevalonate kinase (MK), phosphomevalonate kinase (PMK), mevalonate diphosphate decarboxylase (MDD), isopentenylpyrophosphate isomerase (IPPI), farnesyl pyrophosphate synthase (FPS), squalene synthase (SS), squalene epoxidase (SE), cycloartenol synthase (CAS), sterol C-24 methyltransferase (SMT1), sterol-4alpha-methyl oxidase 1 (SMO1), sterol 14alpha-demethylase (CYP51/14-SDM), delta(14)-sterol reductase (FK/14SR), C-8,7 sterol isomerase (HYD1), sterol-4alpha-methyl oxidase 2 (SMO2), delta(7)-sterol-C5(6)-desaturase (STE1/SC5DL), 7-dehydrocholesterol reductase (DWF5/DHCR7), delta (24)-sterol reductase (DWF1/DHCR24), sterol 22-desaturase (CYP710A), progesterone 5beta-reductase (5β-POR), 3-beta-hydroxysteroid dehydrogenase (3β-HSD). This research will be helpful to further understand the mechanism of bioactive steroid biosynthesis in P. sepium, namely C21 steroid and periplocin biosynthesis.
Collapse
Affiliation(s)
- Jian Zhang
- Key Lab of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of EducationTianjin, China
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese MedicineTianjin, China
- College of Bioengineering, Tianjin University of Science and TechnologyTianjin, China
| | - Xinglin Li
- Key Lab of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of EducationTianjin, China
- College of Bioengineering, Tianjin University of Science and TechnologyTianjin, China
| | - Fuping Lu
- Key Lab of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of EducationTianjin, China
- College of Bioengineering, Tianjin University of Science and TechnologyTianjin, China
| | - Shanying Wang
- Key Lab of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of EducationTianjin, China
- College of Bioengineering, Tianjin University of Science and TechnologyTianjin, China
| | - Yunhe An
- Beijing Center for Physical and Chemical AnalysisBeijing, China
| | - Xiaoxing Su
- Beijing Center for Physical and Chemical AnalysisBeijing, China
| | - Xiankuan Li
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese MedicineTianjin, China
| | - Lin Ma
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese MedicineTianjin, China
| | | |
Collapse
|
48
|
Abstract
Squalene is a precursor in the eukaryotic sterol biosynthesis. It is a valuable compound with several human health-related applications. Since the traditional natural resources of squalene are limited, alternatives for the production of squalene on industrial scale have been intensively explored during past years. The yeast Saccharomyces cerevisiae represents an attractive option due to elaborated techniques of genetic and metabolic engineering that can be applied to improve squalene yields. We discuss in this chapter some theoretical aspects of genetic manipulations of the ergosterol biosynthesis pathway aimed at increased squalene production and describe analytical methods for squalene purification and determination of its content in yeast cells.
Collapse
Affiliation(s)
- Martin Valachovič
- Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Moyzesova 61, 90028, Ivanka pri Dunaji, Slovakia
| | - Ivan Hapala
- Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Moyzesova 61, 90028, Ivanka pri Dunaji, Slovakia.
| |
Collapse
|
49
|
Production of squalene by microbes: an update. World J Microbiol Biotechnol 2016; 32:195. [DOI: 10.1007/s11274-016-2155-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/06/2016] [Indexed: 01/24/2023]
|
50
|
Zamith-Miranda D, Palma ML, Matos GS, Schiebel JG, Maya-Monteiro CM, Aronovich M, Bozza PT, Bozza FA, Nimrichter L, Montero-Lomeli M, Marques ET, Martins FS, Douradinha B. Lipid droplet levels vary heterogeneously in response to simulated gastrointestinal stresses in different probiotic Saccharomyces cerevisiae strains. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|