1
|
Blair J, Rathee G, Puertas-Segura A, Pérez LM, Tzanov T. Advanced water treatment with antimicrobial silver-lignin nanoparticles sonochemically-grafted on cork granulates in activated carbon packed-bed columns. ENVIRONMENTAL RESEARCH 2025; 279:121783. [PMID: 40340009 DOI: 10.1016/j.envres.2025.121783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/27/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Cork biomass (C) was grafted with antimicrobial silver phenolated-lignin nanoparticles (AgPLN) using a fast and simple sono-enzymatical process. The AgPLN-functionalised cork (C-AgPLN) exhibited potent antibacterial and antibiofilm properties against the common waterborne pathogens, Escherichia coli and Staphylococcus aureus. Its effects on bacterial cells included alterations in cell morphology and structure, as revealed by electron microscopy (SEM and TEM) and fluorescence microscopy (LIVE/DEAD staining). These effects also included increased oxidative stress (80 % and 31 % in E. coli and S. aureus, respectively), >99 % reduction in viability, a 60 % reduction in E. coli biofilm, and a 44 % reduction in S. aureus biofilm, as quantified by spectroscopic methods (ROS measurement, XTT metabolic activity test, and crystal violet staining). C-AgPLN also demonstrates anti-quorum sensing properties against both Gram-negative and Gram-positive bacteria, crucial for disrupting bacterial communication, thereby preventing biofilm formation. Further, C-AgPLN was combined with activated carbon (AC) at different proportions (1 %, 2 %, and 4 % w/w) in lab-scale packed-bed columns for the disinfection of water contaminated with E. coli or S. aureus. Columns containing 4 % w/w C-AgPLN demonstrated 100 % disinfection efficiency after 1 h of operation in recirculation mode (flow rate = 8.6 mL/min), and were reusable for up to 2 and 4 cycles without losing their disinfection capacity. Noteworthy, silver ion (Ag+) release was not detected in the effluent after 240 h columns operation (ICP-MS detection limit of <0.07 μg/L), confirming the environmental safety on the novel water-disinfection approach. Given that adsorption is a well-established method for advanced wastewater treatment, these results underscore the potential of nano-enabled AC-packed columns for safely and efficiently controlling the spread of water-associated pathogens.
Collapse
Affiliation(s)
- Jeniffer Blair
- Grup de Biotecnologia Molecular i Industrial, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), 08222, Terrassa, Spain
| | - Garima Rathee
- Grup de Biotecnologia Molecular i Industrial, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), 08222, Terrassa, Spain
| | - Antonio Puertas-Segura
- Grup de Biotecnologia Molecular i Industrial, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), 08222, Terrassa, Spain
| | - Leonardo Martín Pérez
- Grup de Biotecnologia Molecular i Industrial, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), 08222, Terrassa, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), 08222, Terrassa, Spain.
| |
Collapse
|
2
|
Ledger EVK, Edwards AM. Host-induced cell wall remodeling impairs opsonophagocytosis of Staphylococcus aureus by neutrophils. mBio 2024; 15:e0164324. [PMID: 39041819 PMCID: PMC11323798 DOI: 10.1128/mbio.01643-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
The bacterial pathogen Staphylococcus aureus responds to the host environment by increasing the thickness of its cell wall. However, the impact of cell wall thickening on susceptibility to host defenses is unclear. Using bacteria incubated in human serum, we show that host-induced increases in cell wall thickness led to a reduction in the exposure of bound antibody and complement and a corresponding reduction in phagocytosis and killing by neutrophils. The exposure of opsonins bound to protein antigens or lipoteichoic acid (LTA) was most significantly reduced, while opsonization by IgG against wall teichoic acid or peptidoglycan was largely unaffected. Partial digestion of accumulated cell wall using the enzyme lysostaphin restored opsonin exposure and promoted phagocytosis and killing. Concordantly, the antibiotic fosfomycin inhibited cell wall remodeling and maintained the full susceptibility of S. aureus to opsonophagocytic killing by neutrophils. These findings reveal that host-induced changes to the S. aureus cell wall reduce the ability of the immune system to detect and kill this pathogen through reduced exposure of protein- and LTA-bound opsonins. IMPORTANCE Understanding how bacteria adapt to the host environment is critical in determining fundamental mechanisms of immune evasion, pathogenesis, and the identification of targets for new therapeutic approaches. Previous work demonstrated that Staphylococcus aureus remodels its cell envelope in response to host factors and we hypothesized that this may affect recognition by antibodies and thus killing by immune cells. As expected, incubation of S. aureus in human serum resulted in rapid binding of antibodies. However, as bacteria adapted to the serum, the increase in cell wall thickness resulted in a significant reduction in exposure of bound antibodies. This reduced antibody exposure, in turn, led to reduced killing by human neutrophils. Importantly, while antibodies bound to some cell surface structures became obscured, this was not the case for those bound to wall teichoic acid, which may have important implications for vaccine design.
Collapse
Affiliation(s)
- Elizabeth V. K. Ledger
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Andrew M. Edwards
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Vadakkan K, Sathishkumar K, Kuttiyachan Urumbil S, Ponnenkunnathu Govindankutty S, Kumar Ngangbam A, Devi Nongmaithem B. A review of chemical signaling mechanisms underlying quorum sensing and its inhibition in Staphylococcus aureus. Bioorg Chem 2024; 148:107465. [PMID: 38761705 DOI: 10.1016/j.bioorg.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Staphylococcus aureus is a significant bacterium responsible for multiple infections and is a primary cause of fatalities among patients in hospital environments. The advent of pathogenic bacteria such as methicillin-resistant S. aureus revealed the shortcomings of employing antibiotics to treat bacterial infectious diseases. Quorum sensing enhances S. aureus's survivability through signaling processes. Targeting the key components of quorum sensing has drawn much interest nowadays as a promising strategy for combating infections caused by bacteria. Concentrating on the accessory gene regulator quorum-sensing mechanism is the most commonly suggested anti-virulence approach for S.aureus. Quorum quenching is a common strategy for controlling illnesses triggered by microorganisms since it reduces the pathogenicity of bacteria and improves bacterial biofilm susceptibility to antibiotics, thus providing an intriguing prospect for drug discovery. Quorum sensing inhibition reduces selective stresses and constrains the emergence of antibiotic resistance while limiting bacterial pathogenicity. This review examines the quorum sensing mechanisms involved in S. aureus, quorum sensing targets and gene regulation, environmental factors affecting quorum sensing, quorum sensing inhibition, natural products as quorum sensing inhibitory agents and novel therapeutical strategies to target quorum sensing in S. aureus as drug developing technique to augment conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | | |
Collapse
|
4
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
5
|
Lee J, Mannan AA, Miyano T, Irvine AD, Tanaka RJ. In Silico Elucidation of Key Drivers of Staphyloccocus aureus- Staphyloccocus epidermidis-Induced Skin Damage in Atopic Dermatitis Lesions. JID INNOVATIONS 2024; 4:100269. [PMID: 38766490 PMCID: PMC11101946 DOI: 10.1016/j.xjidi.2024.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 05/22/2024] Open
Abstract
Staphylococcus aureus (SA) colonizes and can damage skin in atopic dermatitis lesions, despite being commonly found with Staphylococcus epidermidis (SE), a commensal that can inhibit SA's virulence and kill SA. In this study, we developed an in silico model, termed a virtual skin site, describing the dynamic interplay between SA, SE, and the skin barrier in atopic dermatitis lesions to investigate the mechanisms driving skin damage by SA and SE. We generated 106 virtual skin sites by varying model parameters to represent different skin physiologies and bacterial properties. In silico analysis revealed that virtual skin sites with no skin damage in the model were characterized by parameters representing stronger SA and SE growth attenuation than those with skin damage. This inspired an in silico treatment strategy combining SA-killing with an enhanced SA-SE growth attenuation, which was found through simulations to recover many more damaged virtual skin sites to a non-damaged state, compared with SA-killing alone. This study demonstrates that in silico modelling can help elucidate the key factors driving skin damage caused by SA-SE colonization in atopic dermatitis lesions and help propose strategies to control it, which we envision will contribute to the design of promising treatments for clinical studies.
Collapse
Affiliation(s)
- Jamie Lee
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ahmad A. Mannan
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Takuya Miyano
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Alan D. Irvine
- Clinical Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Reiko J. Tanaka
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Ishak MI, Delint RC, Liu X, Xu W, Tsimbouri PM, Nobbs AH, Dalby MJ, Su B. Nanotextured titanium inhibits bacterial activity and supports cell growth on 2D and 3D substrate: A co-culture study. BIOMATERIALS ADVANCES 2024; 158:213766. [PMID: 38232578 PMCID: PMC7617543 DOI: 10.1016/j.bioadv.2024.213766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Medical implant-associated infections pose a significant challenge to modern medicine, with aseptic loosening and bacterial infiltration being the primary causes of implant failure. While nanostructured surfaces have demonstrated promising antibacterial properties, the translation of their efficacy from 2D to 3D substrates remains a challenge. Here, we used scalable alkaline etching to fabricate nanospike and nanonetwork topologies on 2D and laser powder-bed fusion printed 3D titanium. The fabricated surfaces were compared with regard to their antibacterial properties against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and mesenchymal stromal cell responses with and without the presence of bacteria. Finite elemental analysis assessed the mechanical properties and permeability of the 3D substrate. Our findings suggest that 3D nanostructured surfaces have potential to both prevent implant infections and allow host cell integration. This work represents a significant step towards developing effective and scalable fabrication methods on 3D substrates with consistent and reproducible antibacterial activity, with important implications for the future of medical implant technology.
Collapse
Affiliation(s)
- Mohd I Ishak
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK; School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Rosalia Cuahtecontzi Delint
- Centre for the Cellular Microenvironment, School of Biomedical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Xiayi Liu
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Wei Xu
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, School of Biomedical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Biomedical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Bo Su
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK.
| |
Collapse
|
7
|
Williams P, Hill P, Bonev B, Chan WC. Quorum-sensing, intra- and inter-species competition in the staphylococci. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001381. [PMID: 37578829 PMCID: PMC10482373 DOI: 10.1099/mic.0.001381] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
In Gram-positive bacteria such as Staphylococcus aureus and the coagulase-negative staphylococci (CoNS), the accessory gene regulator (agr) is a highly conserved but polymorphic quorum-sensing system involved in colonization, virulence and biofilm development. Signalling via agr depends on the interaction of an autoinducing peptide (AIP) with AgrC, a transmembrane sensor kinase that, once phosphorylated activates the response regulator AgrA. This in turn autoinduces AIP biosynthesis and drives target gene expression directly via AgrA or via the post-transcriptional regulator, RNAIII. In this review we describe the molecular mechanisms underlying the agr-mediated generation of, and response to, AIPs and the molecular basis of AIP-dependent activation and inhibition of AgrC. How the environment impacts on agr functionality is considered and the consequences of agr dysfunction for infection explored. We also discuss the concept of AIP-driven competitive interference between S. aureus and the CoNS and its anti-infective potential.
Collapse
Affiliation(s)
- Paul Williams
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Phil Hill
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Boyan Bonev
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Weng C. Chan
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
8
|
Kamer AMA, Abdelaziz AA, Al-Monofy KB, Al-Madboly LA. Antibacterial, antibiofilm, and anti-quorum sensing activities of pyocyanin against methicillin-resistant Staphylococcus aureus: in vitro and in vivo study. BMC Microbiol 2023; 23:116. [PMID: 37095436 PMCID: PMC10124065 DOI: 10.1186/s12866-023-02861-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) infections are considered a major public health problem, as the treatment options are restricted. Biofilm formation and the quorum sensing (QS) system play a pivotal role in S. aureus pathogenicity. Hence, this study was performed to explore the antibacterial effect of pyocyanin (PCN) on MRSA as well as its effect on MRSA biofilm and QS. RESULTS Data revealed that PCN exhibited strong antibacterial activity against all test MRSA isolates (n = 30) with a MIC value equal to 8 µg/ml. About 88% of MRSA biofilms were eradicated by PCN treatment using the crystal violet assay. The disruption of MRSA biofilm was confirmed using confocal laser scanning microscopy, which showed a reduction in bacterial viability (approximately equal to 82%) and biofilm thickness (approximately equal to 60%). Additionally, the disruption of the formation of microcolonies and the disturbance of the connection between bacterial cells in the MRSA biofilm after PCN treatment were examined by scanning electron microscopy. The 1/2 and 1/4 MICs of PCN exerted promising anti-QS activity without affecting bacterial viability; Agr QS-dependent virulence factors (hemolysin, protease, and motility), and the expression of agrA gene, decreased after PCN treatment. The in silico analysis confirmed the binding of PCN to the AgrA protein active site, which blocked its action. The in vivo study using the rat wound infection model confirmed the ability of PCN to modulate the biofilm and QS of MRSA isolates. CONCLUSION The extracted PCN seems to be a good candidate for treating MRSA infection through biofilm eradication and Agr QS inhibition.
Collapse
Affiliation(s)
- Amal M Abo Kamer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ahmed A Abdelaziz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Khaled B Al-Monofy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Lamiaa A Al-Madboly
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
9
|
Ishak MI, Jenkins J, Kulkarni S, Keller TF, Briscoe WH, Nobbs AH, Su B. Insights into complex nanopillar-bacteria interactions: Roles of nanotopography and bacterial surface proteins. J Colloid Interface Sci 2021; 604:91-103. [PMID: 34265695 DOI: 10.1016/j.jcis.2021.06.173] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 10/21/2022]
Abstract
Nanopillared surfaces have emerged as a promising strategy to combat bacterial infections on medical devices. However, the mechanisms that underpin nanopillar-induced rupture of the bacterial cell membrane remain speculative. In this study, we have tested three medically relevant poly(ethylene terephthalate) (PET) nanopillared-surfaces with well-defined nanotopographies against both Gram-negative and Gram-positive bacteria. Focused ion beam scanning electron microscopy (FIB-SEM) and contact mechanics analysis were utilised to understand the nanobiophysical response of the bacterial cell envelope to a single nanopillar. Given their importance to bacterial adhesion, the contribution of bacterial surface proteins to nanotopography-mediated cell envelope damage was also investigated. We found that, whilst cell envelope deformation was affected by the nanopillar tip diameter, the nanopillar density affected bacterial metabolic activities. Moreover, three different types of bacterial cell envelope deformation were observed upon contact of bacteria with the nanopillared surfaces. These were attributed to bacterial responses to cell wall stresses resulting from the high intrinsic pressure caused by the engagement of nanopillars by bacterial surface proteins. Such influences of bacterial surface proteins on the antibacterial action of nanopillars have not been previously reported. Our findings will be valuable to the improved design and fabrication of effective antibacterial surfaces.
Collapse
Affiliation(s)
- Mohd I Ishak
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK; School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - J Jenkins
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - S Kulkarni
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany
| | - T F Keller
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany; Physics Department, University of Hamburg, Hamburg, Germany
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Bo Su
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK.
| |
Collapse
|
10
|
Yi L, Dong X, Grenier D, Wang K, Wang Y. Research progress of bacterial quorum sensing receptors: Classification, structure, function and characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143031. [PMID: 33129525 DOI: 10.1016/j.scitotenv.2020.143031] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/16/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The microbial community is an important part of the natural ecosystem, and the quorum sensing system is a momentous communication tool for the microbial community to connect to the surrounding environment. Quorum sensing is a process of cell-cell communication that relies on the production, release, and detection of extracellular signaling molecules, which are called autoinducers. Quorum sensing systems in bacteria consist of two main components: a receptor protein and an autoinducer. The binding of autoinducer to its receptor activates the target gene, which then performs the corresponding function in bacteria. In a natural environment, different bacterial species possess quorum sensing receptors that are structurally and functionally different. So far, many bacterial quorum sensing receptors have been identified and the structure and function of some receptors have been characterized. There are many reviews about quorum sensing and quorum sensing receptors, but there are few reviews that describe various types of quorum sensing in different environments with receptors as the core. Therefore, we summarize the well-defined quorum sensing receptors involved in intra-species and inter-species cell-cell communication, and describe the structure, function, and characteristics of typical receptors for different types of quorum sensing. A systematic understanding of quorum sensing receptors will help researchers to further explore the signaling mechanism and regulation mechanism of quorum sensing system, provide help to clarify the role and function of quorum sensing in natural ecosystems, then provide theoretical basis for the discovery or synthesis of new targeted drugs that block quorum sensing.
Collapse
Affiliation(s)
- Li Yi
- College of Life Science, Luoyang Normal University, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Xiao Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | - Kaicheng Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.
| |
Collapse
|
11
|
Distinct clonal lineages and within-host diversification shape invasive Staphylococcus epidermidis populations. PLoS Pathog 2021; 17:e1009304. [PMID: 33544760 PMCID: PMC7891712 DOI: 10.1371/journal.ppat.1009304] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/18/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
S. epidermidis is a substantial component of the human skin microbiota, but also one of the major causes of nosocomial infection in the context of implanted medical devices. We here aimed to advance the understanding of S. epidermidis genotypes and phenotypes conducive to infection establishment. Furthermore, we investigate the adaptation of individual clonal lines to the infection lifestyle based on the detailed analysis of individual S. epidermidis populations of 23 patients suffering from prosthetic joint infection. Analysis of invasive and colonizing S. epidermidis provided evidence that invasive S. epidermidis are characterized by infection-supporting phenotypes (e.g. increased biofilm formation, growth in nutrient poor media and antibiotic resistance), as well as specific genetic traits. The discriminating gene loci were almost exclusively assigned to the mobilome. Here, in addition to IS256 and SCCmec, chromosomally integrated phages was identified for the first time. These phenotypic and genotypic features were more likely present in isolates belonging to sequence type (ST) 2. By comparing seven patient-matched nasal and invasive S. epidermidis isolates belonging to identical genetic lineages, infection-associated phenotypic and genotypic changes were documented. Besides increased biofilm production, the invasive isolates were characterized by better growth in nutrient-poor media and reduced hemolysis. By examining several colonies grown in parallel from each infection, evidence for genetic within-host population heterogeneity was obtained. Importantly, subpopulations carrying IS insertions in agrC, mutations in the acetate kinase (AckA) and deletions in the SCCmec element emerged in several infections. In summary, these results shed light on the multifactorial processes of infection adaptation and demonstrate how S. epidermidis is able to flexibly repurpose and edit factors important for colonization to facilitate survival in hostile infection environments. S. epidermidis is a substantial component of the human skin microbiota, but also a major cause of nosocomial infections related to implanted medical devices. While phenotypic and genotypic determinants supporting invasion were identified, none appears to be necessary. By analysis of S. epidermidis from prosthetic joint infections, we here show that adaptive events are of importance during the transition from commensalism to infection. Adaptation to the infectious lifestyle is characterised by the development of intra-clonal heterogeneity, increased biofilm formation and enhanced growth in iron-free and nutrient-poor media, as well as reduced production of hemolysins. Importantly, during infection subpopulations emerge that carry mutations in a number of genes, most importantly the acetate kinase (ackA) and the β-subunit of the RNA polymerase (rpoB), have deleted larger chromosomal fragments (e.g. within the SCCmec element) or IS insertions in AgrC, a component of the master quorum sensing system in S. epidermidis. These results shed light on the multifactorial processes of infection adaptation and demonstrate how S. epidermidis is able to flexibly repurpose and edit factors important for colonization to facilitate survival under hostile infection conditions. While mobilome associated factors are important for S. epidermidis invasive potential, the species possesses a multi-layered and complex ability for adaptation to hostile environments, supporting the progression to chronic implant-associated infections.
Collapse
|
12
|
Song HS, Bhatia SK, Choi TR, Gurav R, Kim HJ, Lee SM, Park SL, Lee HS, Joo HS, Kim W, Seo SO, Yang YH. Increased Antibiotic Resistance of Methicillin-Resistant Staphylococcus aureus USA300 Δ psm Mutants and a Complementation Study of Δ psm Mutants Using Synthetic Phenol-Soluble Modulins. J Microbiol Biotechnol 2021; 31:115-122. [PMID: 33046680 PMCID: PMC9705694 DOI: 10.4014/jmb.2007.07034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/11/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Phenol-soluble modulins (PSMs) are responsible for regulating biofilm formation, persister cell formation, pmtR expression, host cell lysis, and anti-bacterial effects. To determine the effect of psm deletion on methicillin-resistant Staphylococcus aureus, we investigated psm deletion mutants including Δpsmα, Δpsmβ, and Δpsmαβ;. These mutants exhibited increased β-lactam antibiotic resistance to ampicillin and oxacillin that was shown to be caused by increased Nacetylmannosamine kinase (nanK) mRNA expression, which regulates persister cell formation, leading to changes in the pattern of phospholipid fatty acids resulting in increased anteiso-C15:0, and increased membrane hydrophobicity with the deletion of PSMs. When synthetic PSMs were applied to Δpsmα and Δpsmβ mutants, treatment of Δpsmα with PSMα1-4 and Δpsmβ with PSMβ1-2 restored the sensitivity to oxacillin and slightly reduced the biofilm formation. Addition of a single fragment showed that α1, α2, α3, and β2 had an inhibiting effect on biofilms in Δpsmα; however, β1 showed an enhancing effect on biofilms in Δpsmβ. This study demonstrates a possible reason for the increased antibiotic resistance in psm mutants and the effect of PSMs on biofilm formation.
Collapse
Affiliation(s)
- Hun-Suk Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea,Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 1466, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Joong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sun Mi Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sol Lee Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hye Soo Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hwang-Soo Joo
- Department of Biotechnology, College of Engineering, Duksung Women's University, Seoul 0169, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seung-Oh Seo
- Department of Food Science and Nutrition, Catholic University of Korea, Bucheon 14662, Republic of Korea,S.O.Seo Fax: +82-2-2164-4316 E-mail:
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea,Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 1466, Republic of Korea,Corresponding authors Y.H.Yang Fax: +82-2-3437-8360 E-mail:
| |
Collapse
|
13
|
Jenkins J, Mantell J, Neal C, Gholinia A, Verkade P, Nobbs AH, Su B. Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress. Nat Commun 2020; 11:1626. [PMID: 32242015 PMCID: PMC7118135 DOI: 10.1038/s41467-020-15471-x] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/04/2020] [Indexed: 01/02/2023] Open
Abstract
Some insects, such as dragonflies, have evolved nanoprotrusions on their wings that rupture bacteria on contact. This has inspired the design of antibacterial implant surfaces with insect-wing mimetic nanopillars made of synthetic materials. Here, we characterise the physiological and morphological effects of mimetic titanium nanopillars on bacteria. The nanopillars induce deformation and penetration of the Gram-positive and Gram-negative bacterial cell envelope, but do not rupture or lyse bacteria. They can also inhibit bacterial cell division, and trigger production of reactive oxygen species and increased abundance of oxidative stress proteins. Our results indicate that nanopillars' antibacterial activities may be mediated by oxidative stress, and do not necessarily require bacterial lysis.
Collapse
Affiliation(s)
- J Jenkins
- Bristol Dental School, University of Bristol, Bristol, UK
| | - J Mantell
- School of Biochemistry, University of Bristol, Bristol, UK
| | - C Neal
- School of Biochemistry, University of Bristol, Bristol, UK
| | - A Gholinia
- School of Materials Science, University of Manchester, Manchester, UK
| | - P Verkade
- School of Biochemistry, University of Bristol, Bristol, UK
| | - A H Nobbs
- Bristol Dental School, University of Bristol, Bristol, UK.
| | - B Su
- Bristol Dental School, University of Bristol, Bristol, UK.
| |
Collapse
|
14
|
RexAB is essential for the mutagenic repair of Staphylococcus aureus DNA damage caused by co-trimoxazole. Antimicrob Agents Chemother 2019:AAC.00944-19. [PMID: 31591116 PMCID: PMC6879246 DOI: 10.1128/aac.00944-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Co-trimoxazole (SXT) is a combination therapeutic that consists of sulfamethoxazole and trimethoprim that is increasingly used to treat skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus (MRSA). However, the use of SXT is limited to the treatment of low-burden, superficial S. aureus infections and its therapeutic value is compromised by the frequent emergence of resistance. As a first step towards the identification of approaches to enhance the efficacy of SXT, we examined the role of bacterial DNA repair in antibiotic susceptibility and mutagenesis. We found that mutants lacking the DNA repair complex RexAB had a modest 2-fold lower SXT MIC than wild-type strains but were killed 50-5000-fold more efficiently by the combination antibiotic at the breakpoint concentration. SXT-mediated DNA damage occurred via both thymidine limitation and the generation of reactive oxygen species, and triggered induction of the SOS response in a RexAB-dependent manner. SOS induction was associated with a 50% increase in the mutation rate, which may contribute to emergence of resistant strains during SXT therapy. In summary, this work determined that SXT caused DNA damage in S. aureus via both thymidine limitation and oxidative stress, which was repaired by the RexAB complex, leading to induction of the mutagenic SOS response. Small molecule inhibitors of RexAB could therefore have therapeutic value by increasing the efficacy of SXT and decreasing the emergence of drug-resistance during treatment of infections caused by S. aureus.
Collapse
|
15
|
A FASII Inhibitor Prevents Staphylococcal Evasion of Daptomycin by Inhibiting Phospholipid Decoy Production. Antimicrob Agents Chemother 2019; 63:AAC.02105-18. [PMID: 30718253 PMCID: PMC6496159 DOI: 10.1128/aac.02105-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Daptomycin is a treatment of last resort for serious infections caused by drug-resistant Gram-positive pathogens, such as methicillin-resistant Staphylococcus aureus. We have shown recently that S. aureus can evade daptomycin by releasing phospholipid decoys that sequester and inactivate the antibiotic, leading to treatment failure. Daptomycin is a treatment of last resort for serious infections caused by drug-resistant Gram-positive pathogens, such as methicillin-resistant Staphylococcus aureus. We have shown recently that S. aureus can evade daptomycin by releasing phospholipid decoys that sequester and inactivate the antibiotic, leading to treatment failure. Since phospholipid release occurs via an active process, we hypothesized that it could be inhibited, thereby increasing daptomycin efficacy. To identify opportunities for therapeutic interventions that block phospholipid release, we first determined how the host environment influences the release of phospholipids and the inactivation of daptomycin by S. aureus. The addition of certain host-associated fatty acids to the growth medium enhanced phospholipid release. However, in serum, the sequestration of fatty acids by albumin restricted their availability to S. aureus sufficiently to prevent their use in the generation of released phospholipids. This finding implies that in host tissues S. aureus may be completely dependent upon endogenous phospholipid biosynthesis to generate lipids for release, providing a target for therapeutic intervention. To test this, we exposed S. aureus to AFN-1252, an inhibitor of the staphylococcal FASII fatty acid biosynthetic pathway, together with daptomycin. AFN-1252 efficiently blocked daptomycin-induced phospholipid decoy production, even in the case of isolates resistant to AFN-1252, which prevented the inactivation of daptomycin and resulted in sustained bacterial killing. In turn, daptomycin prevented the fatty acid-dependent emergence of AFN-1252-resistant isolates in vitro. In summary, AFN-1252 significantly enhances daptomycin activity against S. aureusin vitro by blocking the production of phospholipid decoys, while daptomycin blocks the emergence of resistance to AFN-1252.
Collapse
|
16
|
Corynebacterium pseudodiphtheriticum Exploits Staphylococcus aureus Virulence Components in a Novel Polymicrobial Defense Strategy. mBio 2019; 10:mBio.02491-18. [PMID: 30622190 PMCID: PMC6325251 DOI: 10.1128/mbio.02491-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While some individuals are nasally colonized with S. aureus, the underlying factors that determine colonization are not understood. There is increasing evidence that indicates that resident bacteria play a role; some commensal species can eradicate S. aureus from the nasal cavity. Among these, Corynebacterium pseudodiphtheriticum can eliminate S. aureus from the human nose. We sought to understand this phenomenon at a molecular level and found that C. pseudodiphtheriticum produces a factor(s) that specifically kills S. aureus. While resistant S. aureus isolates were recovered at a low frequency, resistance came at the cost of attenuated virulence in these strains. Molecular dissection of the specific strategies used by C. pseudodiphtheriticum to kill S. aureus could lead to the development of novel treatments or therapies. Furthermore, commensal competition that requires virulence components of the competitor may represent an exciting and unexplored possibility for development of novel antimicrobial compounds. Commensal bacteria in the human nasal cavity are known to suppress opportunistic pathogen colonization by competing for limited space and nutrients. It has become increasingly apparent that some commensal bacteria also produce toxic compounds that directly inhibit or kill incoming competitors. Numerous studies suggest that microbial species-specific interactions can affect human nasal colonization by the opportunistic pathogen Staphylococcus aureus. However, the complex and dynamic molecular interactions that mediate these effects on S. aureus nasal colonization are often difficult to study and remain poorly understood. Here, we show that Corynebacterium pseudodiphtheriticum, a common member of the normal nasal microbiota, mediates contact-independent bactericidal activity against S. aureus, including methicillin-resistant S. aureus (MRSA). Bacterial interaction assays revealed that S. aureus isolates that were spontaneously resistant to C. pseudodiphtheriticum killing could be recovered at a low frequency. To better understand the pathways associated with killing and resistance, a S. aureus transposon mutant library was utilized to select for resistant mutant strains. We found that insertional inactivation of agrC, which codes for the sensor kinase of the Agr quorum sensing (Agr QS) system that regulates expression of many virulence factors in S. aureus, conferred resistance to killing. Analysis of the spontaneously resistant S. aureus isolates revealed that each showed decreased expression of the Agr QS components. Targeted analysis of pathways regulated by Agr QS revealed that loss of the phenol-soluble modulins (PSMs), which are effectors of Agr QS, also conferred resistance to bactericidal activity. Transmission electron microscopy analysis revealed that C. pseudodiphtheriticum induced dramatic changes to S. aureus cell surface morphology that likely resulted in cell lysis. Taken together, these data suggest that C. pseudodiphtheriticum-mediated killing of S. aureus requires S. aureus virulence components. While S. aureus can overcome targeted killing, this occurs at the cost of attenuated virulence; loss of Agr QS activity would phenotypically resemble a S. aureus commensal state that would be unlikely to be associated with disease. Commensal competition resulting in dampened virulence of the competitor may represent an exciting and unexplored possibility for development of novel antimicrobial compounds.
Collapse
|
17
|
Host Nitric Oxide Disrupts Microbial Cell-to-Cell Communication to Inhibit Staphylococcal Virulence. Cell Host Microbe 2018; 23:594-606.e7. [PMID: 29706505 DOI: 10.1016/j.chom.2018.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 03/07/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is a commensal bacterium that can asymptomatically colonize its host but also causes invasive infections. Quorum sensing regulates S. aureus virulence and the transition from a commensal to a pathogenic organism. However, little is known about how host innate immunity affects interbacterial communication. We show that nitric oxide suppresses staphylococcal virulence by targeting the Agr quorum sensing system. Nitric oxide-mediated inhibition occurs through direct modification of cysteine residues C55, C123, and C199 of the AgrA transcription factor. Cysteine modification decreases AgrA promoter occupancy as well as transcription of the agr operon and quorum sensing-activated toxin genes. In a staphylococcal pneumonia model, mice lacking inducible nitric oxide synthase develop more severe disease with heightened mortality and proinflammatory cytokine responses. In addition, staphylococcal α-toxin production increases in the absence of nitric oxide or nitric oxide-sensitive AgrA cysteine residues. Our findings demonstrate an anti-virulence mechanism for nitric oxide in innate immunity.
Collapse
|
18
|
Krishna A, Holden MTG, Peacock SJ, Edwards AM, Wigneshweraraj S. Naturally occurring polymorphisms in the virulence regulator Rsp modulate Staphylococcus aureus survival in blood and antibiotic susceptibility. MICROBIOLOGY (READING, ENGLAND) 2018; 164:1189-1195. [PMID: 30028663 PMCID: PMC6230762 DOI: 10.1099/mic.0.000695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/03/2018] [Indexed: 01/20/2023]
Abstract
Nasal colonization by the pathogen Staphylococcus aureus is a risk factor for subsequent infection. Loss of function mutations in the gene encoding the virulence regulator Rsp are associated with the transition of S. aureus from a colonizing isolate to one that causes bacteraemia. Here, we report the identification of several novel activity-altering mutations in rsp detected in clinical isolates, including for the first time, mutations that enhance agr operon activity. We assessed how these mutations affected infection-relevant phenotypes and found loss and enhancement of function mutations to have contrasting effects on S. aureus survival in blood and antibiotic susceptibility. These findings add to the growing body of evidence that suggests S. aureus 'trades off' virulence for the acquisition of traits that benefit survival in the host, and indicates that infection severity and treatment options can be significantly affected by mutations in the virulence regulator rsp.
Collapse
Affiliation(s)
- Aishwarya Krishna
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Matthew T. G. Holden
- Wellcome Trust Sanger Institute, Hinxton, UK
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Sharon J. Peacock
- Wellcome Trust Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Andrew M. Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | | |
Collapse
|
19
|
Karathanasi G, Bojer MS, Baldry M, Johannessen BA, Wolff S, Greco I, Kilstrup M, Hansen PR, Ingmer H. Linear peptidomimetics as potent antagonists of Staphylococcus aureus agr quorum sensing. Sci Rep 2018; 8:3562. [PMID: 29476092 PMCID: PMC5824847 DOI: 10.1038/s41598-018-21951-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/14/2018] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus is an important pathogen causing infections in humans and animals. Increasing problems with antimicrobial resistance has prompted the development of alternative treatment strategies, including antivirulence approaches targeting virulence regulation such as the agr quorum sensing system. agr is naturally induced by cyclic auto-inducing peptides (AIPs) binding to the AgrC receptor and cyclic peptide inhibitors have been identified competing with AIP binding to AgrC. Here, we disclose that small, linear peptidomimetics can act as specific and potent inhibitors of the S. aureus agr system via intercepting AIP-AgrC signal interaction at low micromolar concentrations. The corresponding linear peptide did not have this ability. This is the first report of a linear peptide-like molecule that interferes with agr activation by competitive binding to AgrC. Prospectively, these peptidomimetics may be valuable starting scaffolds for the development of new inhibitors of staphylococcal quorum sensing and virulence gene expression.
Collapse
Affiliation(s)
- Georgia Karathanasi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Martin Saxtorph Bojer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Mara Baldry
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Bárdur Andréson Johannessen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Sanne Wolff
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Ines Greco
- Department of Drug Design and Farmacology, Faculty of Health and Medical Sciences University of Copenhagen, Universitetsparken 2, 2100, København, Denmark
| | - Mogens Kilstrup
- Department of Biotechnology and Biomedicine, Metabolic Signaling and Regulation, Technical University of Denmark, Matematiktorvet, 2800, Lyngby, Denmark
| | - Paul Robert Hansen
- Department of Drug Design and Farmacology, Faculty of Health and Medical Sciences University of Copenhagen, Universitetsparken 2, 2100, København, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark.
| |
Collapse
|
20
|
Choe D, Szubin R, Dahesh S, Cho S, Nizet V, Palsson B, Cho BK. Genome-scale analysis of Methicillin-resistant Staphylococcus aureus USA300 reveals a tradeoff between pathogenesis and drug resistance. Sci Rep 2018; 8:2215. [PMID: 29396540 PMCID: PMC5797083 DOI: 10.1038/s41598-018-20661-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus infection is a rising public health care threat. S. aureus is believed to have elaborate regulatory networks that orchestrate its virulence. Despite its importance, the systematic understanding of the transcriptional landscape of S. aureus is limited. Here, we describe the primary transcriptome landscape of an epidemic USA300 isolate of community-acquired methicillin-resistant S. aureus. We experimentally determined 1,861 transcription start sites with their principal promoter elements, including well-conserved -35 and -10 elements and weakly conserved -16 element and 5' untranslated regions containing AG-rich Shine-Dalgarno sequence. In addition, we identified 225 genes whose transcription was initiated from multiple transcription start sites, suggesting potential regulatory functions at transcription level. Along with the transcription unit architecture derived by integrating the primary transcriptome analysis with operon prediction, the measurement of differential gene expression revealed the regulatory framework of the virulence regulator Agr, the SarA-family transcriptional regulators, and β-lactam resistance regulators. Interestingly, we observed a complex interplay between virulence regulation, β-lactam resistance, and metabolism, suggesting a possible tradeoff between pathogenesis and drug resistance in the USA300 strain. Our results provide platform resource for the location of transcription initiation and an in-depth understanding of transcriptional regulation of pathogenesis, virulence, and antibiotic resistance in S. aureus.
Collapse
Affiliation(s)
- Donghui Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Richard Szubin
- Department of Bioengineering, University of California San Diego, La Jolla, 92023, CA, USA
| | - Samira Dahesh
- University of California San Diego School of Medicine, La Jolla, 92023, CA, USA
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Victor Nizet
- University of California San Diego School of Medicine, La Jolla, 92023, CA, USA.
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, 92023, CA, USA.
- University of California San Diego School of Medicine, La Jolla, 92023, CA, USA.
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
21
|
Tan L, Li SR, Jiang B, Hu XM, Li S. Therapeutic Targeting of the Staphylococcus aureus Accessory Gene Regulator ( agr) System. Front Microbiol 2018; 9:55. [PMID: 29422887 PMCID: PMC5789755 DOI: 10.3389/fmicb.2018.00055] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/10/2018] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus can cause numerous different diseases, which has been attributed to its large repertoire of virulence factors, many of which are under the control of the accessory gene regulator (agr) quorum sensing system. Under conditions of high cell density, agr increases the production of many virulence factors, decreases expression of several colonization factors, and is intimately associated with the pathogenesis and biofilm formation of S. aureus. This review summarizes our current understanding of the molecular mechanisms underlying agr quorum sensing and the regulation of agr expression. The discussion also examines subgroups of agr and their association with different diseases, and concludes with an analysis of strategies for designing drugs and vaccines that target agr to combat S. aureus infections.
Collapse
Affiliation(s)
- Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Si Rui Li
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Bei Jiang
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Xiao Mei Hu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Shu Li
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| |
Collapse
|
22
|
The Electron Transport Chain Sensitizes Staphylococcus aureus and Enterococcus faecalis to the Oxidative Burst. Infect Immun 2017; 85:IAI.00659-17. [PMID: 28993457 DOI: 10.1128/iai.00659-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022] Open
Abstract
Small-colony variants (SCVs) of Staphylococcus aureus typically lack a functional electron transport chain and cannot produce virulence factors such as leukocidins, hemolysins, or the antioxidant staphyloxanthin. Despite this, SCVs are associated with persistent infections of the bloodstream, bones, and prosthetic devices. The survival of SCVs in the host has been ascribed to intracellular residency, biofilm formation, and resistance to antibiotics. However, the ability of SCVs to resist host defenses is largely uncharacterized. To address this, we measured the survival of wild-type and SCV S. aureus in whole human blood, which contains high numbers of neutrophils, the key defense against staphylococcal infection. Despite the loss of leukocidin production and staphyloxanthin biosynthesis, SCVs defective for heme or menaquinone biosynthesis were significantly more resistant to the oxidative burst than wild-type bacteria in human blood or the presence of purified neutrophils. Supplementation of the culture medium of the heme-auxotrophic SCV with heme, but not iron, restored growth, hemolysin and staphyloxanthin production, and sensitivity to the oxidative burst. Since Enterococcus faecalis is a natural heme auxotroph and cause of bloodstream infection, we explored whether restoration of the electron transport chain in this organism also affected survival in blood. Incubation of E. faecalis with heme increased growth and restored catalase activity but resulted in decreased survival in human blood via increased sensitivity to the oxidative burst. Therefore, the lack of functional electron transport chains in SCV S. aureus and wild-type E. faecalis results in reduced growth rate but provides resistance to a key immune defense mechanism.
Collapse
|
23
|
Pader V, Hakim S, Painter KL, Wigneshweraraj S, Clarke TB, Edwards AM. Staphylococcus aureus inactivates daptomycin by releasing membrane phospholipids. Nat Microbiol 2016; 2:16194. [PMID: 27775684 DOI: 10.1038/nmicrobiol.2016.194] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 09/07/2016] [Indexed: 01/27/2023]
Abstract
Daptomycin is a bactericidal antibiotic of last resort for serious infections caused by methicillin-resistant Staphylococcus aureus (MRSA)1,2. Although resistance is rare, treatment failure can occur in more than 20% of cases3,4 and so there is a pressing need to identify and mitigate factors that contribute to poor therapeutic outcomes. Here, we show that loss of the Agr quorum-sensing system, which frequently occurs in clinical isolates, enhances S. aureus survival during daptomycin treatment. Wild-type S. aureus was killed rapidly by daptomycin, but Agr-defective mutants survived antibiotic exposure by releasing membrane phospholipids, which bound and inactivated the antibiotic. Although wild-type bacteria also released phospholipid in response to daptomycin, Agr-triggered secretion of small cytolytic toxins, known as phenol soluble modulins, prevented antibiotic inactivation. Phospholipid shedding by S. aureus occurred via an active process and was inhibited by the β-lactam antibiotic oxacillin, which slowed inactivation of daptomycin and enhanced bacterial killing. In conclusion, S. aureus possesses a transient defence mechanism that protects against daptomycin, which can be compromised by Agr-triggered toxin production or an existing therapeutic antibiotic.
Collapse
Affiliation(s)
- Vera Pader
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Sanika Hakim
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Kimberley L Painter
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Sivaramesh Wigneshweraraj
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Thomas B Clarke
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| |
Collapse
|
24
|
Cationized Magnetoferritin Enables Rapid Labeling and Concentration of Gram-Positive and Gram-Negative Bacteria in Magnetic Cell Separation Columns. Appl Environ Microbiol 2016; 82:3599-3604. [PMID: 27060124 PMCID: PMC4959160 DOI: 10.1128/aem.00720-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/05/2016] [Indexed: 01/10/2023] Open
Abstract
In order to identify pathogens rapidly and reliably, bacterial capture and concentration from large sample volumes into smaller ones are often required. Magnetic labeling and capture of bacteria using a magnetic field hold great promise for achieving this goal, but the current protocols have poor capture efficiency. Here, we present a rapid and highly efficient approach to magnetic labeling and capture of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria using cationized magnetoferritin (cat-MF). Magnetic labeling was achieved within a 1-min incubation period with cat-MF, and 99.97% of the labeled bacteria were immobilized in commercially available magnetic cell separation (MACS) columns. Longer incubation times led to more efficient capture, with S. aureus being immobilized to a greater extent than E. coli. Finally, low numbers of magnetically labeled E. coli bacteria (<100 CFU per ml) were immobilized with 100% efficiency and concentrated 7-fold within 15 min. Therefore, our study provides a novel protocol for rapid and highly efficient magnetic labeling, capture, and concentration of both Gram-positive and Gram-negative bacteria. IMPORTANCE Antimicrobial resistance (AMR) is a significant global challenge. Rapid identification of pathogens will retard the spread of AMR by enabling targeted treatment with suitable agents and by reducing inappropriate antimicrobial use. Rapid detection methods based on microfluidic devices require that bacteria are concentrated from large volumes into much smaller ones. Concentration of bacteria is also important to detect low numbers of pathogens with confidence. Here, we demonstrate that magnetic separation columns capture small amounts of bacteria with 100% efficiency. Rapid magnetization was achieved by exposing bacteria to cationic magnetic nanoparticles, and magnetized bacteria were concentrated 7-fold inside the column. Thus, bacterial capture and concentration were achieved within 15 min. This approach could be extended to encompass the capture and concentration of specific pathogens, for example, by functionalizing magnetic nanoparticles with antibodies or small molecule probes.
Collapse
|
25
|
Kavanaugh JS, Horswill AR. Impact of Environmental Cues on Staphylococcal Quorum Sensing and Biofilm Development. J Biol Chem 2016; 291:12556-12564. [PMID: 27129223 DOI: 10.1074/jbc.r116.722710] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Staphylococci are commensal bacteria that colonize the epithelial surfaces of humans and many other mammals. These bacteria can also attach to implanted medical devices and develop surface-associated biofilm communities that resist clearance by host defenses and available chemotherapies. These communities are often associated with persistent staphylococcal infections that place a tremendous burden on the healthcare system. Understanding the regulatory program that controls staphylococcal biofilm development, as well as the environmental conditions that modulate this program, has been a focal point of research in recent years. A central regulator controlling biofilm development is a peptide quorum-sensing system, also called the accessory gene regulator or agr system. In the opportunistic pathogen Staphylococcus aureus, the agr system controls production of exo-toxins and exo-enzymes essential for causing infections, and simultaneously, it modulates the ability of this pathogen to attach to surfaces and develop a biofilm, or to disperse from the biofilm state. In this review, we explore advances on the interconnections between the agr quorum-sensing system and biofilm mechanisms, and topics covered include recent findings on how different environmental conditions influence quorum sensing, the impact on biofilm development, and ongoing questions and challenges in the field. As our understanding of the quorum sensing and biofilm interconnection advances, there are growing opportunities to take advantage of this knowledge and develop therapeutic approaches to control staphylococcal infections.
Collapse
Affiliation(s)
- Jeffrey S Kavanaugh
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Alexander R Horswill
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
26
|
Elkhatib WF, Hair PS, Nyalwidhe JO, Cunnion KM. New potential role of serum apolipoprotein E mediated by its binding to clumping factor A during Staphylococcus aureus invasive infections to humans. J Med Microbiol 2015; 64:335-343. [PMID: 25878259 DOI: 10.1099/jmm.0.000010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus is a crucial human pathogen expressing various immune-evasion proteins that interact with the host-cell molecules. Clumping factor A (ClfA) is a microbial surface protein that promotes S. aureus binding to fibrinogen, and is associated with septic arthritis and infective endocarditis. In order to identify the major human serum proteins that bind the ClfA, we utilized recombinant ClfA region A in a plate-based assay. SDS-PAGE analysis of the bound proteins yielded five prominent bands, which were analysed by MS yielding apolipoprotein E (ApoE) as the predominant protein. ClfA-sufficient S. aureus bound purified ApoE by more than one log greater than an isogenic ClfA-deficient mutant. An immunodot-blot assay yielded a linearity model for ClfA binding to human ApoE with a stoichiometric-binding ratio of 1.702 at maximal Pearson's correlation coefficient (0.927). These data suggest that ApoE could be a major and novel binding target for the S. aureus virulence factor ClfA. Thus, ClfA recruitment of serum ApoE to the S. aureus surface may sequester ApoE and blunt its host defence function against S. aureus-invasive infections to humans. In this context, compounds that can block or suppress ClfA binding to ApoE might be utilized as prophylactic or therapeutic agents.
Collapse
Affiliation(s)
- Walid F Elkhatib
- Department of Pharmacy Practice, School of Pharmacy, Hampton University, Kittrell Hall, Hampton, VA 23668, USA.,Department of Pediatrics, Eastern Virginia Medical School, E.V. Williams Hall, 855 W. Brambleton Avenue, Norfolk, VA 23510, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, Cairo 11566, Egypt
| | - Pamela S Hair
- Department of Pediatrics, Eastern Virginia Medical School, E.V. Williams Hall, 855 W. Brambleton Avenue, Norfolk, VA 23510, USA
| | - Julius O Nyalwidhe
- Leroy T. Canoles Jr Cancer Research Center, Eastern Virginia Medical School, 651 Colley Avenue, Norfolk, VA, USA.,Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School 700 West Olney Road, Norfolk, VA, USA
| | - Kenji M Cunnion
- Children's Hospital of the King's Daughters, 601 Children's Lane, Norfolk, VA 23507, USA.,Children's Specialty Group, 601 Children's Lane, Norfolk, VA 23507, USA.,Department of Pediatrics, Eastern Virginia Medical School, E.V. Williams Hall, 855 W. Brambleton Avenue, Norfolk, VA 23510, USA
| |
Collapse
|
27
|
Nicod SS, Weinzierl ROJ, Burchell L, Escalera-Maurer A, James EH, Wigneshweraraj S. Systematic mutational analysis of the LytTR DNA binding domain of Staphylococcus aureus virulence gene transcription factor AgrA. Nucleic Acids Res 2014; 42:12523-36. [PMID: 25352558 PMCID: PMC4227749 DOI: 10.1093/nar/gku1015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Most DNA-binding bacterial transcription factors contact DNA through a recognition α-helix in their DNA-binding domains. An emerging class of DNA-binding transcription factors, predominantly found in pathogenic bacteria interact with the DNA via a relatively novel type of DNA-binding domain, called the LytTR domain, which mainly comprises β strands. Even though the crystal structure of the LytTR domain of the virulence gene transcription factor AgrA from Staphylococcus aureus bound to its cognate DNA sequence is available, the contribution of specific amino acid residues in the LytTR domain of AgrA to transcription activation remains elusive. Here, for the first time, we have systematically investigated the role of amino acid residues in transcription activation in a LytTR domain-containing transcription factor. Our analysis, which involves in vivo and in vitro analyses and molecular dynamics simulations of S. aureus AgrA identifies a highly conserved tyrosine residue, Y229, as a major amino acid determinant for maximal activation of transcription by AgrA and provides novel insights into structure-function relationships in S. aureus AgrA.
Collapse
Affiliation(s)
- Sophie S Nicod
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, London, UK
| | | | - Lynn Burchell
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, London, UK
| | | | - Ellen H James
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, London, UK
| | | |
Collapse
|
28
|
Painter KL, Krishna A, Wigneshweraraj S, Edwards AM. What role does the quorum-sensing accessory gene regulator system play during Staphylococcus aureus bacteremia? Trends Microbiol 2014; 22:676-85. [PMID: 25300477 DOI: 10.1016/j.tim.2014.09.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus is a major cause of bacteremia, which frequently results in serious secondary infections such as infective endocarditis, osteomyelitis, and septic arthritis. The ability of S. aureus to cause such a wide range of infections has been ascribed to its huge armoury of different virulence factors, many of which are under the control of the quorum-sensing accessory gene regulator (Agr) system. However, a significant fraction of S. aureus bacteremia cases are caused by agr-defective isolates, calling into question the role of Agr in invasive staphylococcal infections. This review draws on recent work to define the role of Agr during bacteremia and explain why the loss of this major virulence regulator is sometimes a price worth paying for S. aureus.
Collapse
Affiliation(s)
- Kimberley L Painter
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College, Armstrong Road, London SW7 2AZ, UK
| | - Aishwarya Krishna
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College, Armstrong Road, London SW7 2AZ, UK
| | - Sivaramesh Wigneshweraraj
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College, Armstrong Road, London SW7 2AZ, UK
| | - Andrew M Edwards
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College, Armstrong Road, London SW7 2AZ, UK.
| |
Collapse
|
29
|
The Agr quorum-sensing system regulates fibronectin binding but not hemolysis in the absence of a functional electron transport chain. Infect Immun 2014; 82:4337-47. [PMID: 25092909 DOI: 10.1128/iai.02254-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Staphylococcus aureus is responsible for numerous chronic and recurrent infections, which are frequently associated with the emergence of small-colony variants (SCVs) that lack a functional electron transport chain. SCVs exhibit enhanced expression of fibronectin-binding protein (FnBP) and greatly reduced hemolysin production, although the basis for this is unclear. One hypothesis is that these phenotypes are a consequence of the reduced Agr activity of SCVs, while an alternative is that the lack of a functional electron transport chain and the resulting reduction in ATP production are responsible. Disruption of the electron transport chain of S. aureus genetically (hemB and menD) or chemically, using 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO), inhibited both growth and Agr activity and conferred an SCV phenotype. Supplementation of the culture medium with synthetic autoinducing peptide (sAIP) significantly increased Agr expression in both hemB mutant strains and S. aureus grown with HQNO and significantly reduced staphylococcal adhesion to fibronectin. However, sAIP did not promote hemolysin expression in hemB mutant strains or S. aureus grown with HQNO. Therefore, while Agr regulates fibronectin binding in SCVs, it cannot promote hemolysin production in the absence of a functional electron transport chain.
Collapse
|