1
|
Fang Y, Zhang F, Zhao F, Wang J, Cheng X, Ye F, He J, Zhao L, Su Y. RpL38 modulates germ cell differentiation by controlling Bam expression in Drosophila testis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2411-2425. [PMID: 39187660 DOI: 10.1007/s11427-024-2646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/07/2024] [Indexed: 08/28/2024]
Abstract
Switching from mitotic spermatogonia to meiotic spermatocytes is critical to producing haploid sperms during male germ cell differentiation. However, the underlying mechanisms of this switch remain largely unexplored. In Drosophila melanogaster, the gene RpL38 encodes the ribosomal protein L38, one component of the 60S subunit of ribosomes. We found that its depletion in spermatogonia severely diminished the production of mature sperms and thus led to the infertility of male flies. By examining the germ cell differentiation in testes, we found that RpL38-knockdown blocked the transition from spermatogonia to spermatocytes and accumulated spermatogonia in the testis. To understand the intrinsic reason for this blockage, we conducted proteomic analysis for these spermatogonia populations. Differing from the control spermatogonia, the accumulated spermatogonia in RpL38-knockdown testes already expressed many spermatocyte markers but lacked many meiosis-related proteins, suggesting that spermatogonia need to prepare some important proteins for meiosis to complete their switch into spermatocytes. Mechanistically, we found that the expression of bag of marbles (bam), a crucial determinant in the transition from spermatogonia to spermatocytes, was inhibited at both the mRNA and protein levels upon RpL38 depletion. We also confirmed that the bam loss phenocopied RpL38 RNAi in the testis phenotype and transcriptomic profiling. Strikingly, overexpressing bam was able to fully rescue the testis abnormality and infertility of RpL38-knockdown flies, indicating that bam is the key effector downstream of RpL38 to regulate spermatogonia differentiation. Overall, our data suggested that germ cells start to prepare meiosis-related proteins as early as the spermatogonial stage, and RpL38 in spermatogonia is required to regulate their transition toward spermatocytes in a bam-dependent manner, providing new knowledge for our understanding of the transition process from spermatogonia to spermatocytes in Drosophila spermatogenesis.
Collapse
Affiliation(s)
- Yang Fang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Fengchao Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Fangzhen Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jiajia Wang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xinkai Cheng
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Fei Ye
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jiayu He
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Long Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Fisheries College, Ocean University of China, Qingdao, 266003, China.
| | - Ying Su
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Hu H, Lu Z, Ma Y, Song X, Wang D, Wu C, Ma X, Shan Y, Ren X, Ma Y. Impact of transinfection of Wolbachia from the planthopper Laodelphax striatellus on reproductive fitness and transcriptome of the whitefly Bemisia tabaci. J Invertebr Pathol 2024; 207:108230. [PMID: 39547593 DOI: 10.1016/j.jip.2024.108230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
The whitefly Bemisia tabaci is critical global pest threatening crops and leading to agricultural losses. Wolbachia is an intracellular symbiotic bacterium in insects, which can regulate the growth and development of the host through various ways. In a prior study, Wolbachia was found to be transferred to whitefly and induce fitness changes. However, little is known about the underlying mechanisms of host-Wolbachia interactions in B. tabaci. In this study, a Wolbachia strain wStri was isolated from the small brown planthopper, Laodelphex striatellus, and transferred to B. tabaci. The distribution of Wolbachia in whiteflies was determined using fluorescence in situ hybridization. Reciprocal crossing experiments demonstrated that wStri did not induce cytoplasmic incompatibility phenotypes in B. tabaci, but prolonged the developmental duration of the offspring. We performed transcriptomic analysis of Wolbachia-infected female and male adults using Illumina-based RNA-Seq. A total of 843 differentially expressed genes (DEGs) were identified in infected females, among them 141 were significantly up-regulated and 702 were down-regulated by Wolbachia infection. In infected males, of 511 gene sets, 279 host genes were significantly up-regulated, and 232 were down-regulated by Wolbachia infection. KEGG analysis of DEGs demonstrated significant differences in gene pathway distribution between up-regulated and down-regulated genes. These genes are involved in various biological processes, including, but not limited to, detoxification, oxidation-reduction, metabolic processes, and immunity. The transcriptomic profiling of this study offers valuable information on the differential expression of genes in whiteflies following Wolbachia infection, and enhances our understanding of this host-symbiotic interaction.
Collapse
Affiliation(s)
- Hongyan Hu
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhenhua Lu
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Yajie Ma
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xianpeng Song
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Dan Wang
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Changcai Wu
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiaoyan Ma
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yongpan Shan
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Xiangliang Ren
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Yan Ma
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
3
|
Miao YH, Dou WH, Liu J, Huang DW, Xiao JH. Single-cell transcriptome sequencing reveals that Wolbachia induces gene expression changes in Drosophila ovary cells to favor its own maternal transmission. mBio 2024; 15:e0147324. [PMID: 39194189 PMCID: PMC11481584 DOI: 10.1128/mbio.01473-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Wolbachia is an obligate endosymbiont that is maternally inherited and widely distributed in arthropods and nematodes. It remains in the mature eggs of female hosts over generations through multiple strategies and manipulates the reproduction system of the host to enhance its spreading efficiency. However, the transmission of Wolbachia within the host's ovaries and its effects on ovarian cells during oogenesis, have not been extensively studied. We used single-cell RNA sequencing to comparatively analyze cell-typing and gene expression in Drosophila ovaries infected and uninfected with Wolbachia. Our findings indicate that Wolbachia significantly affects the transcription of host genes involved in the extracellular matrix, cytoskeleton organization, and cytomembrane mobility in multiple cell types, which may make host ovarian cells more conducive for the transmission of Wolbachia from extracellular to intracellular. Moreover, the genes nos and orb, which are related to the synthesis of ribonucleoprotein complexes, are specifically upregulated in early germline cells of ovaries infected with Wolbachia, revealing that Wolbachia can increase the possibility of its localization to the host oocytes by enhancing the binding with host ribonucleoprotein-complex processing bodies (P-bodies). All these findings provide novel insights into the maternal transmission of Wolbachia between host ovarian cells.IMPORTANCEWolbachia, an obligate endosymbiont in arthropods, can manipulate the reproduction system of the host to enhance its maternal transmission and reside in the host's eggs for generations. Herein, we performed single-cell RNA sequencing of ovaries from Drosophila melanogaster and observed the effects of Wolbachia (strain wMel) infection on different cell types to discuss the potential mechanism associated with the transmission and retention of Wolbachia within the ovaries of female hosts. It was found that the transcriptions of multiple genes in the ovary samples infected with Wolbachia are significantly altered, which possibly favors the maternal transmission of Wolbachia. Meanwhile, we also discovered that Wolbachia may flexibly regulate the expression level of specific host genes according to their needs rather than rigidly changing the expression level in one direction to achieve a more suitable living environment in the host's ovarian cells. Our findings contribute to a further understanding of the maternal transmission and possible universal effects of Wolbachia within the host.
Collapse
Affiliation(s)
- Yun-heng Miao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wei-hao Dou
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jing Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Da-wei Huang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jin-hua Xiao
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Osorio J, Villa-Arias S, Camargo C, Ramírez-Sánchez LF, Barrientos LM, Bedoya C, Rúa-Uribe G, Dorus S, Alfonso-Parra C, Avila FW. wMel Wolbachia alters female post-mating behaviors and physiology in the dengue vector mosquito Aedes aegypti. Commun Biol 2023; 6:865. [PMID: 37604924 PMCID: PMC10442437 DOI: 10.1038/s42003-023-05180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023] Open
Abstract
Globally invasive Aedes aegypti disseminate numerous arboviruses that impact human health. One promising method to control Ae. aegypti populations is transinfection with Wolbachia pipientis, which naturally infects ~40-52% of insects but not Ae. aegypti. Transinfection of Ae. aegypti with the wMel Wolbachia strain induces cytoplasmic incompatibility (CI), allows infected individuals to invade native populations, and inhibits transmission of medically relevant arboviruses by females. Female insects undergo post-mating physiological and behavioral changes-referred to as the female post-mating response (PMR)-required for optimal fertility. PMRs are typically elicited by male seminal fluid proteins (SFPs) transferred with sperm during mating but can be modified by other factors, including microbiome composition. Wolbachia has modest effects on Ae. aegypti fertility, but its influence on other PMRs is unknown. Here, we show that Wolbachia influences female fecundity, fertility, and re-mating incidence and significantly extends the longevity of virgin females. Using proteomic methods to examine the seminal proteome of infected males, we found that Wolbachia moderately affects SFP composition. However, we identified 125 paternally transferred Wolbachia proteins, but the CI factor proteins (Cifs) were not among them. Our findings indicate that Wolbachia infection of Ae. aegypti alters female PMRs, potentially influencing control programs that utilize Wolbachia-infected individuals.
Collapse
Affiliation(s)
- Jessica Osorio
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia
| | - Sara Villa-Arias
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Colombia
| | - Carolina Camargo
- Centro de Investigación de la caña de azúcar CENICAÑA, Valle del Cauca, Colombia
| | | | - Luisa María Barrientos
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia
| | - Carolina Bedoya
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia
| | | | - Steve Dorus
- Center for Reproductive Evolution, Syracuse University, Syracuse, USA
| | - Catalina Alfonso-Parra
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia.
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Colombia.
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
5
|
Chen MY, Duan X, Wang Q, Ran MJ, Ai H, Zheng Y, Wang YF. Cytochrome c1-like is required for mitochondrial morphogenesis and individualization during spermatogenesis in Drosophila melanogaster. J Exp Biol 2023; 226:286665. [PMID: 36645102 DOI: 10.1242/jeb.245277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
The Drosophila testis is an excellent system for studying the process from germ stem cells to motile sperm, including the proliferation of male germ cells, meiosis of primary spermatocytes, mitochondrial morphogenesis, and spermatid individualization. We previously demonstrated that ocnus (ocn) plays an essential role in male germ cell development. Among those genes and proteins whose expression levels were changed as a result of ocn knockdown, cytochrome c1-like (cyt-c1L) was downregulated significantly. Here, we show that cyt-c1L is highly expressed in the testis of D. melanogaster. Knockdown or mutation of cyt-c1L in early germ cells of flies resulted in male sterility. Immunofluorescence staining showed that cyt-c1L knockdown testes had no defects in early spermatogenesis; however, in late stages, in contrast to many individualization complexes (ICs) composed of F-actin cones that appeared at different positions in control testes, no actin cones or ICs were observed in cyt-c1L knockdown testes. Furthermore, no mature sperm were found in the seminal vesicle of cyt-c1L knockdown testes whereas the control seminal vesicle was full of mature sperm with needle-like nuclei. cyt-c1L knockdown also caused abnormal mitochondrial morphogenesis during spermatid elongation. Excessive apoptotic signals accumulated in the base of cyt-c1L knockdown fly testes. These results suggest that cyt-c1L may play an important role in spermatogenesis by affecting the mitochondrial morphogenesis and individualization of sperm in D. melanogaster.
Collapse
Affiliation(s)
- Meng-Yan Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Xin Duan
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Qian Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Mao-Jiu Ran
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Hui Ai
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
6
|
Dou W, Sun B, Miao Y, Huang D, Xiao J. Single-cell transcriptome sequencing reveals Wolbachia-mediated modification in early stages of Drosophila spermatogenesis. Proc Biol Sci 2023; 290:20221963. [PMID: 36629101 PMCID: PMC9832550 DOI: 10.1098/rspb.2022.1963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Wolbachia are the most widely distributed intracellular bacteria, and their most common effect on host phenotype is cytoplasmic incompatibility (CI). A variety of models have been proposed to decipher the molecular mechanism of CI, among which the host modification (HM) model predicts that Wolbachia effectors play an important role in sperm modification. However, owing to the complexity of spermatogenesis and testicular cell-type heterogeneity, whether Wolbachia have different effects on cells at different stages of spermatogenesis or whether these effects are linked with CI remains unknown. Therefore, we used single-cell RNA sequencing to analyse gene expression profiles in adult male Drosophila testes that were infected or uninfected by Wolbachia. We found that Wolbachia significantly affected the proportion of different types of germ cells and affected multiple metabolic pathways in germ cells. Most importantly, Wolbachia had the greatest impact on germline stem cells, resulting in dysregulated expression of genes related to DNA compaction, and Wolbachia infection also influenced the histone-to-protamine transition in the late stage of sperm development. These results support the HM model and suggest that future studies on Wolbachia-induced CI should focus on cells in the early stages of spermatogenesis.
Collapse
Affiliation(s)
- Weihao Dou
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Baofa Sun
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Yunheng Miao
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Dawei Huang
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Jinhua Xiao
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
7
|
Wang W, Cui W, Yang H. Toward an accurate mechanistic understanding of Wolbachia-induced cytoplasmic incompatibility. Environ Microbiol 2022; 24:4519-4532. [PMID: 35859330 DOI: 10.1111/1462-2920.16125] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/27/2022]
Abstract
Wolbachia are the most successful intracellular bacteria in arthropods. They can manipulate host reproduction to favour infected females, which transmit Wolbachia to their progeny and increase the presence of Wolbachia in the population. The reproductive alterations caused by Wolbachia include feminization, parthenogenesis, male killing and cytoplasmic incompatibility (CI), among which CI is the most common. CI leads to embryonic lethality when Wolbachia-infected males mate with uninfected females or those infected with an incompatible strain. This lethality can be rescued if females are infected with a compatible strain. Although CI was described in the 1960s and its connection to Wolbachia was made in the 1970s, the genes responsible for CI, called CI factors, were not identified until recently. Since then, significant progress has been made in understanding the molecular mechanism of CI using a combination of genetic, phylogenetic, biochemical and structural approaches. The detailed molecular mechanisms behind this fascinating endosymbiotic bacteria-induced phenotype have begun to emerge. Here, we summarize recent progress in understanding the molecular mechanism of CI, especially focusing on the recently solved CI factor structures and discussing what these new structures brought in terms of CI mechanism.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Wen Cui
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
8
|
Dou W, Miao Y, Xiao J, Huang D. Association of Wolbachia with Gene Expression in Drosophila Testes. MICROBIAL ECOLOGY 2021; 82:805-817. [PMID: 33555369 DOI: 10.1007/s00248-021-01703-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Wolbachia is a genus of intracellular symbiotic bacteria that are widely distributed in arthropods and nematodes. These maternally inherited bacteria regulate host reproductive systems in various ways to facilitate their vertical transmission. Since the identification of Wolbachia in many insects, the relationship between Wolbachia and the host has attracted great interest. Numerous studies have indicated that Wolbachia modifies a variety of biological processes in the host. Previous studies in Drosophila melanogaster (D. melanogaster) have demonstrated that Wolbachia can affect spermatid differentiation, chromosome deposition, and sperm activity in the early stages of spermatogenesis, leading to sperm dysfunction. Here, we explored the putative effect of Wolbachia in sperm maturation using transcriptomic approaches to compare gene expression in Wolbachia-infected and Wolbachia-free D. melanogaster adult testes. Our findings show that Wolbachia affects many biological processes in D. melanogaster adult testes, and most of the differentially expressed genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia. In contrast, some genes that are putatively associated with cutin and wax biosynthesis and peroxisome pathways were downregulated. We did not find any differentially expressed genes that are predicted to be related to spermatogenesis in the datasets. This work provides additional information for understanding the Wolbachia-host intracellular relationships.
Collapse
Affiliation(s)
- Weihao Dou
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yunheng Miao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinhua Xiao
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Dawei Huang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
Zhang HB, Cao Z, Qiao JX, Zhong ZQ, Pan CC, Liu C, Zhang LM, Wang YF. Metabolomics provide new insights into mechanisms of Wolbachia-induced paternal defects in Drosophila melanogaster. PLoS Pathog 2021; 17:e1009859. [PMID: 34383852 PMCID: PMC8384202 DOI: 10.1371/journal.ppat.1009859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/24/2021] [Accepted: 08/01/2021] [Indexed: 12/22/2022] Open
Abstract
Wolbachia is a group of intracellular symbiotic bacteria that widely infect arthropods and nematodes. Wolbachia infection can regulate host reproduction with the most common phenotype in insects being cytoplasmic incompatibility (CI), which results in embryonic lethality when uninfected eggs fertilized with sperms from infected males. This suggests that CI-induced defects are mainly in paternal side. However, whether Wolbachia-induced metabolic changes play a role in the mechanism of paternal-linked defects in embryonic development is not known. In the current study, we first use untargeted metabolomics method with LC-MS to explore how Wolbachia infection influences the metabolite profiling of the insect hosts. The untargeted metabolomics revealed 414 potential differential metabolites between Wolbachia-infected and uninfected 1-day-old (1d) male flies. Most of the differential metabolites were significantly up-regulated due to Wolbachia infection. Thirty-four metabolic pathways such as carbohydrate, lipid and amino acid, and vitamin and cofactor metabolism were affected by Wolbachia infection. Then, we applied targeted metabolomics analysis with GC-MS and showed that Wolbachia infection resulted in an increased energy expenditure of the host by regulating glycometabolism and fatty acid catabolism, which was compensated by increased food uptake. Furthermore, overexpressing two acyl-CoA catabolism related genes, Dbi (coding for diazepam-binding inhibitor) or Mcad (coding for medium-chain acyl-CoA dehydrogenase), ubiquitously or specially in testes caused significantly decreased paternal-effect egg hatch rate. Oxidative stress and abnormal mitochondria induced by Wolbachia infection disrupted the formation of sperm nebenkern. These findings provide new insights into mechanisms of Wolbachia-induced paternal defects from metabolic phenotypes.
Collapse
Affiliation(s)
- Hua-Bao Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jun-Xue Qiao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Zi-Qian Zhong
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Chen-Chen Pan
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Chen Liu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Li-Min Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| |
Collapse
|
10
|
Verspoor RL, Price TAR, Wedell N. Selfish genetic elements and male fertility. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200067. [PMID: 33070738 PMCID: PMC7661447 DOI: 10.1098/rstb.2020.0067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Selfish genetic elements (SGEs) are diverse and near ubiquitous in Eukaryotes and can be potent drivers of evolution. Here, we discuss SGEs that specifically act on sperm to gain a transmission advantage to the next generation. The diverse SGEs that affect sperm often impose costs on carrier males, including damaging ejaculates, skewing offspring sex ratios and in particular reducing sperm-competitive success of SGE-carrying males. How males and females tolerate and mitigate against these costs is a dynamic and expanding area of research. The intense intra-genomic conflict that these selfish elements generate could also have implications for male fertility and spermatogenesis more widely. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Rudi L. Verspoor
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Tom A. R. Price
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Nina Wedell
- Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| |
Collapse
|
11
|
Shropshire JD, Leigh B, Bordenstein SR. Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years? eLife 2020; 9:61989. [PMID: 32975515 PMCID: PMC7518888 DOI: 10.7554/elife.61989] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic incompatibility (CI) is the most common symbiont-induced reproductive manipulation. Specifically, symbiont-induced sperm modifications cause catastrophic mitotic defects in the fertilized embryo and ensuing lethality in crosses between symbiotic males and either aposymbiotic females or females harboring a different symbiont strain. However, if the female carries the same symbiont strain, then embryos develop properly, thereby imparting a relative fitness benefit to symbiont-transmitting mothers. Thus, CI drives maternally-transmitted bacteria to high frequencies in arthropods worldwide. In the past two decades, CI experienced a boom in interest due to its (i) deployment in worldwide efforts to curb mosquito-borne diseases, (ii) causation by bacteriophage genes, cifA and cifB, that modify sexual reproduction, and (iii) important impacts on arthropod speciation. This review serves as a gateway to experimental, conceptual, and quantitative themes of CI and outlines significant gaps in understanding CI’s mechanism that are ripe for investigation from diverse subdisciplines in the life sciences.
Collapse
Affiliation(s)
- J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, United States.,Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, United States
| |
Collapse
|
12
|
Shropshire JD, Kalra M, Bordenstein SR. Evolution-guided mutagenesis of the cytoplasmic incompatibility proteins: Identifying CifA's complex functional repertoire and new essential regions in CifB. PLoS Pathog 2020; 16:e1008794. [PMID: 32813725 PMCID: PMC7458348 DOI: 10.1371/journal.ppat.1008794] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/31/2020] [Accepted: 07/09/2020] [Indexed: 12/31/2022] Open
Abstract
Wolbachia are the world's most common, maternally-inherited, arthropod endosymbionts. Their worldwide distribution is due, in part, to a selfish drive system termed cytoplasmic incompatibility (CI) that confers a relative fitness advantage to females that transmit Wolbachia to their offspring. CI results in embryonic death when infected males mate with uninfected females but not infected females. Under the Two-by-One genetic model of CI, males expressing the two phage WO proteins CifA and CifB cause CI, and females expressing CifA rescue CI. While each protein is predicted to harbor three functional domains, there is no knowledge on how sites across these Cif domains, rather than in any one particular domain, contribute to CI and rescue. Here, we use evolution-guided, substitution mutagenesis of conserved amino acids across the Cif proteins, coupled with transgenic expression in uninfected Drosophila melanogaster, to determine the functional impacts of conserved residues evolving mostly under purifying selection. We report that amino acids in CifA's N-terminal unannotated region and annotated catalase-related domain are important for both complete CI and rescue, whereas C-terminal residues in CifA's putative domain of unknown function are solely important for CI. Moreover, conserved CifB amino acids in the predicted nucleases, peptidase, and unannotated regions are essential for CI. Taken together, these findings indicate that (i) all CifA amino acids determined to be crucial in rescue are correspondingly crucial in CI, (ii) an additional set of CifA amino acids are uniquely important in CI, and (iii) CifB amino acids across the protein, rather than in one particular domain, are all crucial for CI. We discuss how these findings advance an expanded view of Cif protein evolution and function, inform the mechanistic and biochemical bases of Cif-induced CI/rescue, and continue to substantiate the Two-by-One genetic model of CI.
Collapse
Affiliation(s)
- J. Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (JDS); (SRB)
| | - Mahip Kalra
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Seth R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail: (JDS); (SRB)
| |
Collapse
|
13
|
Chen H, Zhang M, Hochstrasser M. The Biochemistry of Cytoplasmic Incompatibility Caused by Endosymbiotic Bacteria. Genes (Basel) 2020; 11:genes11080852. [PMID: 32722516 PMCID: PMC7465683 DOI: 10.3390/genes11080852] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022] Open
Abstract
Many species of arthropods carry maternally inherited bacterial endosymbionts that can influence host sexual reproduction to benefit the bacterium. The most well-known of such reproductive parasites is Wolbachia pipientis. Wolbachia are obligate intracellular α-proteobacteria found in nearly half of all arthropod species. This success has been attributed in part to their ability to manipulate host reproduction to favor infected females. Cytoplasmic incompatibility (CI), a phenomenon wherein Wolbachia infection renders males sterile when they mate with uninfected females, but not infected females (the rescue mating), appears to be the most common. CI provides a reproductive advantage to infected females in the presence of a threshold level of infected males. The molecular mechanisms of CI and other reproductive manipulations, such as male killing, parthenogenesis, and feminization, have remained mysterious for many decades. It had been proposed by Werren more than two decades ago that CI is caused by a Wolbachia-mediated sperm modification and that rescue is achieved by a Wolbachia-encoded rescue factor in the infected egg. In the past few years, new research has highlighted a set of syntenic Wolbachia gene pairs encoding CI-inducing factors (Cifs) as the key players for the induction of CI and its rescue. Within each Cif pair, the protein encoded by the upstream gene is denoted A and the downstream gene B. To date, two types of Cifs have been characterized based on the enzymatic activity identified in the B protein of each protein pair; one type encodes a deubiquitylase (thus named CI-inducing deubiquitylase or cid), and a second type encodes a nuclease (named CI-inducing nuclease or cin). The CidA and CinA proteins bind tightly and specifically to their respective CidB and CinB partners. In transgenic Drosophila melanogaster, the expression of either the Cid or Cin protein pair in the male germline induces CI and the expression of the cognate A protein in females is sufficient for rescue. With the identity of the Wolbachia CI induction and rescue factors now known, research in the field has turned to directed studies on the molecular mechanisms of CI, which we review here.
Collapse
Affiliation(s)
- Hongli Chen
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; (H.C.); (M.Z.)
| | - Mengwen Zhang
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; (H.C.); (M.Z.)
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; (H.C.); (M.Z.)
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, CT 06511, USA
- Correspondence:
| |
Collapse
|