1
|
Madariaga-Troncoso D, Vargas I, Rojas-Villalta D, Abanto M, Núñez-Montero K. Metataxonomics Characterization of Soil Microbiome Extraction Method Using Different Dispersant Solutions. Microorganisms 2025; 13:936. [PMID: 40284772 PMCID: PMC12029719 DOI: 10.3390/microorganisms13040936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Soil health is essential for maintaining ecosystem balance, food security, and human well-being. Anthropogenic activities, such as climate change and excessive agrochemical use, have led to the degradation of soil ecosystems worldwide. Microbiome transplantation has emerged as a promising approach for restoring perturbed soils; however, direct soil transfer presents practical limitations for large-scale applications. An alternative strategy involves extracting microbial communities through soil washing processes, but its success highly depends on proper microbiota characterization and efficient extraction methods. This study evaluated a soil wash method using four different dispersant solutions (Tween-80, NaCl, sodium citrate, and sodium pyrophosphate) for their ability to extract the majority of microbial cells from Antarctic and Crop soils. The extracted microbiomes were analyzed using 16S rRNA gene metataxonomics to assess their diversity and abundance. We found that some treatments extracted a greater proportion of specific taxa, and, on the other hand, some extracted a lower proportion than the control treatment. In addition, these dispersant solutions showed the extraction of the relevant microbial community profile in soil samples, composed of multiple taxa, including beneficial bacteria for soil health. Our study aims to optimize DNA extraction methods for microbiome analyses and to explore the use of this technique in various biotechnological applications. The results provide insights into the effect of dispersant solutions on microbiome extractions. In this regard, sodium chloride could be optimal for Antarctic soils, while sodium citrate is suggested for the Crop soils.
Collapse
Affiliation(s)
- David Madariaga-Troncoso
- Facultad de Ciencias de La Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Temuco 4810101, Chile;
| | - Isaac Vargas
- Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica;
| | - Dorian Rojas-Villalta
- Cellular and Molecular Biology Research Center, Universidad de Costa Rica, San José 11501, Costa Rica;
| | - Michel Abanto
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar, Temuco 4811230, Chile
| | - Kattia Núñez-Montero
- Facultad de Ciencias de La Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Temuco 4810101, Chile;
| |
Collapse
|
2
|
Ye YQ, Ye MQ, Zhang XY, Huang YZ, Zhou ZY, Feng YJ, Du ZJ. Description of the first marine-isolated member of the under-represented phylum Gemmatimonadota, and the environmental distribution and ecogenomics of Gaopeijiales ord. nov. mSystems 2024; 9:e0053524. [PMID: 39560406 DOI: 10.1128/msystems.00535-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
The phylum Gemmatimonadota is widespread but rarely cultured and, in fact, there are only six described species isolated from soil, freshwater, and wastewater treatment. However, no isolates of Gemmatimonadota from marine environment have been described; thus, little is known about the physiology and metabolism of members of the marine lineages. In this study, four novel facultatively anaerobic bacterial strains belonging to Gemmatimonadota were isolated from marine sediments collected from Xiaoshi Island in Weihai, China, using an aerobic enrichment method. The integrated results of phylogenetic and phenotypic characteristics supported that these four strains represent one novel species in a novel genus, for which the name Gaopeijia maritima gen. nov., sp. nov. is proposed, as the first representative of novel taxa, Gaopeijiales ord. nov., Gaopeijiaceae fam. nov. in the class Longimicrobiia. Gaopeijiales was detected in 22,884 out of 95,549 amplicon data sets, mainly from soil. However, the highest mean relative abundances were in sponge (0.7%) and marine sediment (0.35%), showing salt-related character. Most of the Gaopeijiales subgroups potentially belong to the rare bacterial biosphere. The aerobic enrichment in this study could significantly increase the relative abundance of Gaopeijiales (from 0.37% to 2.6%). Furthermore, the metabolic capabilities inferred from high-quality representative Gaopeijiales genomes/MAGs suggest that this group primarily performs chemoorganoheterotrophic metabolism with facultatively anaerobic characteristics and possesses various secondary metabolite biosynthesis gene clusters (BGCs), mirroring those observed in the four novel strains.IMPORTANCEDespite rapid advances in molecular and sequencing technologies, obtaining pure cultures remains a crucial research goal in microbiology, as it is essential for a deeper understanding of microbial metabolism. Gemmatimonadota is a widespread but rarely cultured bacterial phylum. Currently, there are only six cultured strains of this interesting group, all isolated from non-marine environments. Little is known about the physiology and metabolism of members of the marine lineages. Here we isolated and characterized four novel marine strains, and proposed a new order Gaopeijiales within Gemmatimonadota. Furthermore, the global distribution, environmental preference, and metabolic potential of Gaopeijiales are analyzed using public data. Our work enriches the resources available for the under-represented phylum Gemmatimonadota and provides insights into the physiological and metabolic characteristics of the marine lineage (Gaopeijiales) through culturology and omics.
Collapse
Affiliation(s)
- Yu-Qi Ye
- Marine College, Shandong University, Weihai, Shandong, China
| | - Meng-Qi Ye
- Marine College, Shandong University, Weihai, Shandong, China
- Shandong University-Weihai Research Institute of Industrial Technology, Weihai, Shandong, China
| | - Xin-Yue Zhang
- SDU-ANU Joint Science College, Shandong University, Weihai, Shandong, China
| | - You-Zhi Huang
- Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zi-Yang Zhou
- Marine College, Shandong University, Weihai, Shandong, China
| | - Yan-Jun Feng
- SDU-ANU Joint Science College, Shandong University, Weihai, Shandong, China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, Shandong, China
- Shandong University-Weihai Research Institute of Industrial Technology, Weihai, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Varliero G, Lebre PH, Adams B, Chown SL, Convey P, Dennis PG, Fan D, Ferrari B, Frey B, Hogg ID, Hopkins DW, Kong W, Makhalanyane T, Matcher G, Newsham KK, Stevens MI, Weigh KV, Cowan DA. Biogeographic survey of soil bacterial communities across Antarctica. MICROBIOME 2024; 12:9. [PMID: 38212738 PMCID: PMC10785390 DOI: 10.1186/s40168-023-01719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/11/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Antarctica and its unique biodiversity are increasingly at risk from the effects of global climate change and other human influences. A significant recent element underpinning strategies for Antarctic conservation has been the development of a system of Antarctic Conservation Biogeographic Regions (ACBRs). The datasets supporting this classification are, however, dominated by eukaryotic taxa, with contributions from the bacterial domain restricted to Actinomycetota and Cyanobacteriota. Nevertheless, the ice-free areas of the Antarctic continent and the sub-Antarctic islands are dominated in terms of diversity by bacteria. Our study aims to generate a comprehensive phylogenetic dataset of Antarctic bacteria with wide geographical coverage on the continent and sub-Antarctic islands, to investigate whether bacterial diversity and distribution is reflected in the current ACBRs. RESULTS Soil bacterial diversity and community composition did not fully conform with the ACBR classification. Although 19% of the variability was explained by this classification, the largest differences in bacterial community composition were between the broader continental and maritime Antarctic regions, where a degree of structural overlapping within continental and maritime bacterial communities was apparent, not fully reflecting the division into separate ACBRs. Strong divergence in soil bacterial community composition was also apparent between the Antarctic/sub-Antarctic islands and the Antarctic mainland. Bacterial communities were partially shaped by bioclimatic conditions, with 28% of dominant genera showing habitat preferences connected to at least one of the bioclimatic variables included in our analyses. These genera were also reported as indicator taxa for the ACBRs. CONCLUSIONS Overall, our data indicate that the current ACBR subdivision of the Antarctic continent does not fully reflect bacterial distribution and diversity in Antarctica. We observed considerable overlap in the structure of soil bacterial communities within the maritime Antarctic region and within the continental Antarctic region. Our results also suggest that bacterial communities might be impacted by regional climatic and other environmental changes. The dataset developed in this study provides a comprehensive baseline that will provide a valuable tool for biodiversity conservation efforts on the continent. Further studies are clearly required, and we emphasize the need for more extensive campaigns to systematically sample and characterize Antarctic and sub-Antarctic soil microbial communities. Video Abstract.
Collapse
Affiliation(s)
- Gilda Varliero
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002, South Africa
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Pedro H Lebre
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002, South Africa
| | - Byron Adams
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
- Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT, 84602, USA
| | - Steven L Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Clayton, VA, 3800, Australia
| | - Peter Convey
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
- Biodiversity of Antarctic and Sub-Antarctic Ecosystems (BASE), Santiago, Chile
| | - Paul G Dennis
- School of the Environment, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dandan Fan
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Belinda Ferrari
- School of Biotechnology and Biomolecular Sciences, University of NSW, Sydney, NSW, 2052, Australia
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Ian D Hogg
- School of Science, University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, NU, Canada
| | - David W Hopkins
- SRUC - Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, Scotland, UK
| | - Weidong Kong
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Thulani Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Gwynneth Matcher
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Kevin K Newsham
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Mark I Stevens
- Securing Antarctica's Environmental Future, Earth and Biological Sciences, South Australian Museum, Adelaide, SA, 5000, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Katherine V Weigh
- School of the Environment, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Don A Cowan
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
4
|
Wood C, Bruinink A, Trembath-Reichert E, Wilhelm MB, Vidal C, Balaban E, McKay CP, Swan R, Swan B, Goordial J. Active microbiota persist in dry permafrost and active layer from Elephant Head, Antarctica. ISME COMMUNICATIONS 2024; 4:ycad002. [PMID: 38304082 PMCID: PMC10833075 DOI: 10.1093/ismeco/ycad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 02/03/2024]
Abstract
Dry permafrost is a challenging environment for microbial life due to cold, dry, and often oligotrophic conditions. In 2016, Elephant Head, Antarctica, was confirmed as the second site on Earth to contain dry permafrost. It is geographically distinct from the McMurdo Dry Valleys where dry permafrost has been studied previously. Here, we present the first study of the microbial activity, diversity, and functional potential of Elephant Head dry permafrost. Microbial activity was measured using radiorespiration assays with radiolabeled acetate as a carbon source at 5, 0, and -5°C. Low, but detectable, rates of microbial activity were measured in some samples at 0 and -5°C. This is distinct from previous studies of McMurdo Dry Valley dry permafrost which concluded that dry permafrost represents a cold-arid limit to life on the planet. The isolation of cold-adapted organisms from these soils, including one capable of subzero growth, further supports that the Elephant Head dry active layer and dry permafrost harbor viable microbial life, which may be active in situ. Metagenomic, 16S rRNA gene, and internal transcribed spacer and amplicon sequencing identified similar microbial communities to other Antarctic and cold environments. The Elephant Head microbial community appears to be adapted for survival in cold, dry, and oligotrophic conditions based on the presence of cold adaptation and stress response genes in the metagenomes. Together, our results show that dry permafrost environments do not exclude active microbial life at subzero temperatures, suggesting that the cold, dry soils of Mars may also not be as inhospitable as previously thought.
Collapse
Affiliation(s)
- Claudia Wood
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Alyssa Bruinink
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Elizabeth Trembath-Reichert
- School of Earth and Space Exploration, Arizona State University, 781 Terrace Mall, Tempe, AZ 85287, United States
| | - Mary Beth Wilhelm
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, United States
| | - Chanel Vidal
- School of Earth and Space Exploration, Arizona State University, 781 Terrace Mall, Tempe, AZ 85287, United States
| | - Edward Balaban
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, United States
| | - Christopher P McKay
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, United States
| | - Robert Swan
- 2041 Foundation, 130 Wescott Ct, Auburn, CA 95603, United States
| | - Barney Swan
- 2041 Foundation, 130 Wescott Ct, Auburn, CA 95603, United States
| | - Jackie Goordial
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
5
|
Liu S, Cai H, Zhao X, Wu Z, Chen Q, Xu X, Zhong S, Sun W, Ni J. Comammox biogeography subject to anthropogenic interferences along a high-altitude river. WATER RESEARCH 2022; 226:119225. [PMID: 36272199 DOI: 10.1016/j.watres.2022.119225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The recent discovery of comammox Nitrospira performing complete ammonia oxidation to nitrate has overturned the long-held dogma of two-step nitrification on Earth, yet little is known about the effect of urbanization interference on their distribution. Using gene-centric metagenomics, we provided the first blueprints about comammox community, biogeography, and environmental drivers along a high-elevation (> 2000 m) river flowing through the largest city on the vulnerable Qinghai-Tibetan Plateau. Our study confirmed a wide presence and diversity of yet-uncultured comammox clade B across wet and dry seasons, with average 3.0 and 2.0 times as abundant as clade-A amoA genes in water and sediments, respectively. Species identified from freshwater and drinking water treatment plants dominated the comammox guilds (58∼100%), suggesting this plateau river shared a similar comammox assemblage with the above habitat types. Compared with the urban area harboring more abundant canonical Nitrospira identified in wastewater (average 24%), the upstream suburban reach had a smaller human population but larger proportions of comammox in ammonia-oxidizing prokaryotes (24∼72% of abundances) and Nitrospira sublineages I/II. Higher contents of nitrate and nitrite in water, and antibiotics in water and sediments, may restrain comammox niches in nitrifiers over the urban area. Further random forest analysis revealed that lincosamides and quinolones were the most important antibiotic predictors for the niche differentiations between comammox and canonical nitrifiers in water, while macrolides for those in sediments. Finally, by incubation experiments, we demonstrated higher activity contributions of benthic comammox in the suburban area (36.2∼92.8% of potential ammonia-oxidation rates) than in the urban reach, and that the contribution variation had significant negative relations with macrolides and their major components. Overall, this study highlighted that anthropogenic activities hampered the advantage of riverine complete nitrifiers over the canonical two-step ones.
Collapse
Affiliation(s)
- Shufeng Liu
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China.
| | - Hetong Cai
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Xiaohui Zhao
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China; College of Water Resources and Hydropower Engineering, Xi'an University of Technology, Xi'an, China
| | - Zongzhi Wu
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.
| | - Xuming Xu
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Sining Zhong
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
6
|
Mujakić I, Piwosz K, Koblížek M. Phylum Gemmatimonadota and Its Role in the Environment. Microorganisms 2022; 10:microorganisms10010151. [PMID: 35056600 PMCID: PMC8779627 DOI: 10.3390/microorganisms10010151] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Bacteria are an important part of every ecosystem that they inhabit on Earth. Environmental microbiologists usually focus on a few dominant bacterial groups, neglecting less abundant ones, which collectively make up most of the microbial diversity. One of such less-studied phyla is Gemmatimonadota. Currently, the phylum contains only six cultured species. However, data from culture-independent studies indicate that members of Gemmatimonadota are common in diverse habitats. They are abundant in soils, where they seem to be frequently associated with plants and the rhizosphere. Moreover, Gemmatimonadota were found in aquatic environments, such as freshwaters, wastewater treatment plants, biofilms, and sediments. An important discovery was the identification of purple bacterial reaction centers and anoxygenic photosynthesis in this phylum, genes for which were likely acquired via horizontal gene transfer. So far, the capacity for anoxygenic photosynthesis has been described for two cultured species: Gemmatimonas phototrophica and Gemmatimonas groenlandica. Moreover, analyses of metagenome-assembled genomes indicate that it is also common in uncultured lineages of Gemmatimonadota. This review summarizes the current knowledge about this understudied bacterial phylum with an emphasis on its environmental distribution.
Collapse
Affiliation(s)
- Izabela Mujakić
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Kasia Piwosz
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland
| | - Michal Koblížek
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
- Correspondence:
| |
Collapse
|
7
|
Mujakić I, Andrei AŞ, Shabarova T, Fecskeová LK, Salcher MM, Piwosz K, Ghai R, Koblížek M. Common Presence of Phototrophic Gemmatimonadota in Temperate Freshwater Lakes. mSystems 2021; 6:e01241-20. [PMID: 33727400 PMCID: PMC8547001 DOI: 10.1128/msystems.01241-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
Members of the bacterial phylum Gemmatimonadota are ubiquitous in most natural environments and represent one of the top 10 most abundant bacterial phyla in soil. Sequences affiliated with Gemmatimonadota were also reported from diverse aquatic habitats; however, it remains unknown whether they are native organisms or represent bacteria passively transported from sediment or soil. To address this question, we analyzed metagenomes constructed from five freshwater lakes in central Europe. Based on the 16S rRNA gene frequency, Gemmatimonadota represented from 0.02 to 0.6% of all bacteria in the epilimnion and between 0.1 and 1% in the hypolimnion. These proportions were independently confirmed using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Some cells in the epilimnion were attached to diatoms (Fragilaria sp.) or cyanobacteria (Microcystis sp.), which suggests a close association with phytoplankton. In addition, we reconstructed 45 metagenome-assembled genomes (MAGs) related to Gemmatimonadota They represent several novel lineages, which persist in the studied lakes during the seasons. Three lineages contained photosynthesis gene clusters. One of these lineages was related to Gemmatimonas phototrophica and represented the majority of Gemmatimonadota retrieved from the lakes' epilimnion. The other two lineages came from hypolimnion and probably represented novel photoheterotrophic genera. None of these phototrophic MAGs contained genes for carbon fixation. Since most of the identified MAGs were present during the whole year and cells associated with phytoplankton were observed, we conclude that they represent truly limnic Gemmatimonadota distinct from the previously described species isolated from soils or sediments.IMPORTANCE Photoheterotrophic bacterial phyla such as Gemmatimonadota are key components of many natural environments. Its first photoheterotrophic cultured member, Gemmatimonas phototrophica, was isolated in 2014 from a shallow lake in the Gobi Desert. It contains a unique type of photosynthetic complex encoded by a set of genes which were likely received via horizontal transfer from Proteobacteria We were intrigued to discover how widespread this group is in the natural environment. In the presented study, we analyzed 45 metagenome-assembled genomes (MAGs) that were obtained from five freshwater lakes in Switzerland and Czechia. Interestingly, it was found that phototrophic Gemmatimonadota are relatively common in euphotic zones of the studied lakes, whereas heterotrophic Gemmatimonadota prevail in deeper waters. Moreover, our analysis of the MAGs documented that these freshwater species contain almost the same set of photosynthesis genes identified before in Gemmatimonas phototrophica originating from the Gobi Desert.
Collapse
Affiliation(s)
- Izabela Mujakić
- Laboratory of Anoxygenic Phototrophs, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Tanja Shabarova
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Lívia Kolesár Fecskeová
- Laboratory of Anoxygenic Phototrophs, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Kasia Piwosz
- Laboratory of Anoxygenic Phototrophs, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
8
|
Afouda P, Dubourg G, Raoult D. Archeomicrobiology applied to environmental samples. Microb Pathog 2020; 143:104140. [DOI: 10.1016/j.micpath.2020.104140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
|
9
|
Sayed AM, Hassan MHA, Alhadrami HA, Hassan HM, Goodfellow M, Rateb ME. Extreme environments: microbiology leading to specialized metabolites. J Appl Microbiol 2019; 128:630-657. [PMID: 31310419 DOI: 10.1111/jam.14386] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/18/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022]
Abstract
The prevalence of multidrug-resistant microbial pathogens due to the continued misuse and overuse of antibiotics in agriculture and medicine is raising the prospect of a return to the preantibiotic days of medicine at the time of diminishing numbers of drug leads. The good news is that an increased understanding of the nature and extent of microbial diversity in natural habitats coupled with the application of new technologies in microbiology and chemistry is opening up new strategies in the search for new specialized products with therapeutic properties. This review explores the premise that harsh environmental conditions in extreme biomes, notably in deserts, permafrost soils and deep-sea sediments select for micro-organisms, especially actinobacteria, cyanobacteria and fungi, with the potential to synthesize new druggable molecules. There is evidence over the past decade that micro-organisms adapted to life in extreme habitats are a rich source of new specialized metabolites. Extreme habitats by their very nature tend to be fragile hence there is a need to conserve those known to be hot-spots of novel gifted micro-organisms needed to drive drug discovery campaigns and innovative biotechnology. This review also provides an overview of microbial-derived molecules and their biological activities focusing on the period from 2010 until 2018, over this time 186 novel structures were isolated from 129 representatives of microbial taxa recovered from extreme habitats.
Collapse
Affiliation(s)
- A M Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - M H A Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - H A Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.,Special Infectious Agent Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - H M Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.,Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - M Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - M E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
10
|
Chan-Yam K, Goordial J, Greer C, Davila A, McKay CP, Whyte LG. Microbial Activity and Habitability of an Antarctic Dry Valley Water Track. ASTROBIOLOGY 2019; 19:757-770. [PMID: 30958705 DOI: 10.1089/ast.2018.1884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Water tracks in the Antarctic Dry Valleys are dark linear features of increased soil moisture that flow downslope over the spring and summer, providing a source of moisture in a cold-arid desert. They are typically sourced from melting snow, ground ice, and deliquescence (Levy et al., 2011 ). This research presents the first in-depth study of the activity potential and diversity of microbial communities of Antarctic water tracks. We investigated whether these water track soils are more habitable to microbial communities by ascertaining the differences in diversity, total and culturable cell counts, and microbial respiratory activity in water track soils compared with the adjacent dry soils in Pearse Valley. Total cell counts ranged from 1.47 × 103 to 4.17 × 105 cells/g dry weight soil. Water track soils had higher total and culturable biomass, in addition to higher microbial activity at 5° and -5°C, compared with adjacent dry soils. Microbial respiration was positively correlated with soil moisture content, but total cell counts and plate counts were not. Surprisingly, microbial community composition did not differ between wet and dry soil communities, and was not related to soil moisture content. The microbial community composition instead appeared to differ spatially based on location and depth. Overall, the data suggest that cold water tracks are more habitable than the surrounding cold-arid soils. Our results suggest that recurring slope lineae, which are dark linear features that grow downslope on Mars over the spring and summer, where liquid water might be a recurring phenomenon, could be sites of astrobiological potential.
Collapse
Affiliation(s)
- Kelly Chan-Yam
- 1 Department of Natural Resource Sciences, McGill University, Montreal, Canada
| | - Jacqueline Goordial
- 1 Department of Natural Resource Sciences, McGill University, Montreal, Canada
- 2 Bigelow Laboratory for Ocean Sciences, East Boothbay Harbor, Maine
| | - Charles Greer
- 3 National Research Council of Canada, Montreal, Canada
| | | | | | - Lyle G Whyte
- 1 Department of Natural Resource Sciences, McGill University, Montreal, Canada
| |
Collapse
|
11
|
Martinez MA, Woodcroft BJ, Ignacio Espinoza JC, Zayed AA, Singleton CM, Boyd JA, Li YF, Purvine S, Maughan H, Hodgkins SB, Anderson D, Sederholm M, Temperton B, Bolduc B, Saleska SR, Tyson GW, Rich VI, Saleska SR, Tyson GW, Rich VI. Discovery and ecogenomic context of a global Caldiserica-related phylum active in thawing permafrost, Candidatus Cryosericota phylum nov., Ca. Cryosericia class nov., Ca. Cryosericales ord. nov., Ca. Cryosericaceae fam. nov., comprising the four species Cryosericum septentrionale gen. nov. sp. nov., Ca. C. hinesii sp. nov., Ca. C. odellii sp. nov., Ca. C. terrychapinii sp. nov. Syst Appl Microbiol 2019; 42:54-66. [DOI: 10.1016/j.syapm.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
|
12
|
Jones RM, Goordial JM, Orcutt BN. Low Energy Subsurface Environments as Extraterrestrial Analogs. Front Microbiol 2018; 9:1605. [PMID: 30072971 PMCID: PMC6058055 DOI: 10.3389/fmicb.2018.01605] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Earth's subsurface is often isolated from phototrophic energy sources and characterized by chemotrophic modes of life. These environments are often oligotrophic and limited in electron donors or electron acceptors, and include continental crust, subseafloor oceanic crust, and marine sediment as well as subglacial lakes and the subsurface of polar desert soils. These low energy subsurface environments are therefore uniquely positioned for examining minimum energetic requirements and adaptations for chemotrophic life. Current targets for astrobiology investigations of extant life are planetary bodies with largely inhospitable surfaces, such as Mars, Europa, and Enceladus. Subsurface environments on Earth thus serve as analogs to explore possibilities of subsurface life on extraterrestrial bodies. The purpose of this review is to provide an overview of subsurface environments as potential analogs, and the features of microbial communities existing in these low energy environments, with particular emphasis on how they inform the study of energetic limits required for life. The thermodynamic energetic calculations presented here suggest that free energy yields of reactions and energy density of some metabolic redox reactions on Mars, Europa, Enceladus, and Titan could be comparable to analog environments in Earth's low energy subsurface habitats.
Collapse
Affiliation(s)
| | | | - Beth N. Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
13
|
Bottos EM, Kennedy DW, Romero EB, Fansler SJ, Brown JM, Bramer LM, Chu RK, Tfaily MM, Jansson JK, Stegen JC. Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiol Ecol 2018; 94:5037918. [DOI: 10.1093/femsec/fiy110] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/13/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eric M Bottos
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
- Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada
| | - David W Kennedy
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Elvira B Romero
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Sarah J Fansler
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Joseph M Brown
- Computational Biology, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Lisa M Bramer
- National Security Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Malak M Tfaily
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - James C Stegen
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| |
Collapse
|
14
|
Bakermans C. Adaptations to marine versus terrestrial low temperature environments as revealed by comparative genomic analyses of the genus Psychrobacter. FEMS Microbiol Ecol 2018; 94:5032373. [DOI: 10.1093/femsec/fiy102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/27/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Corien Bakermans
- Division of Mathematics and Natural Sciences, Penn State Altoona, United States
| |
Collapse
|
15
|
Mindlin SZ, Petrova MA. On the Origin and Distribution of Antibiotic Resistance: Permafrost Bacteria Studies. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2018. [DOI: 10.3103/s0891416817040048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Variations in bacterial and archaeal communities along depth profiles of Alaskan soil cores. Sci Rep 2018; 8:504. [PMID: 29323168 PMCID: PMC5765012 DOI: 10.1038/s41598-017-18777-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022] Open
Abstract
Understating the microbial communities and ecological processes that influence their structure in permafrost soils is crucial for predicting the consequences of climate change. In this study we investigated the bacterial and archaeal communities along depth profiles of four soil cores collected across Alaska. The bacterial and archaeal diversity (amplicon sequencing) overall decreased along the soil depth but the depth-wise pattern of their abundances (qPCR) varied by sites. The community structure of bacteria and archaea displayed site-specific pattern, with a greater role of soil geochemical characteristics rather than soil depth. In particular, we found significant positive correlations between methane trapped in cores and relative abundance of methanogenic archaeal genera, indicating a strong association between microbial activity and methane production in subsurface soils. We observed that bacterial phylogenetic community assembly tended to be more clustered in surface soils than in deeper soils. Analyses of phylogenetic community turnover among depth profiles across cores indicated that the relative influence of deterministic and stochastic processes was mainly determined by soil properties rather than depth. Overall, our findings emphasize that the vertical distributions of bacterial and archaeal communities in permafrost soils are to a large extent determined by the variation in site-specific soil properties.
Collapse
|
17
|
Methods for Collection and Characterization of Samples From Icy Environments. METHODS IN MICROBIOLOGY 2018. [DOI: 10.1016/bs.mim.2018.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Tytgat B, Verleyen E, Sweetlove M, D'hondt S, Clercx P, Van Ranst E, Peeters K, Roberts S, Namsaraev Z, Wilmotte A, Vyverman W, Willems A. Bacterial community composition in relation to bedrock type and macrobiota in soils from the Sør Rondane Mountains, East Antarctica. FEMS Microbiol Ecol 2016; 92:fiw126. [PMID: 27402710 DOI: 10.1093/femsec/fiw126] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2016] [Indexed: 01/06/2023] Open
Abstract
Antarctic soils are known to be oligotrophic and of having low buffering capacities. It is expected that this is particularly the case for inland high-altitude regions. We hypothesized that the bedrock type and the presence of macrobiota in these soils enforce a high selective pressure on their bacterial communities. To test this, we analyzed the bacterial community structure in 52 soil samples from the western Sør Rondane Mountains (Dronning Maud Land, East Antarctica), using the Illumina MiSeq platform in combination with ARISA fingerprinting. The samples were taken along broad environmental gradients in an area covering nearly 1000 km(2) Ordination and variation partitioning analyses revealed that the total organic carbon content was the most significant variable in structuring the bacterial communities, followed by pH, electric conductivity, bedrock type and the moisture content, while spatial distance was of relatively minor importance. Acidobacteria (Chloracidobacteria) and Actinobacteria (Actinomycetales) dominated gneiss derived mineral soil samples, while Proteobacteria (Sphingomonadaceae), Cyanobacteria, Armatimonadetes and candidate division FBP-dominated soil samples with a high total organic carbon content that were mainly situated on granite derived bedrock.
Collapse
Affiliation(s)
- Bjorn Tytgat
- Laboratory of Microbiology, Department of Microbiology and Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Elie Verleyen
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Maxime Sweetlove
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Sofie D'hondt
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Pia Clercx
- Laboratory of Microbiology, Department of Microbiology and Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Eric Van Ranst
- Laboratory of Soil Science, Department of Geology and Soil Science, Ghent University, 9000 Ghent, Belgium
| | - Karolien Peeters
- Laboratory of Microbiology, Department of Microbiology and Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Stephen Roberts
- British Antarctic Survey, Natural Environment Research, Cambridge, CB3 0ET, UK
| | - Zorigto Namsaraev
- Department of Biotechnology and Bioenergy, NRC 'Kurchatov Institute', Moscow, 123182, Russia Winogradsky Institute of Microbiology RAS, Moscow, 117312, Russia
| | - Annick Wilmotte
- Centre for Protein Engineering, Department of Life Sciences, Liège University, 4000 Liège, Belgium
| | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Department of Microbiology and Biochemistry, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
19
|
Goordial J, Davila A, Greer CW, Cannam R, DiRuggiero J, McKay CP, Whyte LG. Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper-arid polar desert. Environ Microbiol 2016; 19:443-458. [DOI: 10.1111/1462-2920.13353] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Rebecca Cannam
- McGill University Macdonald Campus; Ste-Anne-de-Bellevue Quebec Canada
| | | | | | - Lyle G. Whyte
- McGill University Macdonald Campus; Ste-Anne-de-Bellevue Quebec Canada
| |
Collapse
|
20
|
Nikrad MP, Kerkhof LJ, Häggblom MM. The subzero microbiome: microbial activity in frozen and thawing soils. FEMS Microbiol Ecol 2016; 92:fiw081. [PMID: 27106051 DOI: 10.1093/femsec/fiw081] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2016] [Indexed: 01/15/2023] Open
Abstract
Most of the Earth's biosphere is characterized by low temperatures (<5°C) and cold-adapted microorganisms are widespread. These psychrophiles have evolved a complex range of adaptations of all cellular constituents to counteract the potentially deleterious effects of low kinetic energy environments and the freezing of water. Microbial life continues into the subzero temperature range, and this activity contributes to carbon and nitrogen flux in and out of ecosystems, ultimately affecting global processes. Microbial responses to climate warming and, in particular, thawing of frozen soils are not yet well understood, although the threat of microbial contribution to positive feedback of carbon flux is substantial. To date, several studies have examined microbial community dynamics in frozen soils and permafrost due to changing environmental conditions, and some have undertaken the complicated task of characterizing microbial functional groups and how their activity changes with changing conditions, either in situ or by isolating and characterizing macromolecules. With increasing temperature and wetter conditions microbial activity of key microbes and subsequent efflux of greenhouse gases also increase. In this review, we aim to provide an overview of microbial activity in seasonally frozen soils and permafrost. With a more detailed understanding of the microbiological activities in these vulnerable soil ecosystems, we can begin to predict and model future expectations for carbon release and climate change.
Collapse
Affiliation(s)
| | - Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
21
|
Obbels D, Verleyen E, Mano MJ, Namsaraev Z, Sweetlove M, Tytgat B, Fernandez-Carazo R, De Wever A, D'hondt S, Ertz D, Elster J, Sabbe K, Willems A, Wilmotte A, Vyverman W. Bacterial and eukaryotic biodiversity patterns in terrestrial and aquatic habitats in the Sør Rondane Mountains, Dronning Maud Land, East Antarctica. FEMS Microbiol Ecol 2016; 92:fiw041. [PMID: 26936447 DOI: 10.1093/femsec/fiw041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2016] [Indexed: 11/12/2022] Open
Abstract
The bacterial and microeukaryotic biodiversity were studied using pyrosequencing analysis on a 454 GS FLX+ platform of partial SSU rRNA genes in terrestrial and aquatic habitats of the Sør Rondane Mountains, including soils, on mosses, endolithic communities, cryoconite holes and supraglacial and subglacial meltwater lenses. This inventory was complemented with Denaturing Gradient Gel Electrophoresis targeting Chlorophyta and Cyanobacteria. OTUs belonging to the Rotifera, Chlorophyta, Tardigrada, Ciliophora, Cercozoa, Fungi, Bryophyta, Bacillariophyta, Collembola and Nematoda were present with a relative abundance of at least 0.1% in the eukaryotic communities. Cyanobacteria, Proteobacteria, Bacteroidetes, Acidobacteria, FBP and Actinobacteria were the most abundant bacterial phyla. Multivariate analyses of the pyrosequencing data revealed a general lack of differentiation of both eukaryotes and prokaryotes according to habitat type. However, the bacterial community structure in the aquatic habitats was dominated by the filamentous cyanobacteria Leptolyngbya and appeared to be significantly different compared with those in dry soils, on mosses, and in endolithic habitats. A striking feature in all datasets was the detection of a relatively large amount of sequences new to science, which underscores the need for additional biodiversity assessments in Antarctic inland locations.
Collapse
Affiliation(s)
- Dagmar Obbels
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Elie Verleyen
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Marie-José Mano
- Centre for Protein Engineering, Institute of Chemistry, Université de Liège, Sart-TilmanB6, B-4000 Liège, Belgium
| | - Zorigto Namsaraev
- Centre for Protein Engineering, Institute of Chemistry, Université de Liège, Sart-TilmanB6, B-4000 Liège, Belgium Winogradsky Institute of Microbiology RAS, Pr-t 60-letya Oktyabrya, 7/2, Moscow 117312, Russia NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 12 31 82, Russia
| | - Maxime Sweetlove
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Bjorn Tytgat
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Rafael Fernandez-Carazo
- Centre for Protein Engineering, Institute of Chemistry, Université de Liège, Sart-TilmanB6, B-4000 Liège, Belgium
| | - Aaike De Wever
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium
| | - Sofie D'hondt
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Damien Ertz
- Botanic Garden Meise, Department Bryophytes-Thallophytes, Nieuwelaan 38, B-1860 Meise, Belgium Federation Wallonia-Brussels, General Administration of the Non-Compulsory Education and Scientific Research, Rue A. Lavallée 1, 1080 Brussels, Belgium
| | - Josef Elster
- Centre for Polar Ecology, Faculty of Sciences, University of South Bohemia, Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, 379 82, Třeboň, Czech republic
| | - Koen Sabbe
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Anne Willems
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Annick Wilmotte
- Centre for Protein Engineering, Institute of Chemistry, Université de Liège, Sart-TilmanB6, B-4000 Liège, Belgium
| | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| |
Collapse
|
22
|
Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME JOURNAL 2016; 10:1613-24. [PMID: 27323892 PMCID: PMC4918446 DOI: 10.1038/ismej.2015.239] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/12/2015] [Accepted: 11/20/2015] [Indexed: 11/11/2022]
Abstract
Some of the coldest and driest permafrost soils on Earth are located in the high-elevation McMurdo Dry Valleys (MDVs) of Antarctica, but little is known about the permafrost microbial communities other than that microorganisms are present in these valleys. Here, we describe the microbiology and habitable conditions of highly unique dry and ice-cemented permafrost in University Valley, one of the coldest and driest regions in the MDVs (1700 m above sea level; mean temperature −23 °C; no degree days above freezing), where the ice in permafrost originates from vapour deposition rather than liquid water. We found that culturable and total microbial biomass in University Valley was extremely low, and microbial activity under ambient conditions was undetectable. Our results contrast with reports from the lower-elevation Dry Valleys and Arctic permafrost soils where active microbial populations are found, suggesting that the combination of severe cold, aridity, oligotrophy of University Valley permafrost soils severely limit microbial activity and survival.
Collapse
|
23
|
Ji M, van Dorst J, Bissett A, Brown MV, Palmer AS, Snape I, Siciliano SD, Ferrari BC. Microbial diversity at Mitchell Peninsula, Eastern Antarctica: a potential biodiversity “hotspot”. Polar Biol 2015. [DOI: 10.1007/s00300-015-1776-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Coolen MJL, Orsi WD. The transcriptional response of microbial communities in thawing Alaskan permafrost soils. Front Microbiol 2015; 6:197. [PMID: 25852660 PMCID: PMC4360760 DOI: 10.3389/fmicb.2015.00197] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/24/2015] [Indexed: 11/13/2022] Open
Abstract
Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw.
Collapse
Affiliation(s)
- Marco J. L. Coolen
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic InstitutionWoods Hole, MA, USA
- Western Australia Organic and Isotope Geochemistry Centre, Department of Chemistry, Curtin UniversityPerth, WA, Australia
| | - William D. Orsi
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic InstitutionWoods Hole, MA, USA
| |
Collapse
|