1
|
Choi JH, Kwak T, Shin H, Jo YH, Kim J, Kim Y, Kim J, Lee WR. Hydrolyzed cow colostrum extract (BCFM) inhibits alpha-MSH-induced melanogenesis in B16F1 cells via regulation of the MC1R-cAMP signaling pathway. Cytotechnology 2024; 76:847-858. [PMID: 39435419 PMCID: PMC11490476 DOI: 10.1007/s10616-024-00657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
Cow colostrum is the first milk produced after birth and is a rich natural source of nutrients, immunoglobulins, peptides, and growth factors. The bioconversion of milk and whey changes the immobilization and biochemical characterization. However, the cellular mechanism and the anti-melanin synthesis effects of hydrolyzed cow colostrum extract (BCFM) in alpha-MSH-induced B16F1 cells have not been examined. In this study, we investigated the anti-melanogenesis mechanism by examining the effects of BCFM in alpha-MSH-induced B16F1 cells. Cells were treated with BCFM in the presence or absence of alpha-MSH and co-cultured for 24, 48, and 72 h. The treatment of B16F1 cells with alpha-MSH resulted in the darkening of the color of the cells and induction of melanin synthesis. In addition, the expression levels of MC1R and cAMP, as well as phosphorylation levels of CREB and PKA, were increased by alpha-MSH treatment. However, concomitant treatment with BCFM resulted in a significant decrease in these factors and phosphorylated MITF. At the same time, the expressive amount of TRP-1 and tyrosinase was also decreased in B16F1 cells. These results demonstrate the potential of BCFM for the prevention of melanogenesis progression via the regulation of the MC1R-cAMP signaling pathway in alpha-MSH-induced B16F1 cells. The administration of BCFM suppressed the expression of TRP-1 and/or tyrosinase by regulating the CREB/MITF signaling pathways in the B16F1 cells. We propose that hydrolyzed cow colostrum extract (BCFM) is suitable for use as a novel active agent for skin whitening or pharmaceutical applications.
Collapse
Affiliation(s)
- Jae Hyeok Choi
- Farmskin Inc., 510, SB Plaza, 194-25, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju City, Chungbuk-do 28160 Republic of Korea
| | - Taeil Kwak
- Farmskin Inc., 510, SB Plaza, 194-25, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju City, Chungbuk-do 28160 Republic of Korea
| | - Heejung Shin
- Shinsegae International Inc., Dosan-daero 449, Gangnam-gu, Seoul City, 06015 Republic of Korea
| | - Yang Hee Jo
- Farmskin Inc., 510, SB Plaza, 194-25, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju City, Chungbuk-do 28160 Republic of Korea
| | - Junil Kim
- Farmskin Inc., 510, SB Plaza, 194-25, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju City, Chungbuk-do 28160 Republic of Korea
| | - Younghwa Kim
- Shinsegae International Inc., Dosan-daero 449, Gangnam-gu, Seoul City, 06015 Republic of Korea
| | - Junoh Kim
- Shinsegae International Inc., Dosan-daero 449, Gangnam-gu, Seoul City, 06015 Republic of Korea
| | - Woo-Ram Lee
- Farmskin Inc., 510, SB Plaza, 194-25, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju City, Chungbuk-do 28160 Republic of Korea
| |
Collapse
|
2
|
Tan H, He X, Han L, Ren H, Chai J, Li M, Zhao W, Lee J, Liu S, Li X, Zhao Y. Melanin resistance of heat-processed ginsenosides from Panax ginseng berry treated with citric acid through autophagy pathway. Bioorg Chem 2024; 152:107758. [PMID: 39216197 DOI: 10.1016/j.bioorg.2024.107758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
GFRS is the conversion product of Panax ginseng Meyer berry after citric acid heat treatment, which is rich in rare ginsenosides. However, the anti-melanin role of GFRS in the regulation of skin pigmentation and its material basis remains unclear. To compare the anti-melanin activity before and after citric acid heat treatment, we determined the effects of GFS and GFRS on tyrosinase activity and melanin lever under α-MSH stimulation and found the potential anti-melanin effect of GFRS. Further, Western blot and immunofluorescence methods were used to reveal the mechanism by which GFRS detects anti-melanin activity by promoting autophagy flux levels. In zebrafish models, GFRS inhibited endogenous melanin and tyrosinase better than arbutin and promoted the accumulation of autophagy levels in vivo. To determine the material basis of the anti-melanin effect of GFRS, HPLC was used to isolate and prepare 12 ginsenosides from GFRS, and their activity evaluation and structure-activity relationship analysis were performed. The results showed that the inhibitory effect of GFRS on melanin was Rg3 > Rg5 > Rk1 > Rd. Molecular docking showed that their docking fraction with mushroom tyrosinase was significantly better than that of arbutin, but the presence of C-20 glycosylation decreased the anti-melanin activity of Rd. To maximize the content of Rg3, Rg5, and Rk1, we optimized the process by using citric acid heat treatment of ginsenoside Rd and found that citric acid heat treatment at 100°C almost completely transformed Rd and obtained a high content of active ingredients. In summary, our data demonstrated that GFRS exerted anti-melanin effects by inducing autophagy. It was further revealed that Rg3, Rg5, and Rk1, as effective active components, could be enriched by the improved process of converting ginsenoside Rd by citric acid heat treatment.
Collapse
Affiliation(s)
- Hongyan Tan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Xiaojing He
- Perfect (Guangdong) Co., Ltd., Guangdong 528400, China
| | - Linlin Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Honghong Ren
- Perfect (Guangdong) Co., Ltd., Guangdong 528400, China
| | - Jiayi Chai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Mingkun Li
- Perfect (Guangdong) Co., Ltd., Guangdong 528400, China
| | - Wenjie Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Jungjoon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Shiyu Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Xiaomin Li
- Perfect (Guangdong) Co., Ltd., Guangdong 528400, China.
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China.
| |
Collapse
|
3
|
Lee SG, Hwang JW, Kang H. Antioxidant and Skin-Whitening Efficacy of a Novel Decapeptide (DP, KGYSSYICDK) Derived from Fish By-Products. Mar Drugs 2024; 22:374. [PMID: 39195491 PMCID: PMC11355700 DOI: 10.3390/md22080374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
The skin is vulnerable to damage from ultraviolet rays and oxidative stress, which can lead to aging and pigmentation issues. This study investigates the antioxidant and whitening efficacy of a decapeptide (DP, KGYSSYICDK) derived from marine fish by-products and evaluates its potential as a new skin-whitening agent. DP demonstrated high antioxidant activity, showing comparable or superior performance to Vitamin C (Vit. C) in ferric reducing antioxidant power (FRAP) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays. In hydrogen peroxide (H2O2)-treated HaCaT cells, DP increased cell viability and reduced reactive oxygen species (ROS) generation. Furthermore, DP inhibited tyrosinase activity and decreased melanin production in α-melanocyte stimulating hormone (α-MSH)-induced B16F10 melanoma cells in a dose-dependent manner. Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that DP reduces the mRNA expression of MITF, tyrosinase, and MC1R, thus suppressing melanin production. DP exhibits strong binding interactions with multiple amino acid residues of tyrosinase, indicating potent inhibitory effects on the enzyme. These results suggest that DP possesses significant antioxidant and whitening properties, highlighting its potential as a skin-whitening agent. Future research should focus on optimizing DP's structure and exploring structure-activity relationships.
Collapse
Affiliation(s)
- Sung-Gyu Lee
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Marine Bio-Food and Drug Convergence Technology Center, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Jin-Woo Hwang
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Marine Bio-Food and Drug Convergence Technology Center, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Hyun Kang
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Marine Bio-Food and Drug Convergence Technology Center, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
4
|
Kim YS, Lee EB, Yu YJ, Kim GW, Kim WJ, Choi DK. Ethyl Acetate Fraction from a Catalpa ovata G. Don Extract Inhibits ɑ-MSH-Induced Melanogenesis through the cAMP/CREB Pathway. Int J Mol Sci 2023; 25:151. [PMID: 38203322 PMCID: PMC10778878 DOI: 10.3390/ijms25010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The whitening effect of reducing skin pigmentation is one of the most important goals of cosmetics. The purpose of this study was to determine whether Catalpa ovata extract and its fractions have potential as natural skin-lightening agents. Initially, we screened various fractions of Catalpa ovata extract using an in vitro antioxidant assay. Then, the inhibitory effects of C. ovata extract and its fraction on melanogenesis and the related mechanisms were investigated in B16F1 melanoma cells. The results showed that the ethyl acetate fraction (EF) from C. ovata extract markedly inhibited melanin synthesis in a dose-dependent manner at non-toxic concentrations. Furthermore, EF downregulated both the protein and mRNA levels of tyrosinase, which is a specific enzyme that catalyzes the conversion of tyrosine into melanin. We also found that EF decreased the microphthalmia-associated transcription factor (MITF) at the protein and mRNA levels. EF increased the phosphorylation of ERK and suppressed the phosphorylation of JNK and p38 in ɑ-MSH-induced B16F1 cells. These results indicate that EF can regulate the MAPK pathway. In addition, EF has an anti-melanogenic effect via the downregulation of intracellular cyclic-AMP (cAMP). Nineteen major compounds of EF were identified using LC-MS/MS. Taken together, these results suggest that EF may be a potential anti-melanogenic agent for use in skin-whitening cosmetics and in topical treatments for hyperpigmentation disorders.
Collapse
Affiliation(s)
- Yon-Suk Kim
- Department of Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Eun-Bin Lee
- Department of Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Ye-Ji Yu
- Department of Applied Life Sciences, Research Institute (RIBHS), College of Biomedical & Health Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Ga-Won Kim
- Department of Applied Life Sciences, Research Institute (RIBHS), College of Biomedical & Health Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Woo-Jung Kim
- Biocenter, Gyeonggido Business and Science Accelerator, Gwanggyo-ro 147, Yeongtong-gu, Suwon 16229, Republic of Korea
| | - Dong-Kug Choi
- Department of Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
- Department of Applied Life Sciences, Research Institute (RIBHS), College of Biomedical & Health Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
5
|
Joo IH, Choi JH, Kim DH, Chung MJ, Lim MH. Ligularia fischeri ethanol extract: An inhibitor of alpha-melanocyte-stimulating hormone-stimulated melanogenesis in B16F10 melanoma cells. J Cosmet Dermatol 2023; 22:637-644. [PMID: 36030197 PMCID: PMC10087159 DOI: 10.1111/jocd.15335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ligularia fischeri is a perennial herb isolated from plants of the Asteraceae family. Ligularia fischeri is distributed throughout Korea, Japan, eastern Siberia, and China. AIMS The aim of this study is to examine the intracellular inhibitory effect of Ligularia fischeri ethanol extract on melanin synthesis and expression of tyrosinase and tyrosinase-related protein 1 and 2. In addition, we analyzed the mitogen-activated protein kinase signaling pathway and microphthalmia-associated transcription factor in alpha-melanocyte-stimulating hormone-stimulated B16F10 melanoma cells. METHODS To assess the inhibition of melanogenesis in alpha-melanocyte-stimulating hormone-stimulated B16F10 melanoma cells, the expression of melanogenesis-related genes was investigated by quantitative real-time polymerase chain reaction, while western blotting was performed to determine protein expression levels. RESULTS We confirmed that the ethanol extract of Ligularia fischeri inhibited melanin synthesis in vitro by decreasing tyrosinase and tyrosinase-related protein 1 and 2 expression. Furthermore, we revealed that tyrosinase expression was regulated by the suppression of microphthalmia-associated transcription factor expression and activation of extracellular signal-regulated kinase phosphorylation. The ethanol extract of Ligularia fischeri inhibited melanogenesis by activating extracellular signal-regulated kinase phosphorylation and suppressing microphthalmia-associated transcription factor and tyrosinase expression. CONCLUSIONS Ligularia fischeri ethanol extract may be used as an effective skin whitening agent in functional cosmetics.
Collapse
Affiliation(s)
- In-Hwan Joo
- Department of Oriental Medicine, Daejeon University, Daejeon, South Korea
| | - Ji-Hee Choi
- Department of Oriental Medicine, Daejeon University, Daejeon, South Korea
| | - Dong-Hee Kim
- Department of Oriental Medicine, Daejeon University, Daejeon, South Korea
| | | | - Mi-Hye Lim
- Department of Beauty Healthcare, Daejeon University, Daejeon, South Korea
| |
Collapse
|
6
|
Hu Z, Sha X, Zhang L, Huang S, Tu Z. Effect of Grass Carp Scale Collagen Peptide FTGML on cAMP-PI3K/Akt and MAPK Signaling Pathways in B16F10 Melanoma Cells and Correlation between Anti-Melanin and Antioxidant Properties. Foods 2022; 11:391. [PMID: 35159541 PMCID: PMC8834497 DOI: 10.3390/foods11030391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 12/22/2022] Open
Abstract
Peptide Phe-Thr-Gly-Met-Leu (FTGML) is a bioactive oligopeptide with tyrosinase inhibitory activity derived from gelatin hydrolysate of grass carp scales. Previous studies have shown that FTGML addition can effectively inhibit mushroom tyrosinase activity in vitro, and also has some effect on the inhibition of melanogenesis in zebrafish in vivo, but the underlying mechanism is not fully understood. In this study, we used FTGML to treat B16F10 melanoma cells, and found a significant inhibition of tyrosinase activity and melanin synthesis. Interestingly, the treatment showed a strong correlation between antioxidant activity and anti-melanin, which was associated with FTGML reducing the involvement of reactive oxygen species in melanin synthesis. Furthermore, FTGML reduced melanogenesis in B16F10 cells by downregulating the cAMP-PI3K/Akt and MAPK pathways (p38 and JNK). These results suggested that FTGML can reduce melanin production in mouse B16F10 melanoma cells through multiple pathways.
Collapse
Affiliation(s)
- Zizi Hu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China; (Z.H.); (L.Z.)
| | - Xiaomei Sha
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China;
| | - Lu Zhang
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China; (Z.H.); (L.Z.)
| | - Sheng Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China;
| | - Zongcai Tu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China; (Z.H.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China;
| |
Collapse
|
7
|
Lee HR, Jung JM, Seo JY, Chang SE, Song Y. Anti-melanogenic property of ginsenoside Rf from Panax ginseng via inhibition of CREB/MITF pathway in melanocytes and ex vivo human skin. J Ginseng Res 2021; 45:555-564. [PMID: 34803425 PMCID: PMC8587488 DOI: 10.1016/j.jgr.2020.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background Ginsenosides of Panax ginseng are used to enhance skin health and beauty. The present study aimed to investigate the potential use of ginsenoside Rf (Rf) from Panax ginseng as a new anti-pigmentation agent. Methods The anti-melanogenic effects of Rf were explored. The transcriptional activity of the cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and the expression levels of tyrosinase, microphthalmia-associated transcription factor (MITF), and tyrosinase-related proteins (Tyrps) were evaluated in melanocytes and UV-irradiated ex vivo human skin. Results Rf significantly inhibited Forskolin (FSK) or UV-stimulated melanogenesis. Consistently, cellular tyrosinase activity and levels of MITF, tyrosinase, and Tyrps were downregulated. Furthermore, Rf suppressed MITF promoter activity, which was stimulated by FSK or CREB-regulated transcription coactivator 3 (CRTC3) overexpression. Increased CREB phosphorylation and protein kinase A (PKA) activity induced by FSK were also mitigated in the presence of Rf. Conclusion Rf can be used as a reliable anti-pigmentation agent, which has a scientifically confirmed and reproducible action mechanism, via inhibition of CREB/MITF pathway.
Collapse
Affiliation(s)
- Ha-Ri Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea.,Asan Institute for Life Sciences, Asan Medical Center, Republic of Korea
| | - Joon Min Jung
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea
| | - Ji-Yeon Seo
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea.,Asan Institute for Life Sciences, Asan Medical Center, Republic of Korea
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea.,Asan Institute for Life Sciences, Asan Medical Center, Republic of Korea
| | - Youngsup Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea.,Asan Institute for Life Sciences, Asan Medical Center, Republic of Korea
| |
Collapse
|
8
|
Codonopsis pilosula Extract Protects Melanocytes against H2O2-Induced Oxidative Stress by Activating Autophagy. COSMETICS 2021. [DOI: 10.3390/cosmetics8030067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recently, as the anti-aging role of melanin in the skin and the inhibition of melanin production has been identified, the development of materials capable of maintaining skin homeostasis has been attracting attention. In this study, we further investigated the anti-melanogenic effect of Codonopsis pilosula extract (CPE) and, under oxidative stress, the cytoprotective effect in Melan-a melanocytes exposed to H2O2. First, CPE treatment significantly reduced melanin production by inhibiting melanogenesis-associated proteins, including microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein 2 (TRP 2), as a result of the phosphorylation of MAPK/JNK in Melan-a cells. Next, to investigate the protective effects of the CPE on oxidative-stress-induced skin injury and its molecular mechanism, we determined the effect of CPE after inducing oxidative stress by exposing melanocytes to H2O2. CPE protected cells from H2O2-induced cytotoxicity by reducing the expression of the gene encoding the Bax pro-apoptotic protein, whereas it induced the genes encoding the B-cell lymphoma 3 (Bcl2) family and MITF, which is a transcriptional regulator that promotes melanocyte differentiation. Furthermore, our results show that CPE enhanced the production of autophagy-related proteins such as Beclin-1 and light chain 3 (LC3) II; this was substantially reversed by 3-methyladenin (MA, an autophagy inhibitor) pretreatment. Collectively, our findings demonstrate that CPE treatment exhibits not only an anti-melanogenic effect in normal melanocytes, but also a cytoprotective effect in melanocytes subjected to oxidative stress by inducing autophagy and MITF expression. Therefore, we believe that CPE is a potent candidate for cell maintenance in melanocytes.
Collapse
|
9
|
Anti-Melanogenic Effects of Paederia foetida L. Extract via MAPK Signaling-Mediated MITF Downregulation. COSMETICS 2021. [DOI: 10.3390/cosmetics8010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, in order to explore the anti-melanogenic effect of PFE (Paederia foetida L. extract) and suggest its availability, B16F10 cells, which are murine melanoma cells, were stimulated with alpha-Melanocyte-stimulating hormone (α-MSH) to conduct an in vitro experiment. Treatment with PFE in B16F10 cells with activated melanogenesis due to stimulants showed that PFE significantly inhibits melanin content as well as intracellular tyrosinase activity within a range that does not cause cytotoxicity. In addition, Western blot assay demonstrated that PFE strongly inhibited the protein expression of not only tyrosinase-related protein (TRP)-1, -2, and tyrosinase, but also microphthalmia-associated transcription factor (MITF). Moreover, mechanism studies have shown that PFE processing inhibited the activation of melanin production by regulating the phosphorylation of each mitogen-activated protein kinase (MAPK) family in the MAPK signaling pathway. To test the biocompatibility of PFE on human skin, a primary skin irritation test was performed. The results revealed that PFE did not have any side effects on human skin. These findings suggest that PFE holds great potential as a skin whitening agent and in the prevention of hyperpigmentation disorders.
Collapse
|
10
|
Inhibitory Effects of Pinostilbene Hydrate on Melanogenesis in B16F10 Melanoma Cells via ERK and p38 Signaling Pathways. Int J Mol Sci 2020; 21:ijms21134732. [PMID: 32630811 PMCID: PMC7369948 DOI: 10.3390/ijms21134732] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022] Open
Abstract
Melanin protects our skin from harmful ultraviolet (UV) radiation. However, when produced in excess, it can cause hyperpigmentation disorders, such as melanoma, freckles, lentigo, and blotches. In this study, we investigated the effects of pinostilbene hydrate (PH) on melanogenesis. We also examined the underlying mechanisms of PH on melanin production in B16F10 cells. Our findings indicated that PH significantly inhibits melanin content and cellular tyrosinase activity in cells without causing cytotoxicity. In addition, Western blot analysis showed that PH downregulated the protein levels of microphthalmia-associated transcription factor (MITF), tyrosinase, and other melanogenic enzymes, such as tyrosinase-related protein-1 (TRP-1) and tyrosinase-related protein-2 (TRP-2). Although PH activated the phosphorylation of extracellular signal-regulated kinase (ERK), it inhibited p38 mitogen-activated protein kinases (p38). Furthermore, the inhibition of tyrosinase activity by PH was attenuated by treatment with PD98059 (a specific ERK inhibitor). Additionally, p-AKT was upregulated by PH treatment. Finally, the inhibitory effects of PH on melanin content and tyrosinase activity were confirmed in normal human melanocytes. These results suggest PH downregulates melanogenesis via the inhibition of MITF expression, followed by the MAPKase signaling pathways. Thus, PH may be used to treat or prevent hyperpigmentation disorders and in functional cosmetic agents for skin whitening.
Collapse
|
11
|
Ju S, Seo JY, Lee SK, Oh J, Kim JS. Oral administration of hydrolyzed red ginseng extract improves learning and memory capability of scopolamine-treated C57BL/6J mice via upregulation of Nrf2-mediated antioxidant mechanism. J Ginseng Res 2019; 45:108-118. [PMID: 33437162 PMCID: PMC7791004 DOI: 10.1016/j.jgr.2019.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/30/2022] Open
Abstract
Background Korean ginseng (Panax ginseng Meyer) contains a variety of ginsenosides that can be metabolized to a biologically active substance, compound K. Previous research showed that compound K could be enriched in the red ginseng extract (RGE) after hydrolysis by pectinase. The current study investigated whether the enzymatically hydrolyzed red ginseng extract (HRGE) containing a notable level of compound K has cognitive improving and neuroprotective effects. Methods A scopolamine-induced hypomnesic mouse model was subjected to behavioral tasks, such as the Y-maze, passive avoidance, and the Morris water maze tests. After sacrificing the mice, the brains were collected, histologically examined (hematoxylin and eosin staining), and the expressions of antioxidant proteins analyzed by western blot. Results Behavioral assessment indicated that the oral administration of HRGE at a dosage of 300 mg/kg body weight reversed scopolamine-induced learning and memory deficits. Histological examination demonstrated that the hippocampal damage observed in scopolamine-treated mouse brains was reduced by HRGE administration. In addition, HRGE administration increased the expression of nuclear-factor-E2-related factor 2 and its downstream antioxidant enzymes NAD(P)H:quinone oxidoreductase and heme oxygenase-1 in hippocampal tissue homogenates. An in vitro assay using HT22 mouse hippocampal neuronal cells demonstrated that HRGE treatment attenuated glutamate-induced cytotoxicity by decreasing the intracellular levels of reactive oxygen species. Conclusion These findings suggest that HRGE administration can effectively alleviate hippocampus-mediated cognitive impairment, possibly through cytoprotective mechanisms, preventing oxidative-stress-induced neuronal cell death via the upregulation of phase 2 antioxidant molecules.
Collapse
Key Words
- ABTS, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
- BW, body weight
- CCK-8, cell counting kit-8
- Cognition
- DCF, dichlorofluorescein
- DCFH, 2,7-dichlorodihydrofluorescein
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- H&E, hematoxylin and eosin
- HO-1, heme oxygenase-1
- HRGE, hydrolyzed red ginseng extract
- KO, knockout
- Korean Red Ginseng
- Learning and memory
- NQO1, NAD(P):quinone oxidoreductase 1
- Neuroprotection
- Nrf2, nuclear-factor-E2-related factor 2
- PPD, protopanaxadiol
- Pectinase-mediated hydrolysis
- RGE, red ginseng extract
- ROS, reactive oxygen species
- WT, wild-type
Collapse
Affiliation(s)
- Sunghee Ju
- School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu, Republic of Korea
| | - Ji Yeon Seo
- School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu, Republic of Korea
| | - Seung Kwon Lee
- Ginseng Biotech Research Team, Ilhwa Co. Ltd, Guri, Gyeonggi-do, Republic of Korea
| | - Jisun Oh
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Sang Kim
- School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu, Republic of Korea.,Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
12
|
Chang SP, Huang HM, Shen SC, Lee WR, Chen YC. Nilotinib induction of melanogenesis via reactive oxygen species-dependent JNK activation in B16F0 mouse melanoma cells. Exp Dermatol 2019; 27:1388-1394. [PMID: 30290020 DOI: 10.1111/exd.13797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/01/2018] [Indexed: 12/15/2022]
Abstract
Nilotinib (AMN), a second-generation tyrosine kinase inhibitor, induces apoptosis in various cancer cells, and our recent study showed that AMN effectively reduced the viability of human ovarian cancer cells via mitochondrion-dependent apoptosis. The effect of AMN in the melanogenesis of melanoma cells is still unclear. In the present study, we found that the addition of AMN but not imatinib (STI) significantly increased the darkness of B16F0 melanoma cells, and the absorptive value increased with the concentration of AMN. A decrease in the viability of B16F0 cells by AMN was detected in a concentration-dependent manner, accompanied by increased DNA ladders, hypodiploid cells and cleavage of the caspase-3 protein. An in vitro tyrosinase (TYR) activity assay showed that increased TYR activity by AMN was detected in a concentration-dependent manner; however, induction of TYR activity by STI at a concentration of 40 μmol/L was observed. Increased intracellular peroxide by AMN was detected in B16F0 cells, and application of the antioxidant, N-acetylcysteine (NAC), significantly reduced AMN-induced peroxide production which also reduced the darkness of B16F0 cells. Additionally, AMN induced c-Jun N-terminal kinase (JNK) protein phosphorylation in B16F0 cells, which was inhibited by the addition of NAC. AMN-induced melanogenesis of B16F0 cells was significantly inhibited by the addition of NAC and the JNK inhibitor, SP600125 (SP). Data of Western blotting showed that increased protein levels of melanogenesis-related enzymes of tyrosinase-related protein-1 (TRP1), TRP2 and TYR were observed in AMN-treated B16F0 cells which were inhibited by the addition of NAC and SP. Evidence is provided supporting AMN effectively inducing the melanogenesis of B16F0 melanoma cells via reactive oxygen species-dependent JNK activation.
Collapse
Affiliation(s)
- Shao-Ping Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Huei-Mei Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shing-Chuan Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Woan-Ruoh Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,International MS/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cancer Research Center and Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
13
|
Chung YC, Kim MJ, Kang EY, Kim YB, Kim BS, Park SM, Hyun CG. Anti-Melanogenic Effects of Hydroxyectoine via MITF Inhibition by JNK, p38, and AKT Pathways in B16F10 Melanoma Cells. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19858523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Melanin plays a role in determining human skin color of a person, and a large amount of melanin makes the skin color look darkened. The proper amount of melanin formation protects our skin from UV radiation, but excessive melanin production causes hyperpigmentation and leads to freckles, melasma, and lentigo. In this study, we investigated the inhibitory effect of hydroxyectoine on melanogenesis and its mechanism in B16F10 cells. Melanin content and cellular tyrosinase activity were determined. The expression of microphthalmia-associated transcription factor (MITF), and the activities of tyrosinase and other melanogenesis-related enzymes, such as tyrosinase-related protein 1 (TRP-1) and tyrosinase-related protein 2, were also examined. Hydroxyectoine treatment significantly inhibited melanin production and intracellular tyrosinase activity in a dose-dependent manner. Western blot analysis showed that hydroxyectoine also reduced the expressions of tyrosinase and TRP-1. In addition, hydroxyectoine significantly reduced the expression of MITF, a major regulator of melanin production, and inhibited the phosphorylation of p38, c-Jun N-terminal kinase, and activated the protein kinase B. The results demonstrated that hydroxyectoine inhibits the expression of MITF through the inhibition or activation of melanin-related signaling pathways and downregulates melanogenesis by inhibiting melanogenic enzyme expression and tyrosinase activity. Hydroxyectoine has potential value in functional cosmetics applications, such as whitening.
Collapse
Affiliation(s)
- You C. Chung
- Department of Chemistry and Cosmetics, Jeju National University, Korea
| | - Min-Jin Kim
- Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, Korea
| | | | - Yun B. Kim
- NewMedion Co., Ltd., Jeju City, Jeju, Korea
| | - Bong S. Kim
- Bio-Convergence Center, Jeju Technopark, Korea
| | | | - Chang-Gu Hyun
- Department of Chemistry and Cosmetics, Jeju National University, Korea
| |
Collapse
|
14
|
Lee JY, Cho YR, Park JH, Ahn EK, Jeong W, Shin HS, Kim MS, Yang SH, Oh JS. Anti-melanogenic and anti-oxidant activities of ethanol extract of Kummerowia striata: Kummerowia striata regulate anti-melanogenic activity through down-regulation of TRP-1, TRP-2 and MITF expression. Toxicol Rep 2018; 6:10-17. [PMID: 30510908 PMCID: PMC6258129 DOI: 10.1016/j.toxrep.2018.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/24/2018] [Accepted: 11/01/2018] [Indexed: 11/21/2022] Open
Abstract
Ethanol extract of Kummerowia striata is a potent antioxidant. It inhibits melanin synthesis by downregulating tyrosinase and related proteins. It may be used in cosmetics for skin whitening and reducing wrinkles.
Kummerowia striata (K. striata) is used as a traditional medicine for inflammation-related therapy. To determine whether it has beneficial anti-melanogenic and anti-oxidant activities, we investigated the biological activities of the ethanol extract of Kummerowia striata (EKS) using a variety of in vitro and cell culture model systems. The anti-melanogenic activity was assessed in B16F10 melanoma cells in terms of melanin synthesis and in vitro tyrosinase inhibitory activity. The anti-oxidant assays were performed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2ʹ-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). EKS showed strong anti-oxidant activities in DPPH and ABTS assays. The mRNA transcription levels and protein expression levels of tyrosinase, tyrosinase-related protein 1, tyrosinase-related protein 2, and microphthalmia-associated transcription factor decreased in a dose-dependent manner with EKS treatment. Additionally, EKS did not affect cell viability at different concentrations used in this study, indicating that the mechanism of action of EKS-mediated inhibition of melanin synthesis does not involve cytotoxicity. Also, we confirmed that p-coumaric acid and quercetin are important compounds for anti-melanogenesis and antioxidant properties of EKS. Collectively, our findings demonstrate for the first time that EKS possesses anti-melanogenic and anti-oxidant activities. Further evaluation and development of EKS as a functional supplement or cosmetic may be useful for skin whitening and reducing wrinkles.
Collapse
Key Words
- ABTS, 2,2ʹ-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt
- Anti-oxidant
- BHA, butylated hydroxyanisole
- COSY, correlation spectroscopy
- DMEM, Dulbecco’s Modified Eagle Medium
- DMSO, dimethyl sulfoxide
- DPPH, l 2,2-diphenyl-1-picrylhydrazyl
- EKS, ethanol extract of K. striata
- ESI, electrospray ionization
- FBS, fetal bovine serum
- HMBC, heteronuclear multiple bond correlation
- HSQC, heteronuclear single quantum coherence
- Kummerowia striata
- L-DOPA, L-3,4-dihydroxyphenylalanine
- MITF, microphthalmia-associated transcription factor
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide
- Melanin
- Quercetin
- RT-PCR, reverse transcription-polymerase chain reaction
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- TRP-1, tyrosinase-related protein 1
- p-coumaric acid
- α-MSH, α-Melanocyte-stimulating hormone
Collapse
Affiliation(s)
- Jae Yeon Lee
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, 147 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| | - Young-Rak Cho
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, 147 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| | - Ju Hyoung Park
- Department of Pharmacy, College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan, 330-714, Republic of Korea
| | - Eun-Kyung Ahn
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, 147 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| | - Wonsik Jeong
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, 147 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| | - Hyoung Seok Shin
- HANSOLBIO Co., Ltd., Halla Sigmavalley 545, Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Mi-Sun Kim
- HANSOLBIO Co., Ltd., Halla Sigmavalley 545, Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Joa Sub Oh
- Department of Pharmacy, College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan, 330-714, Republic of Korea
| |
Collapse
|
15
|
Chung YC, Ko JH, Kang HK, Kim S, Kang CI, Lee JN, Park SM, Hyun CG. Antimelanogenic Effects of Polygonum tinctorium Flower Extract from Traditional Jeju Fermentation via Upregulation of Extracellular Signal-Regulated Kinase and Protein Kinase B Activation. Int J Mol Sci 2018; 19:ijms19102895. [PMID: 30249988 PMCID: PMC6213794 DOI: 10.3390/ijms19102895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 11/26/2022] Open
Abstract
This study was carried out to investigate the antimelanogenic effects of a Polygonum tinctorium flower extract obtained using red nuruk, a traditional Jeju barley-based fermentation starter. We also studied the mechanism of action of the P. tinctorium fermented flower extract (PTFFE) in mouse melanoma cells (B16F10). Cells were treated with various concentrations (62.5, 125 and 250 μg/mL) of PTFFE and the results showed that PTFFE significantly decreased the melanin content and tyrosinase activity without being cytotoxic. In addition, PTFFE strongly inhibited the expression of tyrosinase and tyrosinase-related protein 2 by decreasing the expression of the microphthalmia-associated transcription factor, as shown by a western blot assay. Furthermore, PTFFE inhibited melanogenesis via upregulation of the phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B, also known as AKT. We also used inhibitors such as PD98059 (a specific ERK inhibitor) or LY294002 (an AKT inhibitor) to determine whether the signaling pathways are involved. High-performance liquid chromatography fingerprinting showed the presence of a quercetin glucoside (isoquercitrin) and quercetin in PTFFE. To test the potential for PTFFE application as a cosmetic material, we also performed a primary skin irritation test on human skin. In this assay, PTFFE did not induce any adverse reactions at the treatment dose. Based on these results, we suggest that PTFFE may be considered a potential antimelanogenesis candidate for topical applications.
Collapse
Affiliation(s)
- You Chul Chung
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea.
| | - Ji-Hye Ko
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea.
| | - Hyun-Kyu Kang
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea.
| | - Seoyeon Kim
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea.
| | | | - Jung No Lee
- R&D Center, CoSeedBioPham Co., Chungbuk 28161, Korea.
| | - Sung-Min Park
- R&D Center, CoSeedBioPham Co., Chungbuk 28161, Korea.
| | - Chang-Gu Hyun
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
16
|
Han JS, Sung JH, Lee SK. Inhibition of Cholesterol Synthesis in HepG2 Cells by GINST-Decreasing HMG-CoA Reductase Expression Via AMP-Activated Protein Kinase. J Food Sci 2017; 82:2700-2705. [DOI: 10.1111/1750-3841.13828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/16/2017] [Accepted: 06/30/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Joon-Seung Han
- BioTech Research Laboratory; Central Research Inst.; Ilhwa Co., Ltd. Gangdong-gu Seoul 05288 Republic of Korea
| | - Jong Hwan Sung
- BioTech Research Laboratory; Central Research Inst.; Ilhwa Co., Ltd. Gangdong-gu Seoul 05288 Republic of Korea
| | - Seung Kwon Lee
- BioTech Research Laboratory; Central Research Inst.; Ilhwa Co., Ltd. Gangdong-gu Seoul 05288 Republic of Korea
| |
Collapse
|
17
|
Azam MS, Choi J, Lee MS, Kim HR. Hypopigmenting Effects of Brown Algae-Derived Phytochemicals: A Review on Molecular Mechanisms. Mar Drugs 2017; 15:E297. [PMID: 28946635 PMCID: PMC5666405 DOI: 10.3390/md15100297] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/11/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022] Open
Abstract
There is a rapid increase in the demand for natural hypopigmenting agents from marine sources for cosmeceutical and pharmaceutical applications. Currently, marine macroalgae are considered as a safe and effective source of diverse bioactive compounds. Many research groups are exploring marine macroalgae to discover and characterize novel compounds for cosmeceutical, nutraceutical, and pharmaceutical applications. Many types of bioactive secondary metabolites from marine algae, including phlorotannins, sulfated polysaccharides, carotenoids, and meroterpenoids, have already been documented for their potential applications in the pharmaceutical industry. Among these metabolites, phlorotannins from brown algae have been widely screened for their pharmaceutical and hypopigmenting effects. Unfortunately, the majority of these articles did not have detailed investigations on molecular targets, which is critical to fulfilling the criteria for their cosmeceutical and pharmaceutical use. Very recently, a few meroterpenoids have been discovered from Sargassum sp., with the examination of their anti-melanogenic properties and mechanisms. Despite the scarcity of in vivo and clinical investigations of molecular mechanistic events of marine algae-derived hypopigmenting agents, identifying the therapeutic targets and their validation in humans has been a major challenge for future studies. In this review, we focused on available data representing molecular mechanisms underlying hypopigmenting properties of potential marine brown alga-derived compounds.
Collapse
Affiliation(s)
- Mohammed Shariful Azam
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| | - Jinkyung Choi
- Department of Foodservice Management, Woosong University, Daejeon 34606, Korea.
| | - Min-Sup Lee
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| |
Collapse
|
18
|
Yang SH, Tsatsakis AM, Tzanakakis G, Kim HS, Le B, Sifaki M, Spandidos DA, Tsukamoto C, Golokhvast KS, Izotov BN, Chung G. Soyasaponin Ag inhibits α‑MSH‑induced melanogenesis in B16F10 melanoma cells via the downregulation of TRP‑2. Int J Mol Med 2017; 40:631-636. [PMID: 28713957 PMCID: PMC5548002 DOI: 10.3892/ijmm.2017.3061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/08/2017] [Indexed: 12/28/2022] Open
Abstract
Saponins, which are glycosylated, represent a diverse group of biologically functional products in plants. In the present study, we investigated the effects of soyasaponin Ag, a secondary metabolite extracted from soybean, on α‑melanocyte-stimulating hormone (α‑MSH)‑induced melanin synthesis in B16F10 mouse melanoma cells and the underlying molecular mechanisms. To elucidate the mechanisms through which soyasaponin Ag inhibits melanin synthesis, we performed cellular tyrosinase activity assays and analyzed the expression of the melanogenesis‑related genes, tyrosinase, tyrosinase‑related protein (TRP)‑1 and TRP‑2. We demonstrated that soyasaponin Ag inhibited α‑MSH‑induced melanin synthesis in melanoma cells. Of note, soyasaponin Ag had no inhibitory effect on intracellular tyrosinase activity. However, soyasaponin Ag inhibited TRP‑2 expression in a dose‑dependent manner. Therefore, the depigmenting effect of soyasaponin Ag may be due to the inhibition of tyrosinase expression or the enhancement of tyrosinase degradation. Moreover, soyasaponin Ag did not exert any toxic on B16F10 mouse melanoma cells, suggesting that soyasaponin is a safe component for use in skin care cosmetic formulations that are used for skin whitening.
Collapse
Affiliation(s)
- Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea
| | - Aristides M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - George Tzanakakis
- Laboratory of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Hong-Suk Kim
- Durae Corporation, Research and Development Center, Gunpo, Gyeonggi 435‑832, Republic of Korea
| | - Bao Le
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea
| | - Maria Sifaki
- Laboratory of Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Demetrios A Spandidos
- Laboratory of Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Chigen Tsukamoto
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020‑8550, Japan
| | - Kirill S Golokhvast
- Educational Scientific Center of Nanotechnology, Engineering School, Far Eastern Federal University, Vladivostok 690950, Russia
| | - Boris N Izotov
- Department of Analytical Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, Moscow 119991, Russia
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea
| |
Collapse
|
19
|
Inhibitory effects of Stichopus japonicus extract on melanogenesis of mouse cells via ERK phosphorylation. Mol Med Rep 2017; 16:1079-1086. [PMID: 28586027 PMCID: PMC5561873 DOI: 10.3892/mmr.2017.6686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 03/17/2017] [Indexed: 11/21/2022] Open
Abstract
Stichopus japonicus has been used as a folk medicine and as an ingredient in traditional food in East Asian countries. In recent years, the bioactive compounds found in S. japonicus have been reported to possess efficacy in wound healing and may be of potential use in the cosmeceutical, pharmaceutical and biomedical industries. Although the components and their functions require further investigation, S. japonicus extracts exhibit anti-inflammatory properties, and may be used for cancer prevention and treatment. Although several reports have examined different aspects of S. japonicus, the effects of S. japonicus extract on melanogenesis in the skin has not been reported to date. Therefore the present study aimed to investigate the effects of S. japonicus extract on melanogenesis. Treatment with a mixture of S. japonicus extracts (MSCE) reduced melanin synthesis and tyrosinase (TYR) activity in mouse melanocyte cells lines, B16F10 and Melan-A. In addition, MSCE treatment reduced the protein expression levels of TYR, tyrosinase-related protein-1 and tyrosinase-related protein-2. The reduced protein levels may be the result of decreased microphthalmia-associated transcription factor (MITF) expression, which is an important regulator of melanogenesis. The reduced expression level of MITF was associated with delayed phosphorylation of extracellular signal-regulated kinase (ERK) induced by MSCE treatment. A specific MEK inhibitor, PD98059, significantly blocked MSCE-mediated inhibition of melanin synthesis. In conclusion, these results indicate that MSCE may be useful as a potential skin-whitening compound in the skin medical industry.
Collapse
|
20
|
Zheng X, Wang S, Zou X, Jing Y, Yang R, Li S, Wang F. Ginsenoside Rb1 improves cardiac function and remodeling in heart failure. Exp Anim 2017; 66:217-228. [PMID: 28367863 PMCID: PMC5543242 DOI: 10.1538/expanim.16-0121] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We investigated the effect of ginsenoside Rb1 on cardiac function and remodeling in heart
failure (HF). Four weeks after HF induction, the rats were administrated with ginsenoside
Rb1 (35 and 70 mg/kg) and losartan (4.5 mg/kg) for 8 weeks. Losartan was used as a
positive control. Cardiac function was assessed by measuring hemodynamic parameters.
Histological changes were analyzed by HE and Masson’s trichrome staining. Cardiac
hypertrophy, fibrosis, mitochondrial membrane potential and glucose transporter type 4
(GLUT4) levels were evaluated. In the present study, high dose of (H−) ginsenoside Rb1
decreased heart rate, improved cardiac function and alleviated histological changes
induced by HF. H-ginsenoside Rb1 attenuated cardiac hypertrophy and myocardial fibrosis by
decreasing left ventricular (LV) weight/heart weight ratio and cardiomyocyte
cross-sectional area and reducing the levels of atrial natriuretic factor (ANF), β-myosin
heavy chain (β-MHC), periostin, collagen I, Angiotensin II (Ang II), Angiotensin
converting enzyme (ACE) and Ang II type 1 (AT1) receptor. Moreover, H-ginsenoside Rb1
decreased mitochondrial membrane potential and enhanced the translocation of GLUT4 to
plasma membrane. The TGF-β1/Smad and ERK signaling pathways were inhibited and the Akt
pathway was activated. These findings suggest that ginsenoside Rb1 might restore
cardiac/mitochondrial function, increase glucose uptake and protect against cardiac
remodeling via the TGF-β1/Smad, ERK and Akt signaling pathways.
Collapse
Affiliation(s)
- Xian Zheng
- Graduate School, Liaoning University of Traditional Chinese Medicine, 79 Chongshan East Road, Shenyang 110847, P.R. China
| | - Shuai Wang
- First Department of Cardiology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Avenue, Shenyang 110032, P.R. China
| | - Xiaoming Zou
- Graduate School, Liaoning University of Traditional Chinese Medicine, 79 Chongshan East Road, Shenyang 110847, P.R. China
| | - Yating Jing
- First Department of Cardiology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Avenue, Shenyang 110032, P.R. China
| | - Ronglai Yang
- First Department of Cardiology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Avenue, Shenyang 110032, P.R. China
| | - Siqi Li
- Standardization Office, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Avenue, Shenyang 110032, P.R. China
| | - Fengrong Wang
- First Department of Cardiology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Avenue, Shenyang 110032, P.R. China
| |
Collapse
|