1
|
Hooper PM, Bass D, Feil EJ, Vincent WF, Lovejoy C, Owen CJ, Tsola SL, Jungblut AD. Arctic cyanobacterial mat community diversity decreases with latitude across the Canadian Arctic. FEMS Microbiol Ecol 2024; 100:fiae067. [PMID: 38653723 DOI: 10.1093/femsec/fiae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
Cyanobacterial mats are commonly reported as hotspots of microbial diversity across polar environments. These thick, multilayered microbial communities provide a refuge from extreme environmental conditions, with many species able to grow and coexist despite the low allochthonous nutrient inputs. The visibly dominant phototrophic biomass is dependent on internal nutrient recycling by heterotrophic organisms within the mats; however, the specific contribution of heterotrophic protists remains little explored. In this study, mat community diversity was examined along a latitudinal gradient (55-83°N), spanning subarctic taiga, tundra, polar desert, and the High Arctic ice shelves. The prokaryotic and eukaryotic communities were targeted, respectively, by V4 16S ribosomal RNA (rRNA) and V9 18S rRNA gene amplicon high-throughput sequencing. Prokaryotic and eukaryotic richness decreased, in tandem with decreasing temperatures and shorter seasons of light availability, from the subarctic to the High Arctic. Taxonomy-based annotation of the protist community revealed diverse phototrophic, mixotrophic, and heterotrophic genera in all mat communities, with fewer parasitic taxa in High Arctic communities. Co-occurrence network analysis identified greater heterogeneity in eukaryotic than prokaryotic community structure among cyanobacterial mats across the Canadian Arctic. Our findings highlight the sensitivity of microbial eukaryotes to environmental gradients across northern high latitudes.
Collapse
Affiliation(s)
- Patrick M Hooper
- Science Department, Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - David Bass
- Science Department, Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB, United Kingdom
- Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Edward J Feil
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Warwick F Vincent
- Département de Biologie, Takuvik International Research Laboratory and Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre d'études nordiques (CEN), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Connie Lovejoy
- Département de Biologie, Takuvik International Research Laboratory and Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre d'études nordiques (CEN), Université Laval, Québec, QC, G1V 0A6, Canada
- Québec Océan, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Christopher J Owen
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Stephania L Tsola
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Anne D Jungblut
- Science Department, Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom
| |
Collapse
|
2
|
Korn R, Berg C, Bersier LF, Gray SM, Thallinger GG. Habitat conditions and not moss composition mediate microbial community structure in Swiss peatlands. Environ Microbiol 2024; 26:e16631. [PMID: 38757479 DOI: 10.1111/1462-2920.16631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Peatlands, one of the oldest ecosystems, globally store significant amounts of carbon and freshwater. However, they are under severe threat from human activities, leading to changes in water, nutrient and temperature regimes in these delicate systems. Such shifts can trigger a substantial carbon flux into the atmosphere and diminish the water-holding capacity of peatlands. Microbes associated with moss in peatlands play a crucial role in providing these ecosystem services, which are at risk due to global change. Therefore, understanding the factors influencing microbial composition and function is vital. Our study focused on five peatlands along an altitudinal gradient in Switzerland, where we sampled moss on hummocks containing Sarracenia purpurea. Structural equation modelling revealed that habitat condition was the primary predictor of community structure and directly influenced other environmental variables. Interestingly, the microbial composition was not linked to the local moss species identity. Instead, microbial communities varied significantly between sites due to differences in acidity levels and nitrogen availability. This finding was also mirrored in a co-occurrence network analysis, which displayed a distinct distribution of indicator species for acidity and nitrogen availability. Therefore, peatland conservation should take into account the critical habitat characteristics of moss-associated microbial communities.
Collapse
Affiliation(s)
- Rachel Korn
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | - Sarah M Gray
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Gerhard G Thallinger
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
- OMICS Center Graz, BioTechMed, Graz, Austria
| |
Collapse
|
3
|
Kong H, Yang EJ, Jiao N, Lee Y, Jung J, Cho KH, Moon JK, Kim JH, Xu D. RNA outperforms DNA-based metabarcoding in assessing the diversity and response of microeukaryotes to environmental variables in the Arctic Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162608. [PMID: 36871742 DOI: 10.1016/j.scitotenv.2023.162608] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The Arctic Ocean (AO) has a harsh environment characterized by low temperatures, extensive ice coverage, and periodic freezing and melting of sea ice, which has provided diverse habitats for microorganisms. Prior studies primarily focused on microeukaryote communities in the upper water or sea ice based on environmental DNA, leaving the composition of active microeukaryotes in the diverse AO environments largely unknown. This study provided a vertical assessment of microeukaryote communities in the AO from snow and ice to sea water at a depth of 1670 m using high-throughput sequencing of co-extracted DNA and RNA. RNA extracts depicted microeukaryote community structure and intergroup correlations more accurately and responded more sensitively to environmental conditions than those derived from DNA. Using RNA:DNA ratios as a proxy for relative activity of major taxonomic groups, the metabolic activities of major microeukaryote groups were determined along depth. Analysis of co-occurrence networks showed that parasitism between Syndiniales and dinoflagellates/ciliates in the deep ocean may be significant. This study increased our knowledge of the diversity of active microeukaryote communities and highlighted the importance of using RNA-based sequencing over DNA-based sequencing to examine the relationship between microeukaryote assemblages and the responses of microeukaryotes to environmental variables in the AO.
Collapse
Affiliation(s)
- Hejun Kong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Eun-Jin Yang
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Youngju Lee
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jinyoung Jung
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Kyoung-Ho Cho
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jong-Kuk Moon
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jee-Hoon Kim
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
Galachyants Y, Zakharova Y, Bashenkhaeva M, Petrova D, Kopyrina L, Likhoshway Y. Microeukaryotic Communities of the Long-Term Ice-Covered Freshwater Lakes in the Subarctic Region of Yakutia, Russia. DIVERSITY 2023. [DOI: 10.3390/d15030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Currently, microeukaryotic communities of the freshwater arctic and subarctic ecosystems are poorly studied. Still, these are of considerable interest due to the species biogeography and autecology as well as global climate change. Here, we used high-throughput 18S rRNA amplicon sequencing to study the microeukaryotic communities of the large subarctic freshwater lakes Labynkyr and Vorota in Yakutia, Russia, during the end of the ice cover period, from April to June. By applying the statistical methods, we coupled the microeukaryotic community structure profiles with available discrete factor variables and hydrophysical, hydrochemical, and environmental parameters. The sub-ice layer and the water column communities were differentiated due to the temporal change in environmental conditions, particularly temperature regime and electric conductivity. Additionally, the community composition of unicellular eukaryotes in lakes Labynkyr and Vorota was changing due to seasonal environmental factors, with these alterations having similar patterns in both sites. We suggest the community developed in the sub-ice layer in April serves as a primer for summer freshwater microeukaryotes. Our results extend the current knowledge on the community composition and seasonal succession of unicellular eukaryotes within subarctic freshwater ecosystems.
Collapse
|
5
|
Ollison GA, Hu SK, Hopper JV, Stewart BP, Smith J, Beatty JL, Rink LK, Caron DA. Daily dynamics of contrasting spring algal blooms in Santa Monica Bay (central Southern California Bight). Environ Microbiol 2022; 24:6033-6051. [PMID: 35880671 PMCID: PMC10087728 DOI: 10.1111/1462-2920.16137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/12/2023]
Abstract
Protistan algae (phytoplankton) dominate coastal upwelling ecosystems where they form massive blooms that support the world's most important fisheries and constitute an important sink for atmospheric CO2 . Bloom initiation is well understood, but the biotic and abiotic forces that shape short-term dynamics in community composition are still poorly characterized. Here, high-frequency (daily) changes in relative abundance dynamics of the metabolically active protistan community were followed via expressed 18S V4 rRNA genes (RNA) throughout two algal blooms during the spring of 2018 and 2019 in Santa Monica Bay (central Southern California Bight). A diatom bloom formed after wind-driven, nutrient upwelling events in both years, but different taxa dominated each year. Whereas diatoms bloomed following elevated nutrients and declined after depletion each year, a massive dinoflagellate bloom manifested under relatively low inorganic nitrogen conditions following diatom bloom senescence in 2019 but not 2018. Network analysis revealed associations between diatoms and cercozoan putative parasitic taxa and syndinean parasites during 2019 that may have influenced the demise of the diatoms, and the transition to a dinoflagellate-dominated bloom.
Collapse
Affiliation(s)
- Gerid A Ollison
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Sarah K Hu
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, Massachusetts, USA
| | - Julie V Hopper
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Brittany P Stewart
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Jayme Smith
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - Jennifer L Beatty
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Laura K Rink
- Heal the Bay Aquarium, Santa Monica, California, USA
| | - David A Caron
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
6
|
Crevecoeur S, Prairie YT, del Giorgio PA. Tracking the upstream history of aquatic microbes in a boreal lake yields new insights on microbial community assembly. PNAS NEXUS 2022; 1:pgac171. [PMID: 36714827 PMCID: PMC9802056 DOI: 10.1093/pnasnexus/pgac171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/23/2022] [Indexed: 02/01/2023]
Abstract
Bacterial community structure can change rapidly across short spatial and temporal scales as environmental conditions vary, but the mechanisms underlying those changes are still poorly understood. Here, we assessed how a lake microbial community assembles by following its reorganization from the main tributary, which, when flowing into the lake, first traverses an extensive macrophyte-dominated vegetated habitat, before reaching the open water. Environmental conditions in the vegetated habitat changed drastically compared to both river and lake waters and represented a strong environmental gradient for the incoming bacteria. We used amplicon sequencing of the 16S rRNA gene and transcript to reconstruct the shifts in relative abundance of individual taxa and link this to their pattern in activity (here assessed with RNA:DNA ratios). Our results indicate that major shifts in relative abundance were restricted mostly to rare taxa (<0.1% of relative abundance), which seemed more responsive to environmental changes. Dominant taxa (>1% of relative abundance), on the other hand, traversed the gradient mostly unchanged with relatively low and stable RNA:DNA ratios. We also identified a high level of local recruitment and a seedbank of taxa capable of activating/inactivating, but these were almost exclusively associated with the rare biosphere. Our results suggest a scenario where the lake community results from a reshuffling of the rank abundance structure within the incoming rare biosphere, driven by selection and growth, and that numerical dominance is not a synonym of activity, growth rate, or environmental selection, but rather reflect mass effects structuring these freshwater bacterial communities.
Collapse
Affiliation(s)
| | - Yves T Prairie
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Université du Québec à Montréal, Montréal, QC H2×1Y4, Canada
| | - Paul A del Giorgio
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Université du Québec à Montréal, Montréal, QC H2×1Y4, Canada
| |
Collapse
|
7
|
|
8
|
Potvin M, Rautio M, Lovejoy C. Freshwater Microbial Eukaryotic Core Communities, Open-Water and Under-Ice Specialists in Southern Victoria Island Lakes (Ekaluktutiak, NU, Canada). Front Microbiol 2022; 12:786094. [PMID: 35222298 PMCID: PMC8873588 DOI: 10.3389/fmicb.2021.786094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Across much of the Arctic, lakes and ponds dominate the landscape. Starting in late September, the lakes are covered in ice, with ice persisting well into June or early July. In summer, the lakes are highly productive, supporting waterfowl and fish populations. However, little is known about the diversity and ecology of microscopic life in the lakes that influence biogeochemical cycles and contribute to ecosystem services. Even less is known about the prevalence of species that are characteristic of the seasons or whether some species persist year-round under both ice cover and summer open-water conditions. To begin to address these knowledge gaps, we sampled 10 morphometrically diverse lakes in the region of Ekaluktutiak (Cambridge Bay), on southern Victoria Island (NU, Canada). We focused on Greiner Lake, the lakes connected to it, isolated ponds, and two nearby larger lakes outside the Greiner watershed. The largest lakes sampled were Tahiryuaq (Ferguson Lake) and the nearby Spawning Lake, which support commercial sea-run Arctic char (Salvelinus alpinus) fisheries. Samples for nucleic acids were collected from the lakes along with limnological metadata. Microbial eukaryotes were identified with high-throughput amplicon sequencing targeting the V4 region of the 18S rRNA gene. Ciliates, dinoflagellates, chrysophytes, and cryptophytes dominated the lake assemblages. A Bray–Curtis dissimilarity matrix separated communities into under-ice and open-water clusters, with additional separation by superficial lake area. In all, 133 operational taxonomic units (OTUs) occurred either in all under-ice or all open-water samples and were considered “core” microbial species or ecotypes. These were further characterized as seasonal indicators. Ten of the OTUs were characteristic of all lakes and all seasons sampled. Eight of these were cryptophytes, suggesting diverse functional capacity within the lineage. The core open-water indicators were mostly chrysophytes, with a few ciliates and uncharacterized Cercozoa, suggesting that summer communities are mixotrophic with contributions by heterotrophic taxa. The core under-ice indicators included a dozen ciliates along with chrysophytes, cryptomonads, and dinoflagellates, indicating a more heterotrophic community augmented by mixotrophic taxa in winter.
Collapse
Affiliation(s)
- Marianne Potvin
- Département de Biologie, Québec Océan, and Institut Intégrative et des Systèmes (IBIS), Université Laval, Quebec, QC, Canada
| | - Milla Rautio
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada
- Groupe de Recherche Interuniversitaire de Limnologie (GRIL), Montreal, QC, Canada
- Center D’Études Nordiques (CEN), Quebec, QC, Canada
| | - Connie Lovejoy
- Département de Biologie, Québec Océan, and Institut Intégrative et des Systèmes (IBIS), Université Laval, Quebec, QC, Canada
- *Correspondence: Connie Lovejoy,
| |
Collapse
|
9
|
Sun P, Liao Y, Wang Y, Yang EJ, Jiao N, Lee Y, Jung J, Cho KH, Moon JK, Xu D. Contrasting Community Composition and Co-Occurrence Relationships of the Active Pico-Sized Haptophytes in the Surface and Subsurface Chlorophyll Maximum Layers of the Arctic Ocean in Summer. Microorganisms 2022; 10:248. [PMID: 35208705 PMCID: PMC8877492 DOI: 10.3390/microorganisms10020248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
Haptophytes (Hacrobia: Haptophyta), which can perform phototrophic, phagotrophic, or mixotrophic nutritional modes, are critical for element cycling in a variety of aquatic ecosystems. However, their diversity, particularly in the changing Arctic Ocean (AO), remains largely unknown. In the present study, the biodiversity, community composition, and co-occurrence networks of pico-sized haptophytes in the surface water and subsurface chlorophyll maximum (SCM) layer of the AO were explored. Our results found higher alpha diversity estimates in the surface water compared with in the SCM based on high-throughput sequencing of haptophyte specific 18S rRNA. The community composition of the surface water was significantly different from that of the SCM, and water temperature was identified as the primary factor shaping the community compositions. Prymnesiales (mostly Chrysochromulina), uncultured Prymnesiophyceae, and Phaeocystis dominated the surface water communities, whereas Phaeocystis dominated the SCM communities, followed by Chrysochromulina, uncultured Prymnesiophyceae, and the remaining taxa. The communities of the surface water and SCM layer developed relatively independent modules in the metacommunity network. Nodes in the surface water were more closely connected to one another than those in the SCM. Network stability analysis revealed that surface water networks were more stable than SCM networks. These findings suggest that SCM communities are more susceptible to environmental fluctuations than those in surface water and that future global changes (e.g., global warming) may profoundly influence the development, persistence, and service of SCM in the AO.
Collapse
Affiliation(s)
- Ping Sun
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
| | - Yuyu Liao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Eun-Jin Yang
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Youngju Lee
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Jinyoung Jung
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Kyoung-Ho Cho
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Jong-Kuk Moon
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
10
|
Ramoneda J, Hawes I, Pascual-García A, J Mackey T, Y Sumner D, D Jungblut A. Importance of environmental factors over habitat connectivity in shaping bacterial communities in microbial mats and bacterioplankton in an Antarctic freshwater system. FEMS Microbiol Ecol 2021; 97:6174672. [PMID: 33729491 DOI: 10.1093/femsec/fiab044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/14/2021] [Indexed: 11/14/2022] Open
Abstract
Freshwater ecosystems are considered hotspots of biodiversity in Antarctic polar deserts. Anticipated warming is expected to change the hydrology of these systems due to increased meltwater and reduction of ice cover, with implications for environmental conditions and physical connectivity between habitats. Using 16S rRNA gene sequencing, we evaluated microbial mat and planktonic communities within a connected freshwater system in the McMurdo Wright Valley, Antarctica, to determine the roles of connectivity and habitat conditions in controlling microbial assemblage composition. We examined communities from glacial Lake Brownworth, the perennially ice-covered Lake Vanda and the Onyx River, which connects the two. In Lake Vanda, we found distinct microbial assemblages occupying sub-habitats at different lake depths, while the communities from Lake Brownworth and Onyx River were structurally similar. Despite the higher physical connectivity and dispersal opportunities between bacterial communities in the shallow parts of the system, environmental abiotic conditions dominated over dispersal in driving community structure. Functional metabolic pathway predictions suggested differences in the functional gene potential between the microbial mat communities located in shallower and deeper water depths. The findings suggest that increasing temperatures and meltwater due to future climate change will affect bacterial diversity and functioning in Antarctic freshwater ecosystems.
Collapse
Affiliation(s)
- Josep Ramoneda
- Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, 58 Cross Road, Tauranga 3110, New Zealand
| | - Alberto Pascual-García
- Theoretical Biology, Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, Zürich 8006, Switzerland
| | - Tyler J Mackey
- Department of Earth and Planetary Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95618, USA
| | - Dawn Y Sumner
- Department of Earth and Planetary Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95618, USA
| | - Anne D Jungblut
- Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
11
|
Li R, Hu C, Wang J, Sun J, Wang Y, Jiao N, Xu D. Biogeographical Distribution and Community Assembly of Active Protistan Assemblages Along an Estuary to a Basin Transect of the Northern South China Sea. Microorganisms 2021; 9:microorganisms9020351. [PMID: 33578968 PMCID: PMC7916720 DOI: 10.3390/microorganisms9020351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 11/21/2022] Open
Abstract
Marine protists are essential for globally critical biological processes, including the biogeochemical cycles of matter and energy. However, compared with their prokaryotic counterpart, it remains largely unclear how environmental factors determine the diversity and distribution of the active protistan communities on the regional scale. In the present study, the biodiversity, community composition, and potential drivers of the total, abundant, and rare protistan groups were studied using high throughput sequencing on the V9 hyper-variable regions of the small subunit ribosomal RNA (SSU rRNA) along an estuary to basin transect in the northern South China Sea. Overall, Bacillariophyta and Cercozoa were abundant in the surface water; heterotrophic protists including Spirotrichea and marine stramenopiles 3 (MAST-3) were more abundant in the subsurface waters near the heavily urbanized Pearl River estuary; Chlorophyta and Pelagophyceae were abundant at the deep chlorophyll maximum depth, while Hacrobia, Radiolaria, and Excavata were the abundant groups in the deep water. Salinity, followed by water depth, temperature, and other biological factors, were the primary factors controlling the distinct vertical and horizontal distribution of the total and abundant protists. Rare taxa were driven by water depth, followed by temperature, salinity, and the concentrations of PO43−. The active protistan communities were mainly driven by dispersal limitation, followed by drift and other ecological processes.
Collapse
Affiliation(s)
- Ran Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
| | - Chen Hu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
| | - Jianning Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan 430000, China;
| | - Ying Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
- Correspondence: (N.J.); (D.X.)
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
- Correspondence: (N.J.); (D.X.)
| |
Collapse
|
12
|
Zhang T, Xiao X, Chen S, Zhao J, Chen Z, Feng J, Liang Q, Phelps TJ, Zhang C. Active Anaerobic Archaeal Methanotrophs in Recently Emerged Cold Seeps of Northern South China Sea. Front Microbiol 2021; 11:612135. [PMID: 33391242 PMCID: PMC7772427 DOI: 10.3389/fmicb.2020.612135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
Cold seep ecosystems are developed from methane-rich fluids in organic rich continental slopes, which are the source of various dense microbial and faunal populations. Extensive studies have been conducted on microbial populations in this unique environment; most of them were based on DNA, which could not resolve the activity of extant organisms. In this study, RNA and DNA analyses were performed to evaluate the active archaeal and bacterial communities and their network correlations, particularly those participating in the methane cycle at three sites of newly developed cold seeps in the northern South China Sea (nSCS). The results showed that both archaeal and bacterial communities were significantly different at the RNA and DNA levels, revealing a higher abundance of methane-metabolizing archaea and sulfate-reducing bacteria in RNA sequencing libraries. Site ROV07-01, which exhibited extensive accumulation of deceased Calyptogena clam shells, was highly developed, and showed diverse and active anaerobic archaeal methanotrophs (ANME)-2a/b and sulfate-reducing bacteria from RNA libraries. Site ROV07-02, located near carbonate crusts with few clam shell debris, appeared to be poorly developed, less anaerobic and less active. Site ROV05-02, colonized by living Calyptogena clams, could likely be intermediary between ROV07-01 and ROV07-02, showing abundant ANME-2dI and sulfate-reducing bacteria in RNA libraries. The high-proportions of ANME-2dI, with respect to ANME-2dII in the site ROV07-01 was the first report from nSCS, which could be associated with recently developed cold seeps. Both ANME-2dI and ANME-2a/b showed close networked relationships with sulfate-reducing bacteria; however, they were not associated with the same microbial operational taxonomic units (OTUs). Based on the geochemical gradients and the megafaunal settlements as well as the niche specificities and syntrophic relationships, ANMEs appeared to change in community structure with the evolution of cold seeps, which may be associated with the heterogeneity of their geochemical processes. This study enriched our understanding of more active sulfate-dependent anaerobic oxidation of methane (AOM) in poorly developed and active cold seep sediments by contrasting DNA- and RNA-derived community structure and activity indicators.
Collapse
Affiliation(s)
- Tingting Zhang
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China.,Gas Hydrate Engineering Technology Center, China Geological Survey, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xi Xiao
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China.,Gas Hydrate Engineering Technology Center, China Geological Survey, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Songze Chen
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
| | - Jing Zhao
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Zongheng Chen
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Junxi Feng
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China.,Gas Hydrate Engineering Technology Center, China Geological Survey, Guangzhou, China
| | - Qianyong Liang
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China.,Gas Hydrate Engineering Technology Center, China Geological Survey, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Tommy J Phelps
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Earth and Planetary Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Chuanlun Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
13
|
Wang Y, Li G, Shi F, Dong J, Gentekaki E, Zou S, Zhu P, Zhang X, Gong J. Taxonomic Diversity of Pico-/Nanoeukaryotes Is Related to Dissolved Oxygen and Productivity, but Functional Composition Is Shaped by Limiting Nutrients in Eutrophic Coastal Oceans. Front Microbiol 2020; 11:601037. [PMID: 33343542 PMCID: PMC7744618 DOI: 10.3389/fmicb.2020.601037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022] Open
Abstract
Pico-/nanoeukaryotes (P/NEs) comprise both primary producers and bacterial predators, playing important biogeochemical and ecological roles in the marine microbial loop. Besides the difference in size, these small-sized fractions can be distinguished from microplankton by certain functional and ecological traits. Nevertheless, little information is available regarding patterns of their taxonomic and functional diversity and community composition along environmental gradients in coastal marine ecosystems. In this study, we applied high-throughput sequencing of 18S rRNA gene to assess the taxonomic species richness and community composition of P/NEs in surface waters of Bohai Sea and North Yellow Sea, northern China spanning a 600-km distance during summer and winter of 2011. The richness of operational taxonomic units (OTUs) formed a U-shaped relationship with concentration of chlorophyll a (Chl-a, a proxy of primary productivity), but a stronger, negative relationship with concentration of dissolved oxygen (DO). These two factors also significantly co-varied with the OTU-based community composition of P/NEs. The effect of geographic distance on community composition of P/NEs was negligible. Among the three functional groups defined by trophic traits, heterotrophs had the highest OTU richness, which exhibited a U-shaped relationship with both DO and Chl-a. The community of P/NEs was dominated by heterotrophs and mixotrophs in terms of read numbers, which showed a trade-off along the gradient of phosphate, but no significant changes along DO and Chl-a gradients, indicating functional redundancy. Similarly, the proportion of phototrophs was significantly and positively correlated with the concentration of silicate. Our results indicate that taxonomic and functional composition of P/NEs are decoupled on a regional scale, and limiting nutrients are important factors in modulating functional composition of these microorganisms in the studied area. These findings contribute toward gaining a better understanding of how diversity of small eukaryotes and their functions are structured in coastal oceans and the effect of environmental changes on the structuring process.
Collapse
Affiliation(s)
- Yaping Wang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Guihao Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Fei Shi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Jun Dong
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Songbao Zou
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Ping Zhu
- School of Life Sciences, Ludong University, Yantai, China
| | - Xiaoli Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Jun Gong
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China
| |
Collapse
|
14
|
Gilbert KJ, Bittleston LS, Naive MAK, Kiszewski AE, Buenavente PAC, Lohman DJ, Pierce NE. Investigation of an Elevational Gradient Reveals Strong Differences Between Bacterial and Eukaryotic Communities Coinhabiting Nepenthes Phytotelmata. MICROBIAL ECOLOGY 2020; 80:334-349. [PMID: 32291478 PMCID: PMC7371667 DOI: 10.1007/s00248-020-01503-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/25/2020] [Indexed: 05/24/2023]
Abstract
Elevation is an important determinant of ecological community composition. It integrates several abiotic features and leads to strong, repeatable patterns of community structure, including changes in the abundance and richness of numerous taxa. However, the influence of elevational gradients on microbes is understudied relative to plants and animals. To compare the influence of elevation on multiple taxa simultaneously, we sampled phytotelm communities within a tropical pitcher plant (Nepenthes mindanaoensis) along a gradient from 400 to 1200 m a.s.l. We use a combination of metabarcoding and physical counts to assess diversity and richness of bacteria, micro-eukaryotes, and arthropods, and compare the effect of elevation on community structure to that of regulation by a number of plant factors. Patterns of community structure differed between bacteria and eukaryotes, despite their living together in the same aquatic microhabitats. Elevation influences community composition of eukaryotes to a significantly greater degree than it does bacteria. When examining pitcher characteristics, pitcher dimorphism has an effect on eukaryotes but not bacteria, while variation in pH levels strongly influences both taxa. Consistent with previous ecological studies, arthropod abundance in phytotelmata decreases with elevation, but some patterns of abundance differ between living inquilines and prey.
Collapse
Affiliation(s)
- Kadeem J Gilbert
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA.
- Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, PA, 16802, USA.
| | - Leonora S Bittleston
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-290, Cambridge, MA, 02139, USA
- Department of Biological Sciences, Boise State University, 1910 W University Dr, Boise, ID, 83725, USA
| | - Mark Arcebal K Naive
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Andres Bonifacio Ave, 9200, Iligan, Lanao del Norte, Philippines
| | - Anthony E Kiszewski
- Department of Natural and Applied Sciences, Bentley University, 175 Forest Street, Waltham, MA, 02452, USA
| | | | - David J Lohman
- Entomology Section, National Museum of Natural History, Manila, Philippines
- Biology Department, City College of New York, City University of New York, New York, NY, USA
- Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA
| |
Collapse
|
15
|
Coenen AR, Hu SK, Luo E, Muratore D, Weitz JS. A Primer for Microbiome Time-Series Analysis. Front Genet 2020; 11:310. [PMID: 32373155 PMCID: PMC7186479 DOI: 10.3389/fgene.2020.00310] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Time-series can provide critical insights into the structure and function of microbial communities. The analysis of temporal data warrants statistical considerations, distinct from comparative microbiome studies, to address ecological questions. This primer identifies unique challenges and approaches for analyzing microbiome time-series. In doing so, we focus on (1) identifying compositionally similar samples, (2) inferring putative interactions among populations, and (3) detecting periodic signals. We connect theory, code and data via a series of hands-on modules with a motivating biological question centered on marine microbial ecology. The topics of the modules include characterizing shifts in community structure and activity, identifying expression levels with a diel periodic signal, and identifying putative interactions within a complex community. Modules are presented as self-contained, open-access, interactive tutorials in R and Matlab. Throughout, we highlight statistical considerations for dealing with autocorrelated and compositional data, with an eye to improving the robustness of inferences from microbiome time-series. In doing so, we hope that this primer helps to broaden the use of time-series analytic methods within the microbial ecology research community.
Collapse
Affiliation(s)
- Ashley R. Coenen
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Sarah K. Hu
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA, United States
| | - Elaine Luo
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, United States
| | - Daniel Muratore
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Joshua S. Weitz
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
16
|
Lepère C, Domaizon I, Humbert JF, Jardillier L, Hugoni M, Debroas D. Diversity, spatial distribution and activity of fungi in freshwater ecosystems. PeerJ 2019; 7:e6247. [PMID: 30809429 PMCID: PMC6387782 DOI: 10.7717/peerj.6247] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/30/2018] [Indexed: 12/31/2022] Open
Abstract
High-throughput sequencing has given new insights into aquatic fungal community ecology over the last 10 years. Based on 18S ribosomal RNA gene sequences publicly available, we investigated fungal richness and taxonomic composition among 25 lakes and four rivers. We used a single pipeline to process the reads from raw data to the taxonomic affiliation. In addition, we studied, for a subset of lakes, the active fraction of fungi through the 18S rRNA transcripts level. These results revealed a high diversity of fungi that can be captured by 18S rRNA primers. The most OTU-rich groups were Dikarya (47%), represented by putative filamentous fungi more diverse and abundant in freshwater habitats than previous studies have suggested, followed by Cryptomycota (17.6%) and Chytridiomycota (15.4%). The active fraction of the community showed the same dominant groups as those observed at the 18S rRNA genes level. On average 13.25% of the fungal OTUs were active. The small number of OTUs shared among aquatic ecosystems may result from the low abundances of those microorganisms and/or they constitute allochthonous fungi coming from other habitats (e.g., sediment or catchment areas). The richness estimates suggest that fungi have been overlooked and undersampled in freshwater ecosystems, especially rivers, though they play key roles in ecosystem functioning as saprophytes and parasites.
Collapse
Affiliation(s)
- Cécile Lepère
- Laboratoire: Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Isabelle Domaizon
- CARRTEL, Université Savoie Mont Blanc, INRA, Thonon Les Bains, France
| | | | - Ludwig Jardillier
- Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Mylène Hugoni
- CNRS, UMR5557, Ecologie Microbienne, INRA, UMR1418, Université Lyon 1, Villeurbanne Cedex, France
| | - Didier Debroas
- Laboratoire: Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
17
|
Wu W, Liu H. Disentangling protist communities identified from DNA and RNA surveys in the Pearl River-South China Sea Continuum during the wet and dry seasons. Mol Ecol 2018; 27:4627-4640. [DOI: 10.1111/mec.14867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/12/2018] [Accepted: 09/07/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Wenxue Wu
- School of Marine Sciences; Sun Yat-sen University; Zhuhai Guangdong China
- Division of Life Science; The Hong Kong University of Science and Technology; Kowloon, Hong Kong SAR China
| | - Hongbin Liu
- Division of Life Science; The Hong Kong University of Science and Technology; Kowloon, Hong Kong SAR China
- Department of Ocean Science; The Hong Kong University of Science and Technology; Kowloon, Hong Kong SAR China
| |
Collapse
|
18
|
Cahoon AB, Huffman AG, Krager MM, Crowell RM. A meta-barcoding census of freshwater planktonic protists in Appalachia – Natural Tunnel State Park, Virginia, USA. METABARCODING AND METAGENOMICS 2018. [DOI: 10.3897/mbmg.2.26939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The purpose of our study was to survey the freshwater planktonic protists within an inland natural preserve in the Ridge and Valley physiographic province of the Appalachian Region using metabarcoding. Microbial eukaryotes are essential primary producers and predators in small freshwater ecosystems, yet they are often overlooked due to the difficulty of identification. This has been remedied, in part, by the cost reduction of high throughput DNA sequencing and the growth of barcode databases, making the identification and analysis of microorganisms by way of metabarcoding surveys in complex ecosystems increasingly feasible. Water samples were collected from five sites at the Natural Tunnel State Park in Scott County, VA (USA), representing three common bodies of water found in this region. Samples were initially collected during a Bioblitz event in April 2016 and then seven and fourteen weeks afterwards. Metabarcode analysis of the 23S and 18S genes identified 3663 OTUs representing 213 family level and 332 genus level taxa. This study provides an initial barcode census within a region that has a reputation as a temperate biodiversity “hotspot”. The overall protist diversity was comparably high to other temperate systems, but not unusually high; the microalgal diversity, however, was higher than that reported for other temperate regions. The three types of water bodies had their own distinctive protist biomes despite close proximity.
Collapse
|
19
|
Rachik S, Christaki U, Li LL, Genitsaris S, Breton E, Monchy S. Diversity and potential activity patterns of planktonic eukaryotic microbes in a mesoeutrophic coastal area (eastern English Channel). PLoS One 2018; 13:e0196987. [PMID: 29746519 PMCID: PMC5944946 DOI: 10.1371/journal.pone.0196987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/24/2018] [Indexed: 01/02/2023] Open
Abstract
The diversity of planktonic eukaryotic microbes was studied at a coastal station of the eastern English Channel (EEC) from March 2011 to July 2015 (77 samples) using high throughput sequencing (454-pyrosequencing and Illumina) of the V2-V3 hypervariable region of the 18S SSU rDNA gene. Similar estimations of OTU relative abundance and taxonomic distribution for the dominant higher taxonomic groups (contributing >1% of the total number of OTUs) were observed with the two methods (Kolmogorov-Smirnov p-value = 0.22). Eight super-groups were identified throughout all samples: Alveolata, Stramenopiles, Opisthokonta, Hacrobia, Archeaplastida, Apusozoa, Rhizaria, and Amoebozoa (ordered by decreasing OTU richness). To gain further insight into microbial activity in the EEC, ribosomal RNA was extracted for samples from 2013–2015 (30 samples). Analysis of 18S rDNA and rRNA sequences led to the detection of 696 and 700 OTUs, respectively. Cluster analysis based on OTUs’ abundance indicated three major seasonal groups that were associated to spring, winter/autumn, and summer conditions. The clusters inferred from rRNA data showed a clearer seasonal representation of the community succession than the one based on rDNA. The rRNA/rDNA ratio was used as a proxy for relative cell activity. When all OTUs were considered, the average rRNA:rDNA ratio showed a linear trend around the 1:1 line, suggesting a linear relation between OTU abundance (rDNA) and activity (rRNA). However, this ratio was highly variable over time when considering individual OTUs. Interestingly, the OTU affiliated with P. globosa displayed rRNA:rDNA ratio that allowed to delimit high vs low abundance and high vs low activity periods. It unveiled quite well the Phaeocystis bloom dynamic regarding cell proliferation and activity, and could even be used as early indicator of an upcoming bloom.
Collapse
Affiliation(s)
- Sara Rachik
- Univ. Littoral Côte d’Opale, CNRS, Univ. Lille, UMR, LOG, Laboratoire d'Océanologie et de Géosciences, Lille, France
| | - Urania Christaki
- Univ. Littoral Côte d’Opale, CNRS, Univ. Lille, UMR, LOG, Laboratoire d'Océanologie et de Géosciences, Lille, France
| | - Luen Luen Li
- Univ. Littoral Côte d’Opale, CNRS, Univ. Lille, UMR, LOG, Laboratoire d'Océanologie et de Géosciences, Lille, France
| | - Savvas Genitsaris
- International Hellenic University, School of Economics, Business Administration & Legal Studies, Thessaloniki, Greece
| | - Elsa Breton
- Univ. Littoral Côte d’Opale, CNRS, Univ. Lille, UMR, LOG, Laboratoire d'Océanologie et de Géosciences, Lille, France
| | - Sébastien Monchy
- Univ. Littoral Côte d’Opale, CNRS, Univ. Lille, UMR, LOG, Laboratoire d'Océanologie et de Géosciences, Lille, France
- * E-mail:
| |
Collapse
|
20
|
Li R, Jiao N, Warren A, Xu D. Changes in community structure of active protistan assemblages from the lower Pearl River to coastal Waters of the South China Sea. Eur J Protistol 2018; 63:72-82. [DOI: 10.1016/j.ejop.2018.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/20/2022]
|
21
|
Tucker SJ, McManus GB, Katz LA, Grattepanche JD. Distribution of Abundant and Active Planktonic Ciliates in Coastal and Slope Waters Off New England. Front Microbiol 2017; 8:2178. [PMID: 29250036 PMCID: PMC5715329 DOI: 10.3389/fmicb.2017.02178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 10/23/2017] [Indexed: 11/18/2022] Open
Abstract
Despite their important role of linking microbial and classic marine food webs, data on biogeographical patterns of microbial eukaryotic grazers are limited, and even fewer studies have used molecular tools to assess active (i.e., those expressing genes) community members. Marine ciliate diversity is believed to be greatest at the chlorophyll maximum, where there is an abundance of autotrophic prey, and is often assumed to decline with depth. Here, we assess the abundant (DNA) and active (RNA) marine ciliate communities throughout the water column at two stations off the New England coast (Northwest Atlantic)—a coastal station 43 km from shore (40 m depth) and a slope station 135 km off shore (1,000 m). We analyze ciliate communities using a DNA fingerprinting technique, Denaturing Gradient Gel Electrophoresis (DGGE), which captures patterns of abundant community members. We compare estimates of ciliate communities from SSU-rDNA (abundant) and SSU-rRNA (active) and find complex patterns throughout the water column, including many active lineages below the photic zone. Our analyses reveal (1) a number of widely-distributed taxa that are both abundant and active; (2) considerable heterogeneity in patterns of presence/absence of taxa in offshore samples taken 50 m apart throughout the water column; and (3) three distinct ciliate assemblages based on position from shore and depth. Analysis of active (RNA) taxa uncovers biodiversity hidden to traditional DNA-based approaches (e.g., clone library, rDNA amplicon studies).
Collapse
Affiliation(s)
- Sarah J Tucker
- Department of Biological Sciences, Smith College, Northampton, MA, United States
| | - George B McManus
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA, United States.,Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, United States
| | | |
Collapse
|
22
|
Terashima M, Umezawa K, Mori S, Kojima H, Fukui M. Microbial Community Analysis of Colored Snow from an Alpine Snowfield in Northern Japan Reveals the Prevalence of Betaproteobacteria with Snow Algae. Front Microbiol 2017; 8:1481. [PMID: 28824603 PMCID: PMC5545588 DOI: 10.3389/fmicb.2017.01481] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/24/2017] [Indexed: 02/01/2023] Open
Abstract
Psychrophilic algae blooms can be observed coloring the snow during the melt season in alpine snowfields. These algae are important primary producers on the snow surface environment, supporting the microbial community that coexists with algae, which includes heterotrophic bacteria and fungi. In this study, we analyzed the microbial community of green and red-colored snow containing algae from Mount Asahi, Japan. We found that Chloromonas spp. are the dominant algae in all samples analyzed, and Chlamydomonas is the second-most abundant genus in the red snow. For the bacterial community profile, species belonging to the subphylum Betaproteobacteria were frequently detected in both green and red snow, while members of the phylum Bacteroidetes were also prominent in red snow. Furthermore, multiple independently obtained strains of Chloromonas sp. from inoculates of red snow resulted in the growth of Betaproteobacteria with the alga and the presence of bacteria appears to support growth of the xenic algal cultures under laboratory conditions. The dominance of Betaproteobacteria in algae-containing snow in combination with the detection of Chloromonas sp. with Betaproteobacteria strains suggest that these bacteria can utilize the available carbon source in algae-rich environments and may in turn promote algal growth.
Collapse
Affiliation(s)
- Mia Terashima
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| | - Kazuhiro Umezawa
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| | - Shoichi Mori
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| |
Collapse
|
23
|
Xu D, Li R, Hu C, Sun P, Jiao N, Warren A. Microbial Eukaryote Diversity and Activity in the Water Column of the South China Sea Based on DNA and RNA High Throughput Sequencing. Front Microbiol 2017; 8:1121. [PMID: 28659910 PMCID: PMC5469884 DOI: 10.3389/fmicb.2017.01121] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/01/2017] [Indexed: 12/20/2022] Open
Abstract
To study the diversity and metabolic activity of microbial eukaryotes in the water column of the South China Sea, genomic DNA and RNA were co-extracted from samples collected down to bathyal depth at two sites. V9 regions of both SSU rRNA gene and its transcript (cDNA) were amplified and sequenced using high throughput sequencing. Our study revealed: (1) DNA and RNA datasets showed significant differences in microbial eukaryote community composition, with the variability between the two datasets for the same sample exceeding that between samples within each dataset, indicating that nucleic acid source overrode environmental factors in determining the composition of microeukaryotes; (2) despite the differences in community composition between the two datasets, both DNA and RNA revealed similar depth-related distribution patterns of microbial eukaryotes; (3) using the ratio of RNA: DNA as a proxy of relative metabolic activity, a depth-related pattern was found for the relative metabolic activity of some but not all groups of microbial eukaryotes, with the highest activity for the groups with depth-related pattern usually found in the middle water layers; and (4) the presence of live and active photoautotrophic microbial eukaryotes in the deep ocean was confirmed, indicating that they play an important role in controlling the deep-sea organic carbon pool. Overall, our study sheds light on the diversity and activity of microbial eukaryotes in the water column of a tropical oligotrophic ocean and their potential contributions in the downward transportation of organic material from the surface ocean to the deep via the biological pump.
Collapse
Affiliation(s)
- Dapeng Xu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| | - Ran Li
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| | - Chen Hu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| | - Ping Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen UniversityXiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| | - Alan Warren
- Department of Life Sciences, Natural History MuseumLondon, United Kingdom
| |
Collapse
|
24
|
Laroche O, Wood SA, Tremblay LA, Lear G, Ellis JI, Pochon X. Metabarcoding monitoring analysis: the pros and cons of using co-extracted environmental DNA and RNA data to assess offshore oil production impacts on benthic communities. PeerJ 2017; 5:e3347. [PMID: 28533985 PMCID: PMC5437860 DOI: 10.7717/peerj.3347] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/22/2017] [Indexed: 11/20/2022] Open
Abstract
Sequencing environmental DNA (eDNA) is increasingly being used as an alternative to traditional morphological-based identification to characterize biological assemblages and monitor anthropogenic impacts in marine environments. Most studies only assess eDNA which, compared to eRNA, can persist longer in the environment after cell death. Therefore, eRNA may provide a more immediate census of the environment due to its relatively weaker stability, leading some researchers to advocate for the use of eRNA as an additional, or perhaps superior proxy for portraying ecological changes. A variety of pre-treatment techniques for screening eDNA and eRNA derived operational taxonomic units (OTUs) have been employed prior to statistical analyses, including removing singleton taxa (i.e., OTUs found only once) and discarding those not present in both eDNA and eRNA datasets. In this study, we used bacterial (16S ribosomal RNA gene) and eukaryotic (18S ribosomal RNA gene) eDNA- and eRNA-derived data from benthic communities collected at increasing distances along a transect from an oil production platform (Taranaki, New Zealand). Macro-infauna (visual classification of benthic invertebrates) and physico-chemical data were analyzed in parallel. We tested the effect of removing singleton taxa, and removing taxa not present in the eDNA and eRNA libraries from the same environmental sample (trimmed by shared OTUs), by comparing the impact of the oil production platform on alpha- and beta-diversity of the eDNA/eRNA-based biological assemblages, and by correlating these to the morphologically identified macro-faunal communities and the physico-chemical data. When trimmed by singletons, presence/absence information from eRNA data represented the best proxy to detect changes on species diversity for both bacteria and eukaryotes. However, assessment of quantitative beta-diversity from read abundance information of bacteria eRNA did not, contrary to eDNA, reveal any impact from the oil production activity. Overall, the data appeared more robust when trimmed by shared OTUs, showing a greater effect of the platform on alpha- and beta-diversity. Trimming by shared OTUs likely removes taxa derived from legacy DNA and technical artefacts introduced through reverse transcriptase, polymerase-chain-reaction and sequencing. Findings from our scoping study suggest that metabarcoding-based biomonitoring surveys should, if funds, time and expertise allow, be assessed using both eDNA and eRNA products.
Collapse
Affiliation(s)
- Olivier Laroche
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Environmental Technologies, Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Susanna A Wood
- Environmental Technologies, Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.,Environmental Research Institute, University of Waikato, Hamilton, New Zealand
| | - Louis A Tremblay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Environmental Technologies, Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanne I Ellis
- Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Xavier Pochon
- Environmental Technologies, Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.,Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
25
|
Debroas D, Domaizon I, Humbert JF, Jardillier L, Lepère C, Oudart A, Taïb N. Overview of freshwater microbial eukaryotes diversity: a first analysis of publicly available metabarcoding data. FEMS Microbiol Ecol 2017; 93:3059202. [DOI: 10.1093/femsec/fix023] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/28/2017] [Indexed: 12/21/2022] Open
|
26
|
Capo E, Debroas D, Arnaud F, Guillemot T, Bichet V, Millet L, Gauthier E, Massa C, Develle AL, Pignol C, Lejzerowicz F, Domaizon I. Long-term dynamics in microbial eukaryotes communities: a palaeolimnological view based on sedimentary DNA. Mol Ecol 2016; 25:5925-5943. [DOI: 10.1111/mec.13893] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/08/2016] [Accepted: 10/07/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Eric Capo
- CARRTEL; INRA; Université de Savoie Mont Blanc; 74200 Thonon-les-bains France
| | - Didier Debroas
- Université Clermont Auvergne; Laboratoire “Microorganismes: Génome et Environnement”; Université Blaise Pascal; BP 10448 F-63000 Clermont-Ferrand France
- CNRS; UMR 6023; LMGE; Campus Universitaire des Cézeaux 63171 Aubière France
| | - Fabien Arnaud
- CNRS; UMR 5204 EDYTEM; Université Savoie Mont Blanc; 5 Boulevard de la mer Caspienne, 73376 Le Bourget du Lac Cedex France
| | - Typhaine Guillemot
- Laboratoire Chrono-Environnement; UMR 6249 CNRS; Université de Bourgogne Franche-Comté; 16 Route de Gray, 25000 Besançon France
| | - Vincent Bichet
- Laboratoire Chrono-Environnement; UMR 6249 CNRS; Université de Bourgogne Franche-Comté; 16 Route de Gray, 25000 Besançon France
| | - Laurent Millet
- Laboratoire Chrono-Environnement; UMR 6249 CNRS; Université de Bourgogne Franche-Comté; 16 Route de Gray, 25000 Besançon France
| | - Emilie Gauthier
- Laboratoire Chrono-Environnement; UMR 6249 CNRS; Université de Bourgogne Franche-Comté; 16 Route de Gray, 25000 Besançon France
| | - Charly Massa
- Laboratoire Chrono-Environnement; UMR 6249 CNRS; Université de Bourgogne Franche-Comté; 16 Route de Gray, 25000 Besançon France
| | - Anne-Lise Develle
- CNRS; UMR 5204 EDYTEM; Université Savoie Mont Blanc; 5 Boulevard de la mer Caspienne, 73376 Le Bourget du Lac Cedex France
| | - Cécile Pignol
- CNRS; UMR 5204 EDYTEM; Université Savoie Mont Blanc; 5 Boulevard de la mer Caspienne, 73376 Le Bourget du Lac Cedex France
| | - Franck Lejzerowicz
- Department of Genetics and Evolution; University of Geneva; 4 Boulevard d'Yvoy, 1205 Geneva Switzerland
| | - Isabelle Domaizon
- CARRTEL; INRA; Université de Savoie Mont Blanc; 74200 Thonon-les-bains France
| |
Collapse
|
27
|
Schiaffino MR, Lara E, Fernández LD, Balagué V, Singer D, Seppey CCW, Massana R, Izaguirre I. Microbial eukaryote communities exhibit robust biogeographical patterns along a gradient of Patagonian and Antarctic lakes. Environ Microbiol 2016; 18:5249-5264. [DOI: 10.1111/1462-2920.13566] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/30/2016] [Indexed: 01/16/2023]
Affiliation(s)
- M. Romina Schiaffino
- Centro de Investigaciones y transferencia del Noroeste de la Provincia de Buenos Aires; CONICET, UNNOBA; Junín 6000 Argentina
| | - Enrique Lara
- Laboratory of Soil Biodiversity; University of Neuchâtel; Rue Emile Argand 11 Neuchâtel CH-2000 Switzerland
| | - Leonardo D. Fernández
- Laboratory of Soil Biodiversity; University of Neuchâtel; Rue Emile Argand 11 Neuchâtel CH-2000 Switzerland
- Laboratorio de Ecología Evolutiva y Filoinformática, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas; Universidad de Concepción; Barrio Universitario s/n Concepción Chile
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Sede Concepción; Chacabuco 539 Concepción Chile
| | - Vanessa Balagué
- Institut de Ciències del Mar, CSIC; Passeig Marítim de la Barceloneta 37-49 Barcelona Catalonia 08003 Spain
| | - David Singer
- Laboratory of Soil Biodiversity; University of Neuchâtel; Rue Emile Argand 11 Neuchâtel CH-2000 Switzerland
| | - Christophe C. W. Seppey
- Laboratory of Soil Biodiversity; University of Neuchâtel; Rue Emile Argand 11 Neuchâtel CH-2000 Switzerland
| | - Ramon Massana
- Institut de Ciències del Mar, CSIC; Passeig Marítim de la Barceloneta 37-49 Barcelona Catalonia 08003 Spain
| | - Irina Izaguirre
- Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires. Ciudad Universitaria; Buenos Aires C1428EHA Argentina
| |
Collapse
|
28
|
Comeau AM, Vincent WF, Bernier L, Lovejoy C. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci Rep 2016; 6:30120. [PMID: 27444055 PMCID: PMC4957111 DOI: 10.1038/srep30120] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/29/2016] [Indexed: 11/08/2022] Open
Abstract
In aquatic environments, fungal communities remain little studied despite their taxonomic and functional diversity. To extend the ecological coverage of this group, we conducted an in-depth analysis of fungal sequences within our collection of 3.6 million V4 18S rRNA pyrosequences originating from 319 individual marine (including sea-ice) and freshwater samples from libraries generated within diverse projects studying Arctic and temperate biomes in the past decade. Among the ~1.7 million post-filtered reads of highest taxonomic and phylogenetic quality, 23,263 fungal sequences were identified. The overall mean proportion was 1.35%, but with large variability; for example, from 0.01 to 59% of total sequences for Arctic seawater samples. Almost all sample types were dominated by Chytridiomycota-like sequences, followed by moderate-to-minor contributions of Ascomycota, Cryptomycota and Basidiomycota. Species and/or strain richness was high, with many novel sequences and high niche separation. The affinity of the most common reads to phytoplankton parasites suggests that aquatic fungi deserve renewed attention for their role in algal succession and carbon cycling.
Collapse
Affiliation(s)
- André M. Comeau
- Institut de Biologie Intégrative et des Systèmes (IBIS) and Centre d’Étude de la Forêt (CEF), Université Laval, Québec, Canada
| | - Warwick F. Vincent
- Centre d’Études Nordiques (CEN), Takuvik Joint International Laboratory (CNRS UMI-3376) and Département de Biologie, Université Laval, Québec, Canada
| | - Louis Bernier
- Institut de Biologie Intégrative et des Systèmes (IBIS) and Centre d’Étude de la Forêt (CEF), Université Laval, Québec, Canada
| | - Connie Lovejoy
- Institut de Biologie Intégrative et des Systèmes (IBIS), Takuvik Joint International Laboratory (CNRS UMI-3376) and Département de Biologie, Université Laval, Québec, Canada
| |
Collapse
|
29
|
Przytulska A, Bartosiewicz M, Rautio M, Dufresne F, Vincent WF. Climate Effects on High Latitude Daphnia via Food Quality and Thresholds. PLoS One 2015; 10:e0126231. [PMID: 25970289 PMCID: PMC4430472 DOI: 10.1371/journal.pone.0126231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/31/2015] [Indexed: 11/18/2022] Open
Abstract
Climate change is proceeding rapidly at high northern latitudes and may have a variety of direct and indirect effects on aquatic food webs. One predicted effect is the potential shift in phytoplankton community structure towards increased cyanobacterial abundance. Given that cyanobacteria are known to be a nutritionally poor food source, we hypothesized that such a shift would reduce the efficiency of feeding and growth of northern zooplankton. To test this hypothesis, we first isolated a clone of Daphnia pulex from a permafrost thaw pond in subarctic Québec, and confirmed that it was triploid but otherwise genetically similar to a diploid, reference clone of the same species isolated from a freshwater pond in southern Québec. We used a controlled flow-through system to investigate the direct effect of temperature and indirect effect of subarctic picocyanobacteria (Synechococcus) on threshold food concentrations and growth rate of the high latitude clone. We also compared the direct effect of temperature on both Daphnia clones feeding on eukaryotic picoplankton (Nannochloropsis). The high latitude clone had a significantly lower food threshold for growth than the temperate clone at both 18 and 26°C, implying adaptation to lower food availability even under warmer conditions. Polyunsaturated fatty acids were present in the picoeukaryote but not the cyanobacterium, confirming the large difference in food quality. The food threshold for growth of the high latitude Daphnia was 3.7 (18°C) to 4.2 (26°C) times higher when fed Synechococcus versus Nannochloropsis, and there was also a significant negative effect of increased temperature and cyanobacterial food on zooplankton fatty acid content and composition. The combined effect of temperature and food quality on the performance of the high latitude Daphnia was greater than their effects added separately, further indicating the potentially strong indirect effects of climate warming on aquatic food web processes.
Collapse
Affiliation(s)
- Anna Przytulska
- Centre d’études nordiques (CEN), Université Laval, Québec, Québec, Canada
- Département de biologie, Université Laval, Québec, Québec, Canada
- * E-mail:
| | - Maciej Bartosiewicz
- Centre d’études nordiques (CEN), Université Laval, Québec, Québec, Canada
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, Québec, Canada
| | - Milla Rautio
- Centre d’études nordiques (CEN), Université Laval, Québec, Québec, Canada
- Department of Fundamental Sciences, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada
| | - France Dufresne
- Biology, Chemistry and Geography Department, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Warwick F. Vincent
- Centre d’études nordiques (CEN), Université Laval, Québec, Québec, Canada
- Département de biologie, Université Laval, Québec, Québec, Canada
| |
Collapse
|
30
|
Debroas D, Hugoni M, Domaizon I. Evidence for an active rare biosphere within freshwater protists community. Mol Ecol 2015; 24:1236-47. [DOI: 10.1111/mec.13116] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 02/13/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Didier Debroas
- Laboratoire ‘Microorganismes: Génome et Environnement’; Clermont Université; Université Blaise Pascal; BP 10448 F-63000 Clermont-Ferrand France
- CNRS; UMR 6023; LMGE; Aubiere F-63171 France
| | - Mylène Hugoni
- Laboratoire ‘Microorganismes: Génome et Environnement’; Clermont Université; Université Blaise Pascal; BP 10448 F-63000 Clermont-Ferrand France
- CNRS; UMR 6023; LMGE; Aubiere F-63171 France
| | - Isabelle Domaizon
- INRA; UMR 42 Centre Alpin de Recherche sur les Réseaux Trophiques et Ecosystèmes Limniques; F-74200 Thonon Les Bains France
| |
Collapse
|
31
|
Kammerlander B, Breiner HW, Filker S, Sommaruga R, Sonntag B, Stoeck T. High diversity of protistan plankton communities in remote high mountain lakes in the European Alps and the Himalayan mountains. FEMS Microbiol Ecol 2015; 91:fiv010. [PMID: 25764458 PMCID: PMC4399440 DOI: 10.1093/femsec/fiv010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2015] [Indexed: 11/13/2022] Open
Abstract
We analyzed the genetic diversity (V4 region of the 18S rRNA) of planktonic microbial eukaryotes in four high mountain lakes including two remote biogeographic regions (the Himalayan mountains and the European Alps) and distinct habitat types (clear and glacier-fed turbid lakes). The recorded high genetic diversity in these lakes was far beyond of what is described from high mountain lake plankton. In total, we detected representatives from 66 families with the main taxon groups being Alveolata (55.0% OTUs 97%, operational taxonomic units), Stramenopiles (34.0% OTUs 97%), Cryptophyta (4.0% OTUs 97%), Chloroplastida (3.6% OTUs 97%) and Fungi (1.7% OTUs 97%). Centrohelida, Choanomonada, Rhizaria, Katablepharidae and Telonema were represented by <1% OTUs 97%. Himalayan lakes harbored a higher plankton diversity compared to the Alpine lakes (Shannon index). Community structures were significantly different between lake types and biogeographic regions (Fisher exact test, P < 0.01). Network analysis revealed that more families of the Chloroplastida (10 vs 5) and the Stramenopiles (14 vs 8) were found in the Himalayan lakes than in the Alpine lakes and none of the fungal families was shared between them. Biogeographic aspects as well as ecological factors such as water turbidity may structure the microbial eukaryote plankton communities in such remote lakes.
Collapse
Affiliation(s)
- Barbara Kammerlander
- University of Innsbruck, Institute of Ecology, Lake and Glacier Research Group, Technikerstrasse 25, 6020 Innsbruck, Austria University of Innsbruck, Research Institute for Limnology, Mondsee, Ciliate Ecology and Taxonomy Group, Mondseestrasse 9, 5310 Mondsee, Austria
| | - Hans-Werner Breiner
- University of Kaiserslautern, Department of Ecology, Gottlieb-Daimler-Strasse Building 14, 67663 Kaiserslautern, Germany
| | - Sabine Filker
- University of Kaiserslautern, Department of Ecology, Gottlieb-Daimler-Strasse Building 14, 67663 Kaiserslautern, Germany
| | - Ruben Sommaruga
- University of Innsbruck, Institute of Ecology, Lake and Glacier Research Group, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Bettina Sonntag
- University of Innsbruck, Research Institute for Limnology, Mondsee, Ciliate Ecology and Taxonomy Group, Mondseestrasse 9, 5310 Mondsee, Austria
| | - Thorsten Stoeck
- University of Kaiserslautern, Department of Ecology, Gottlieb-Daimler-Strasse Building 14, 67663 Kaiserslautern, Germany
| |
Collapse
|
32
|
Wang J, Wang F, Chu L, Wang H, Zhong Z, Liu Z, Gao J, Duan H. High genetic diversity and novelty in eukaryotic plankton assemblages inhabiting saline lakes in the Qaidam basin. PLoS One 2014; 9:e112812. [PMID: 25401703 PMCID: PMC4234628 DOI: 10.1371/journal.pone.0112812] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 10/19/2014] [Indexed: 12/21/2022] Open
Abstract
Saline lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. We performed a comprehensive analysis of the genetic diversity (18S rRNA gene) of the planktonic microbial eukaryotes (nano- and picoeukaryotes) in six different inland saline lakes located in the Qaidam Basin. The novelty level are high, with about 11.23% of the whole dataset showing <90% identity to any previously reported sequence in GenBank. At least 4 operational taxonomic units (OTUs) in mesosaline lakes, while up to eighteen OTUs in hypersaline lakes show very low CCM and CEM scores, indicating that these sequences are highly distantly related to any existing sequence. Most of the 18S rRNA gene sequence reads obtained in investigated mesosaline lakes is closely related to Holozoa group (48.13%), whereas Stramenopiles (26.65%) and Alveolates (10.84%) are the next most common groups. Hypersaline lakes in the Qaidam Basin are also dominated by Holozoa group, accounting for 26.65% of the total number of sequence reads. Notably, Chlorophyta group are only found in high abundance in Lake Gasikule (28.00%), whereas less represented in other hypersaline lakes such as Gahai (0.50%) and Xiaochaidan (1.15%). Further analysis show that the compositions of planktonic eukaryotic assemblages are also most variable between different sampling sites in the same lake. Out of the parameters, four show significant correlation to this CCA: altitude, calcium, sodium and potassium concentrations. Overall, this study shows important gaps in the current knowledge about planktonic microbial eukaryotes inhabiting Qaidam Basin (hyper) saline water bodies. The identified diversity and novelty patterns among eukaryotic plankton assemblages in saline lake are of great importance for understanding and interpreting their ecology and evolution.
Collapse
Affiliation(s)
- Jiali Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
- Institute of Shandong River Wetlands, Laiwu, China
| | - Fang Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
- * E-mail:
| | - Limin Chu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
- College of Hydrology and Water Resource, Hohai University, Nanjing, China
| | - Hao Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Zhiping Zhong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhipei Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|