1
|
Zhang Z, Wu C, Wang S, Tong Y, Huang J, Xue C, Cao T, Suzuki K. Long-Term Moderate Increase in Medium-Chain Fatty Acids Intake Enhances Muscle Metabolism and Function in Mice. Int J Mol Sci 2025; 26:4126. [PMID: 40362366 PMCID: PMC12071283 DOI: 10.3390/ijms26094126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Medium-chain fatty acids (MCFAs) refer to a mixture of fatty acids typically composed of 6 to 12 carbon atoms. The unique transport and rapid metabolism of MCFAs provide more clinical benefits than other substrates, such as long-chain fatty acids. Although many studies have shown that MCFAs may improve exercise capacity and muscle strength, applications have mainly been limited to low doses. This study explores the effects of high-dose MCFA intake on muscle strength and exercise endurance. Mice were fed high-fat diets containing 30, 35, and 40% (w/w) MCFAs for 12 weeks, and measurements of grip strength and submaximal endurance exercise capacity were conducted to evaluate muscle function. Results showed that compared to the 30% MCFAs group, the absolute grip strength in the 35 and 40% MCFAs groups significantly increased; in terms of endurance performance, the 35% MCFAs group showed a significant increase compared to the 40% MCFAs group. These results were mainly achieved by promoting muscle regeneration and differentiation and inhibiting the expression of the ubiquitin-proteasome pathway. This study demonstrates that moderately increasing MCFA intake can improve the effects of obesity-induced muscle atrophy. However, excessive intake may reduce the impact of improvement.
Collapse
Affiliation(s)
- Ziwei Zhang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Cong Wu
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Shuo Wang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Yishan Tong
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Jiapeng Huang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Chuwen Xue
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Tiehan Cao
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
2
|
Ijaz H, Sun S. A review on preparation and application of low-calorie structured lipids in food system. Food Sci Biotechnol 2025; 34:49-64. [PMID: 39758727 PMCID: PMC11695523 DOI: 10.1007/s10068-024-01689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 01/07/2025] Open
Abstract
Low-calorie structured lipids are an advanced form of functional lipids made by changing the position of fatty acids attached to the glycerol backbone. The main reason for their production is to get nutraceutical lipids. Different methods are used to synthesize low-calorie structured lipids, like chemical or enzymatic methods. Initially, these lipids are prepared by using chemical methods. Synthesis of low-calorie structured lipids using enzymes is now in demand due to several advantages like good catalytic efficiency, environmentally friendly, and moderate reaction conditions. Enzymatic interesterification is mostly used in industries to make modified lipids like low-calorie structured lipids, human milk substitutes, cocoa butter equivalents, margarine, and shortenings. This review summarizes the synthesis, uses and clinical applications of modified lipids in food systems. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01689-8.
Collapse
Affiliation(s)
- Hira Ijaz
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001 Henan People’s Republic of China
| | - Shangde Sun
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001 Henan People’s Republic of China
- Henan Engineering Research Center of Oilseed Deep Processing, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001 Henan People’s Republic of China
| |
Collapse
|
3
|
Huang Y, Liu W, Luo X, Zhao M, Wang J, Ullah S, Wei W, Feng F. Lauric-α-linolenic lipids modulate gut microbiota, preventing obesity, insulin resistance and inflammation in high-fat diet mice. NPJ Sci Food 2024; 8:115. [PMID: 39738097 DOI: 10.1038/s41538-024-00349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Medium- and long-chain triacylglycerols (MLCTs) are regarded as healthy premium oils; however, the health benefits of novel MLCTs enriched with lauric and α-linolenic acids are still not fully understood. This study examined the health benefits of lauric-α-linolenic structural lipids (ALSL) and physical mixture (PM) with a similar fatty acid composition in mice with obesity induced by the high-fat diet (HFD). The data indicated that ALSL is more effective than PM in counteracting obesity, insulin resistance, hyperlipidaemia, liver injury, and systemic inflammation in HFD-induced mice. These effects may be associated with the regulation of gut microbiota. ALSL significantly upregulated the abundance of Dubosiella, Lactobacillus, and Bifidobacterium while reducing the abundance of Ileibacterium. Furthermore, ALSL therapy increased the levels of acetic acid, propionic acid, and total short-chain fatty acids. Correlation analysis found that the positive changes in these gut microbes correlated positively with the anti-inflammatory, insulin-sensitizing, and anti-obesity effects of ALSL.
Collapse
Affiliation(s)
- Ying Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- College of Food Science and Engineering, Tarim University, Alar, Xinjiang, 843300, China
| | - Wangxin Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xianliang Luo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan, 512000, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
| | - Sami Ullah
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wei
- Jiangsu Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
- ZhongYuan Institute, Zhejiang University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Katsumata E, Tsuruta T, Sonoyama K, Yoshida T, Sasaki M, Teraoka M, Wang T, Nishino N. Unabsorbed Fecal Fat Content Correlates with a Reduction of Immunoglobulin a Coating of Gut Bacteria in High-Lard Diet-Fed Mice. Mol Nutr Food Res 2024; 68:e2400078. [PMID: 38965658 DOI: 10.1002/mnfr.202400078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/13/2024] [Indexed: 07/06/2024]
Abstract
SCOPE Immunoglobulin A (IgA) selectively coats gut bacteria and contributes to regulatory functions in gastrointestinal inflammation and glucose metabolism. Excess intake of lard leads to decrease in the IgA coating of gut bacteria, although the underlying mechanisms remain unknown. This study validates how unabsorbed fat derived from a high-lard diet in the gut affects the IgA coating of bacteria, as assessed in mouse models using three types of dietary fat (lard, medium-, and long-chain triglycerides [MLCTs], and medium-chain triglycerides [MCTs]) exhibiting different digestibilities. METHODS AND RESULTS C57BL/6J mice are maintained on diets containing lard, MLCTs, or MCTs at 7% or 30% w/w for 10 weeks (n = 6 per group). The fecal fatty acid concentration is measured to quantify unabsorbed fat content. The ratio of IgA-coated bacteria to total bacteria (IgA coating ratio) in the feces is measured by flow cytometry. Compared to lard-fed mice, MLCT- and MCT-fed mice exhibit lower fecal concentrations of palmitic acid, stearic acid, and oleic acid and higher IgA coating ratios at both 7% and 30% dietary fat, and these parameters exhibit significant negative correlations. CONCLUSION Unabsorbed fat content in the gut may result in attenuated IgA coating of bacteria in high-lard diet-fed mice.
Collapse
Affiliation(s)
- Emiko Katsumata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Takeshi Tsuruta
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Kei Sonoyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | | | - Mio Sasaki
- TAIYO YUSHI Corporation, Yokohama, 221-0022, Japan
| | - Mao Teraoka
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Tianyang Wang
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Naoki Nishino
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
5
|
Cheng X, Jiang C, Jin J, Jin Q, Akoh CC, Wei W, Wang X. Medium- and Long-Chain Triacylglycerol: Preparation, Health Benefits, and Food Utilization. Annu Rev Food Sci Technol 2024; 15:381-408. [PMID: 38237045 DOI: 10.1146/annurev-food-072023-034539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Medium- and long-chain triacylglycerol (MLCT) is a structured lipid with both medium- and long-chain fatty acids in one triacylglycerol molecule. Compared with long-chain triacylglycerol (LCT), which is mainly present in common edible oils, and the physical blend of medium-chain triacylglycerol with LCT (MCT/LCT), MLCT has different physicochemical properties, metabolic characteristics, and nutritional values. In this article, the recent advances in the use of MLCT in food formulations are reviewed. The natural sources and preparation of MLCT are discussed. A comprehensive summary of MLCT digestion, absorption, transport, and oxidation is provided as well as its health benefits, including reducing the risk of overweight, hypolipidemic and hypoglycemic effects, etc. The potential MLCT uses in food formulations, such as infant formulas, healthy foods for weight loss, and sports foods, are summarized. Finally, the current safety assessment and regulatory status of MLCT in food formulations are reviewed.
Collapse
Affiliation(s)
- Xinyi Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; ,
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chenyu Jiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; ,
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; ,
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; ,
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Casimir C Akoh
- Department of Food Science and Technology, University of Georgia, Athens, Georgia, USA
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; ,
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; ,
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Yuan T, Cheng X, Shen L, Liu Z, Ye X, Yan Z, Wei W, Wang X. Novel Human Milk Fat Substitutes Based on Medium- and Long-Chain Triacylglycerol Regulate Thermogenesis, Lipid Metabolism, and Gut Microbiota Diversity in C57BL/6J Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6213-6225. [PMID: 38501388 DOI: 10.1021/acs.jafc.3c07902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Human milk is naturally rich in medium- and long-chain triacylglycerols (MLCT), accounting for approximately 30% of the total fat. However, infant formula fat is prepared using a physical blend of vegetable oils, which rarely contains MLCT, similar to human milk. The differences in MLCT between human milk and infant formulas may cause different lipid metabolisms and physiological effects on infants, which are unknown. This study aimed to analyze the metabolic characteristics of formula lipid containing novel human milk fat substitutes based on MLCT (FL-MLCT) and compare their effects with those of the physical blend of vegetable oils (FL-PB) on lipid metabolism and gut microbiota in mice. Compared with the FL-PB group, the FL-MLCT group showed increased energy expenditure, decreased serum triacylglycerol level, and significantly lower aspartate aminotransferase level, epididymal and perirenal fat weight, and adipocyte size. Moreover, the abundances of Firmicutes/Bacteroidota, Actinobacteriota, and Desulfovibrionaceae were significantly decreased in the FL-MLCT group. Novel human milk fat substitutes MLCT could inhibit visceral fat accumulation, improve liver function, and modulate the mice gut microbiota composition, which may contribute to controlling obesity.
Collapse
Affiliation(s)
- Tinglan Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xinyi Cheng
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lingzhi Shen
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengdong Liu
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011517, China
- Yashili International Group Ltd., Guangzhou 510057, China
| | - Xingwang Ye
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011517, China
- Yashili International Group Ltd., Guangzhou 510057, China
| | - Zhiyuan Yan
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011517, China
- Yashili International Group Ltd., Guangzhou 510057, China
| | - Wei Wei
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Liu W, Zhao M, Huang Y, Feng F, Luo X. Novel Lauric Acid-Butyric Structural Lipid Inhibits Inflammation: Small Intestinal Microbes May Be Important Mediators. Mol Nutr Food Res 2024; 68:e2300535. [PMID: 38039428 DOI: 10.1002/mnfr.202300535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Indexed: 12/03/2023]
Abstract
SCOPE Butyric acid (C4) and lauric acid (C12) are recognized as functional fatty acids, while the health benefits of the structural lipids they constitute remain unclear. METHODS AND RESULTS In this study, lauric acid-butyric structural lipid (SLBL ) is synthesized through ultrasound-assisted enzyme-catalyzed acidolysis and its health benefits are evaluated in a high-fat diet-induced obesity mouse model. SLBL and its physical mixture (MLBL ) do not significantly inhibit obesity in mice. However, SLBL treatment increases the ratio of n3/n6 fatty acids in the liver and improves obesity-induced hepatic lipid metabolism disorders. Furthermore, the expression of liver pro-inflammatory cytokines (interleukin [IL]-6, IL-1β, TNF-α) are significantly suppressed by SLBL , while the expression of anti-inflammatory cytokine (IL-10) is increased. Moreover, SLBL ameliorates the dysbiosis of small intestinal microbes induced by high-fat diet and regulates microbial community structure to be close to the control group. Especially, SLBL significantly alleviates the high-fat diet-induced decrease in Dubosiella and Bifidobacterium abundance. Correlation analysis reveals that SLBL treatment increases the abundance of microorganisms with potential anti-inflammatory function and decreases the abundance of potentially pathogenic bacteria. CONCLUSION In all, small intestinal microbes may be a significant bridge for the positive anti-inflammatory effects of SLBL , while the exact mechanism remains to be clarified.
Collapse
Affiliation(s)
- Wangxin Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Ying Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xianliang Luo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
8
|
Sebag SC, Qian Q, Upara C, Ding Q, Cao H, Hong L, Yang L. A Medium Chain Fatty Acid, 6-hydroxyhexanoic acid (6-HHA), Protects Against Obesity and Insulin Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549684. [PMID: 37502899 PMCID: PMC10370144 DOI: 10.1101/2023.07.19.549684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Obesity, a worldwide health problem, increases the risk for developing metabolic diseases such as insulin resistance and diabetes. It is well recognized that obesity-associated chronic inflammation plays a key role in the pathogenesis of systemic metabolic dysfunction. Previously, we revealed an anti-inflammatory role for spent culture supernatants isolated from the oral commensal bacterial species Streptococcus gordonii (Sg-SCS). Here, we identified that 6-hydroxyhexanoic acid (6-HHA), a medium chain fatty acid (MCFA), is the one of the key components of Sg-SCS . We found that treatment of 6-HHA in mice fed a high-fat diet (HFD) significantly reduced HFD-mediated weight gain which was largely attributed to a decrease in fat mass. Systemically, 6-HHA improves obesity-associated glucose intolerance and insulin resistance. Furthermore, administration of 6-HHA suppressed obesity-associated systemic inflammation and dyslipidemia. At the cellular level, treatment of 6-HHA ameliorated aberrant inflammatory and metabolic transcriptomic signatures in white adipose tissue of mice with diet-induced obesity (HFD). Mechanistically, we found that 6-HHA suppressed adipocyte-proinflammatory cytokine production and lipolysis, the latter through Gαi-mediated signaling. This work provides direct evidence for the anti-obesity effects of a novel MCFA, which could be a new therapeutic treatment for combating obesity. KEY POINTS Hydroxyhexanoic medium chain fatty acids (MCFAs) are dietary and bacterial-derived energy sources, however, the outcomes of using MCFAs in treating metabolic disorders are diverse and complex. The MCFA 6-hydroxyhexanoic acid (6-HHA) is a metabolite secreted by the oral bacterial commensal species Streptococcus gordonii; here we investigated its role in modulating high-fat diet (HFD)-induced metabolic dysfunction. In a murine model of obesity, we found 6-HHA-mediated improvement of diet-mediated adiposity, insulin resistance and inflammation were in part due to actions on white adipose tissue (WAT).6-HHA suppressed proinflammatory cytokine production and lipolysis through Gi-mediated signaling in differentiated white adipocytes.
Collapse
|
9
|
The structure of triglycerides impacts the digestibility and bioaccessibility of nutritional lipids during in vitro simulated digestion. Food Chem 2023; 418:135947. [PMID: 36996650 DOI: 10.1016/j.foodchem.2023.135947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
The triglyceride (TAG) structure of lipids may affect their nutritional properties by affecting the process of digestion and absorption. In this paper, a mixture of medium-chain triglycerides and long-chain triglycerides (PM) and medium- and long-chain triglycerides (MLCT) were selected to explore the effects of triglyceride structure on in vitro digestion and bioaccessibility. The results showed that MLCT released more free fatty acids (FFAs) than PM (99.88% vs 92.82%, P < 0.05). The first-order rate constant for FFA release from MLCT was lower than that for PM (0.0395 vs 0.0444 s-1, P < 0.05), which suggests that the rates of PM digestion were faster than those of MLCT. Our results demonstrated that DHA and EPA were more bioaccessible from MLCT than from PM. These results highlighted the important role of TAG structure in regulation of lipid digestibility and bioaccessibility.
Collapse
|
10
|
Shi J, Wang Q, Li C, Yang M, Hussain M, Zhang J, Feng F, Zhong H. Effects of the Novel LaPLa-Enriched Medium- and Long-Chain Triacylglycerols on Body Weight, Glycolipid Metabolism, and Gut Microbiota Composition in High Fat Diet-Fed C57BL/6J Mice. Molecules 2023; 28:molecules28020722. [PMID: 36677779 PMCID: PMC9861698 DOI: 10.3390/molecules28020722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
The roles of medium- and long-chain triacylglycerols (MLCT) on health benefits under high fat diet (HFD) conditions remain in dispute. This study was conducted to investigate the effects of novel LaPLa-rich MLCT on the glycolipid metabolism and gut microbiota in HFD-fed mice when pork fat is half replaced with MLCT and palm stearin (PS). The results showed that although MLCT could increase the body weight in the mouse model, it can improve the energy utilization, regulate the glucose and lipid metabolism, and inhibit the occurrence of inflammation. Furthermore, 16S rRNA gene sequencing of gut microbiota indicated that PS and MLCT affected the overall structure of the gut microbiota to a varying extent and specifically changed the abundance of some operational taxonomic units (OTUs). Moreover, several OTUs belonging to the genera Dorea, Streptococcus, and g_Eryipelotrichaceae had a high correlation with obesity and obesity-related metabolic disorders of the host. Therefore, it can be seen that this new MLCT has different properties and functions from the previous traditional MLCT, and it can better combine the advantages of MLCT, lauric acid, and sn-2 palmitate, as well as the advantages of health function and metabolism. In summary, this study explored the effects of LaPLa-enriched lipids on glycolipid metabolism in mice, providing theoretical support for future studies on the efficacy of different types of conjugated lipids, intending to apply them to industrial production and subsequent development of related products.
Collapse
Affiliation(s)
- Jinyuan Shi
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qianqian Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chuang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Mengyu Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Correspondence: (F.F.); (H.Z.); Tel.: +86-571-88982163 (F.F.); +86-571-88813585 (H.Z.)
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (F.F.); (H.Z.); Tel.: +86-571-88982163 (F.F.); +86-571-88813585 (H.Z.)
| |
Collapse
|
11
|
Salsinha AS, Rodríguez-Alcalá LM, Pimentel LL, Pintado M. Role of bioactive lipids in obesity. BIOACTIVE LIPIDS 2023:133-167. [DOI: 10.1016/b978-0-12-824043-4.00012-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Fu Z, Zhang H, Zeng Z, Ning F, Xu Z, Liu C, Zhang M, Hu P. A pre-column derivatization high-performance liquid chromatography method for simultaneous determination of short-chain and medium-chain fatty acids in a fecal sample. J Sep Sci 2023; 46:e2200671. [PMID: 36285380 DOI: 10.1002/jssc.202200671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 01/11/2023]
Abstract
Short-chain and medium-chain fatty acids have plentiful biological functions, which play a crucial role in the diagnosis and therapy of many diseases. Herein, a new method for simultaneous quantifying 17 short-chain and medium-chain fatty acids with high-performance liquid chromatography coupled with an ultraviolet detector was developed and the pre-column derivatization by indole-3-acetic acid hydrazide was performed to improve the separation and detection. The conditions of the derivatization reaction were systematically investigated. Subsequently, the method was validated and the results showed a satisfactory linearity (linear regression coefficients > 0.9969), the limit of detection (4.0×10-3 -1.9×10-2 μmol/L), precision (0.9%-7.3% for intra-day and 2.0%-9.8% for inter-day), recovery (90.0%-109.1% with relative standard deviation <7.7%) and stability (0.1%-3.3% for standard solution and 0.2%-3.9% for fecal sample). Finally, the established method was successfully applied to quantify short-chain and medium-chain fatty acids in the feces of healthy control and diabetic rats. Eleven kinds of short-chain and medium-chain fatty acids were detected and six of them showed a significant difference between the control group and the model group.
Collapse
Affiliation(s)
- Zhibo Fu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Zhijun Zeng
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, P. R. China
| | - Fanghong Ning
- Department of Biotechnology, School of Biotechnology, East China University of Science and Technology, Shanghai, P. R. China
| | - Ziwei Xu
- Department of Pharmacology, School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, P. R. China
| | - Chenyu Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Min Zhang
- China Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
13
|
SILVA LPRD, RODRIGUES EL, HIANE PA, NUNES ÂA, FILIÚ WF, CAVALHEIRO LF, NAZÁRIO CED, ASATO MA, FREITAS KDC, BOGO D, NASCIMENTO VAD, GUIMARÃES RDCA. Bocaiuva (Acrocomia aculeata) nut oil: composition and metabolic impact in an experimental study. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.43522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Wang Z, Zhou S, Jiang Y. Sea buckthorn pulp and seed oils ameliorate lipid metabolism disorders and modulate gut microbiota in C57BL/6J mice on high-fat diet. Front Nutr 2022; 9:1067813. [PMID: 36570130 PMCID: PMC9773879 DOI: 10.3389/fnut.2022.1067813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Non-alcoholic fatty liver diseases (NAFLD), along with the complications of obesity and dyslipidemia, are worldwide lipid metabolism disorders. Recent evidence showed that NAFLD could be ameliorated by diet and lifestyles by attenuating gut microbiota dysbiosis via the gut-liver axis. Sea buckthorn oils, including sea buckthorn pulp oil (SBPO) and sea buckthorn seed oil (SBSO), were investigated in this study for their beneficial effects on gut-liver axis in C57BL/6J mice on a high-fat diet. Methods Sixty of male C57BL/6J mice were assigned into five groups, fed with low-fat diet containing soybean oil (SO), high-fat diet comprising lard oil (LO), peanut oil (PO), SBSO or SBPO, respectively, for 12 weeks. Serum and hepatic biochemical analysis, liver and perirenal fat histological analysis, and fecal 16S rRNA gene sequencing were conducted to reflect the influence of five diets on gut-liver axis. Results Dietary SBPO reduced visceral fat accumulation, adipose cell size, serum and hepatic triglyceride, LDL-C levels, and hepatic cell damage score; increased gut microbiota diversity with a higher abundance of Lactobacillus, Roseburia, and Oscillibacter compared with PO. SBSO showed equal or weaker effects compared to SBPO. Conclusion This study demonstrates that dietary SBPO has the potential to ameliorate NAFLD and related metabolic disorders, like obesity and dyslipidemia, by modulating gut microbiota.
Collapse
Affiliation(s)
- Zhen Wang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China,School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shengmin Zhou
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China,*Correspondence: Shengmin Zhou,
| | - Yuanrong Jiang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China
| |
Collapse
|
15
|
Nutritional Profiles, Phytochemical Analysis, Antioxidant Activity and DNA Damage Protection of Makapuno Derived from Thai Aromatic Coconut. Foods 2022; 11:foods11233912. [PMID: 36496719 PMCID: PMC9737894 DOI: 10.3390/foods11233912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Makapuno is a natural mutant coconut cultivar with jelly-like endosperm. Here, we investigated the nutritional compositions, active ingredients, and antioxidant activities of Makapuno meat and water. The contents of macronutrients, sugars, vitamins, amino acids, and fatty acids were reported. We found that Makapuno meat has higher dietary fiber with lower protein and fat content compared to normal coconut meat. Medium-chain fatty acids were the major fat component of Makapuno meat and water. Phytochemical analysis revealed that while flavonoid content was lower, the total phenolic, alkaloid, and tannin contents of Makapuno meat were comparable with those of mature coconut. However, Makapuno water contained higher alkaloid content when compared to mature and young coconuts. The antioxidant activities, as examined by DPPH, FRAP, and ABTS assays, showed that Makapuno meat and water had antioxidant activities, and Makapuno water exhibited protective activity against DNA damage. Hence, this research provides the nutraceutical importance of Makapuno, which could be used in the food industry.
Collapse
|
16
|
Wang Y, Zhang T, Liu R, Chang M, Wei W, Jin Q, Wang X. Reviews of medium- and long-chain triglyceride with respect to nutritional benefits and digestion and absorption behavior. Food Res Int 2022; 155:111058. [DOI: 10.1016/j.foodres.2022.111058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
|
17
|
Ledesma R, Martínez-Pérez RB, Curiel DA, Fernández LM, Silva ML, Canales-Aguirre AA, Rodríguez JA, Mateos-Díaz JC, Lerma AMPY, Madrigal M. Potential benefits of structured lipids in bulk compound chocolate: Insights on bioavailability and effect on serum lipids. Food Chem 2021; 375:131824. [PMID: 34923401 DOI: 10.1016/j.foodchem.2021.131824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 11/09/2021] [Accepted: 12/05/2021] [Indexed: 01/10/2023]
Abstract
The bioavailability impact of serum lipids in compound chocolate products based on structured lipids was studied. Compound chocolate products containing fat with and without structured lipids were digested in vitro under simulated gastrointestinal lipolysis conditions and were studied in vivo in healthy C57BL/6J mice. The in vitro digestion results show that products containing structured lipids, milk compound chocolate filling and white compound coating, significantly reduced the release rate of Free Fatty Acids (FFA) and improved the caloric reduction between 12.49% and 13.71% compared to products without structured lipids, suggesting that FFA were not absorbed. Animal feeding studies revealed no adverse effects on the compound products intake; in fact, these products reduced total cholesterol, LDL-c, VLDL-c and triacylglycerols. The present work shows the relevance of developing functional compound chocolate as providing a potential healthy initiative through the biological effect of the bioactive ingredients incorporated.
Collapse
Affiliation(s)
- Rosa Ledesma
- Research and Development Department, Alpezzi Chocolate, S.A. de C.V., Prolongación Los Robles Sur, Los Robles, 45134 Zapopan, Jalisco, Mexico
| | - Raúl B Martínez-Pérez
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, El Bajío del Arenal, 45019 Zapopan, Jalisco, Mexico
| | - David A Curiel
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas No. 800, Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico
| | - Laura M Fernández
- Research and Development Department, Alpezzi Chocolate, S.A. de C.V., Prolongación Los Robles Sur, Los Robles, 45134 Zapopan, Jalisco, Mexico
| | - María L Silva
- Research and Development Department, Alpezzi Chocolate, S.A. de C.V., Prolongación Los Robles Sur, Los Robles, 45134 Zapopan, Jalisco, Mexico
| | - Alejandro A Canales-Aguirre
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas No. 800, Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico
| | - Jorge A Rodríguez
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, El Bajío del Arenal, 45019 Zapopan, Jalisco, Mexico
| | - Juan C Mateos-Díaz
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, El Bajío del Arenal, 45019 Zapopan, Jalisco, Mexico
| | - Ana M Preza Y Lerma
- Research and Development Department, Alpezzi Chocolate, S.A. de C.V., Prolongación Los Robles Sur, Los Robles, 45134 Zapopan, Jalisco, Mexico.
| | - Miguel Madrigal
- Research and Development Department, Alpezzi Chocolate, S.A. de C.V., Prolongación Los Robles Sur, Los Robles, 45134 Zapopan, Jalisco, Mexico
| |
Collapse
|
18
|
Colonic Medium-Chain Fatty Acids Act as a Source of Energy and for Colon Maintenance but Are Not Utilized to Acylate Ghrelin. Nutrients 2021; 13:nu13113807. [PMID: 34836064 PMCID: PMC8617845 DOI: 10.3390/nu13113807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 01/04/2023] Open
Abstract
The capacity of microbiota to produce medium-chain fatty acids (MCFA) and related consequences for the gastrointestinal (GI) tract have never been reported before. We verified the impact of nutrition-related factors on fatty acid (FAs) production and found that caloric restriction decreased levels of most of MCFAs in the mouse cecum, whereas overnight fasting reduced the levels of acetate and butyrate but increased propionate and laurate. A diet high in soluble fibre boosted the production of short-chain fatty acids (SCFA) and caproate whereas a high-cellulose diet did not have an effect or decreased the levels of some of the FAs. Rectal infusion of caprylate resulted in its rapid metabolism for energy production. Repeated 10-day MCFA infusion impacted epididymal white adipose tissue (eWAT) weight and lipid accumulation. Repeated infusion of caprylate rectally tended to increase the concentration of active ghrelin in mice plasma; however, this increase was not statistically significant. In Caco-2 cells, caprylate increased the expression of Fabp2, Pdk4, Tlr3, and Gpr40 genes as well as counteracted TNFα-triggered downregulation of Pparγ, Occludin, and Zonulin mRNA expression. In conclusion, we show that colonic MCFAs can be rapidly utilized as a source of energy or stored as a lipid supply. Further, locally produced caprylate may impact metabolism and inflammatory parameters in the colon.
Collapse
|
19
|
|
20
|
Martínez-Galán JP, Ontibón-Echeverri CM, Campos Costa M, Batista-Duharte A, Guerso Batista V, Mesa V, Monti R, Veloso de Paula A, Martins Baviera A. Enzymatic synthesis of capric acid-rich structured lipids and their effects on mice with high-fat diet-induced obesity. Food Res Int 2021; 148:110602. [PMID: 34507747 DOI: 10.1016/j.foodres.2021.110602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
The objective of this study was to produce structured lipids (SLs) by enzymatic acidolysis using Rhizopus oryzae lipase covalently immobilized in a low-cost material. Grape seed oil was used to synthesize SLs containing the medium-chain fatty acid (C10:0) capric acid. SL synthesis led to 38.8% medium-chain fatty acid incorporation with 5 reuses of the enzymatic derivative. The reaction conditions for the synthesis of MLM-TAGs (triacylglycerols with one long- and two medium-chain acyl residues) were at a molar ratio of fatty acid:oil of 3:1, performed at 40 °C and lipase immobilized load of 5% (w/w). The in vivo effects of SLs were studied in Swiss mice fed premade diets: control (C) diet, high-fat diet (HFD) with 100% lipid content as lard, HFD with 50% lipid content as grape seed oil (HG) or HFD with 50% lipid content as capric acid-containing SLs produced from grape seed oil (HG-MCT). Mice from HG and HG-MCT groups had decreases in body weight gain and reductions in the weights of white adipose tissues. In addition, HG and HG-MCT mice had low plasma levels of glucose and total cholesterol, and improvements in the glucose tolerance. HG and HG-MCT diets have remarkable antioxidant properties, since low plasma levels of TBARS (thiobarbituric acid reactive substances, biomarkers of lipid peroxidation) were found in mice fed these diets. Interestingly, TBARS levels in HG-MCT mice were further decreased than values of HG mice. Mice fed HG and HG-MCT diets also showed preservation in the activity of the antioxidant enzyme paraoxonase 1. Both HG and HG-MCT diets promoted reduction of IL-6 and IL-10 production by splenocytes. The capric acid-containing SLs produced from grape seed oil emerges as a functional oil capable to mitigate obesity complications resulting from oxidative stress and inflammation.
Collapse
Affiliation(s)
- Julián Paul Martínez-Galán
- School of Nutrition and Dietetic, University of Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia.
| | | | - Mariana Campos Costa
- School of Pharmaceutical Sciences, Department of Clinical Analysis, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Alexander Batista-Duharte
- School of Pharmaceutical Sciences, Department of Clinical Analysis, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Vinicius Guerso Batista
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Victoria Mesa
- School of Nutrition and Dietetic, University of Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia
| | - Rubens Monti
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Ariela Veloso de Paula
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil.
| | - Amanda Martins Baviera
- School of Pharmaceutical Sciences, Department of Clinical Analysis, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil.
| |
Collapse
|
21
|
Influences of dietary oils and fats, and the accompanied minor content of components on the gut microbiota and gut inflammation: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Yuan T, Wei W, Zhang X, Wang L, Dai X, Ren C, Wang X, Jin Q. Medium- and long-chain triacylglycerols composition in preterm and full-term human milk across different lactation stages. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Lee YY, Tang TK, Chan ES, Phuah ET, Lai OM, Tan CP, Wang Y, Ab Karim NA, Mat Dian NH, Tan JS. Medium chain triglyceride and medium-and long chain triglyceride: metabolism, production, health impacts and its applications - a review. Crit Rev Food Sci Nutr 2021; 62:4169-4185. [PMID: 33480262 DOI: 10.1080/10408398.2021.1873729] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Structured lipid is a type of modified form of lipid that is "fabricated" with the purpose to improve the nutritional and functional properties of conventional fats and oils derived from animal and plant sources. Such healthier choice of lipid received escalating attention from the public for its capability to manage the rising prevalence of metabolic syndrome. Of which, medium-chain triacylglycerol (MCT) and medium-and long-chain triacylglycerol (MLCT) are the few examples of the "new generation" custom-made healthful lipids which are mainly composed of medium chain fatty acid (MCFA). MCT is made up exclusively of MCFA whereas MLCT contains a mixture of MCFA and long chain fatty acid (LCFA), respectively. Attributed by the unique metabolism of MCFA which is rapidly metabolized by the body, MCFA and MCT showed to acquire multiple physiological and functional properties in managing and reversing certain health disorders. Several chemically or enzymatically oils and fats modification processes catalyzed by a biological or chemical catalyst such as acidolysis, interesterification and esterification are adopted to synthesis MCT and MLCT. With their purported health benefits, MCT and MLCT are widely being used as nutraceutical in food and pharmaceutical sectors. This article aims to provide a comprehensive review on MCT and MLCT, with an emphasis on the basic understanding of its structures, properties, unique metabolism; the current status of the touted health benefits; latest routes of production; its up-to-date applications in the different food systems; relevant patents filed and its drawbacks.
Collapse
Affiliation(s)
- Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.,Monash Industry Palm Oil Research and Education Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Teck-Kim Tang
- International Joint Laboratory on Plant Oils Processing and Safety, Jinan University- Universiti Putra Malaysia.Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Eng-Seng Chan
- Monash Industry Palm Oil Research and Education Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.,School of Engineering, Department of Chemical Engineering, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Eng-Tong Phuah
- Department of Agricultural and Food Science, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - Oi-Ming Lai
- International Joint Laboratory on Plant Oils Processing and Safety, Jinan University- Universiti Putra Malaysia.Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor
| | - Chin-Ping Tan
- International Joint Laboratory on Plant Oils Processing and Safety, Jinan University- Universiti Putra Malaysia. Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yong Wang
- International Joint Laboratory on Plant Oils Processing and Safety, Jinan University- Universiti Putra Malaysia. Department of Food Science and Engineering, Jinan University, Guangzhou, P.R. China
| | - Nur Azwani Ab Karim
- Sime Darby Research Sdn Bhd, R&D Carey Island-Upstream, Carey Island, Selangor, Malaysia
| | - Noorlida Habi Mat Dian
- Malaysia Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor, Malaysia
| | - Joo Shun Tan
- Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Pulau Pinang, Malaysia
| |
Collapse
|
24
|
Chen S, Wang R, Cheng M, Wei G, Du Y, Fan Y, Li J, Li H, Deng Z. Serum Cholesterol-Lowering Activity of β-Sitosterol Laurate Is Attributed to the Reduction of Both Cholesterol Absorption and Bile Acids Reabsorption in Hamsters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10003-10014. [PMID: 32811147 DOI: 10.1021/acs.jafc.0c04386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The research was performed to delineate how β-sitosterol laurate (β-SLE) consumption influenced serum and hepatic lipids. The results showed that 220 mg/5 mL oil/kg body weight of β-SLE robustly reduced serum total triglyceride and cholesterol levels and the epididymal adipocyte size, and efficiently protected hepatic polyunsaturated fatty acids against lipid peroxidation through superoxide dismutase and glutathione transferase activity enhancement and malondialdehyde level reduction. Based on the changes of fecal cholesterol contents, fecal and hepatic bile acid (BAs) levels, and related protein expression, it was concluded that the mechanisms for lowering serum cholesterol by β-SLE involved (i) the enhanced excretion of fecal cholesterol via down-regulation of intestinal Niemann-Pick C1-like 1 protein; (ii) the increased conversion from cholesterol to primary BAs via up-regulation of cholesterol-7α-hydroxylase and sterol 27-hydroxylase, which was induced by the reduced BAs reabsorption through up-regulating ileal apical sodium-dependent bile acid transporter and ileal bile acid-binding protein.
Collapse
Affiliation(s)
- Sunni Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Ruiqi Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Mingyan Cheng
- State Centre of Quality Supervision and Inspection for Camellia Products, Ganzhou 341000, Jiangxi, China
| | - Guohua Wei
- Yichun Dahaigui Life Science Co., Ltd, Yichun 336000, Jiangxi, China
| | - Yingxue Du
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yawei Fan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| |
Collapse
|
25
|
Ji S, Wu J, Xu F, Wu Y, Xu X, Gao H, Ju X, Xiong W, Wang L. Synthesis, Purification, and Characterization of a Structured Lipid Based on Soybean Oil and Coconut Oil and Its Applications in Curcumin‐Loaded Nanoemulsions. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shengyang Ji
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics No. 3 Wenyuan Road Nanjing Jiangsu 210023 P. R. China
| | - Jin Wu
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics No. 3 Wenyuan Road Nanjing Jiangsu 210023 P. R. China
| | - Feiran Xu
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics No. 3 Wenyuan Road Nanjing Jiangsu 210023 P. R. China
| | - Ying Wu
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics No. 3 Wenyuan Road Nanjing Jiangsu 210023 P. R. China
| | - Xiaoying Xu
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics No. 3 Wenyuan Road Nanjing Jiangsu 210023 P. R. China
| | - Houbin Gao
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd No.118 Gaodong Road, Pudong New District Shanghai 200137 P. R. China
| | - Xingrong Ju
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics No. 3 Wenyuan Road Nanjing Jiangsu 210023 P. R. China
| | - Wenfei Xiong
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics No. 3 Wenyuan Road Nanjing Jiangsu 210023 P. R. China
| | - Lifeng Wang
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics No. 3 Wenyuan Road Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
26
|
Du YX, Chen SN, Zhu HL, Niu X, Li J, Fan YW, Deng ZY. Consumption of Interesterified Medium- and Long-Chain Triacylglycerols Improves Lipid Metabolism and Reduces Inflammation in High-Fat Diet-Induced Obese Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8255-8262. [PMID: 32643946 DOI: 10.1021/acs.jafc.0c03103] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Medium- and long-chain triacylglycerols (MLCTs) were synthesized from rapeseed oil (RO), one kind of commonly used edible long-chain triacylglycerols (TGs), and then delivered to high-fat diet (HFD)-induced obese rats. Compared with RO, MLCT consumption exhibited more potent effects on reducing body and tissue weight gains, plasma TG, and total cholesterol (TC) levels and on improving hepatic TG, TC, fatty acid synthase, acetyl-CoA carboxylase, and lipoprteinlipase contents. Meanwhile, lower amounts of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1, and endotoxin in plasma, lower levels of interleukin-6 and TNF-α, and higher levels of interleukin-10 in both livers and white adipose tissues were detected in MLCT-fed rats. MLCT intake also remarkably suppressed the size of adipocytes and the number of macrophages. In conclusion, our study suggested that the interesterified MLCT was more efficacious in improving the lipid metabolism and inflammation in HFD-induced obese rats than RO.
Collapse
Affiliation(s)
- Ying-Xue Du
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Sun-Ni Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hong-Lin Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xian Niu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ya-Wei Fan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
27
|
Yang J, Peng T, Huang J, Zhang G, Xia J, Ma M, Deng D, Gong D, Zeng Z. Effects of medium- and long-chain fatty acids on acetaminophen- or rifampicin-induced hepatocellular injury. Food Sci Nutr 2020; 8:3590-3601. [PMID: 32724621 PMCID: PMC7382196 DOI: 10.1002/fsn3.1641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 11/11/2022] Open
Abstract
Drug-induced liver injury (DILI) is one of the common adverse effects of drug therapy, which is closely associated with oxidative stress, apoptosis, and inflammation response. Medium-chain fatty acids (MCFA) were reported to relieve inflammation and attenuate oxidative stress. However, little has been known about the hepatoprotective effects of MCFA in DILI. In the present study, acetaminophen (AP) and rifampicin (RFP) were used to establish DILI models in LO2 cells, and the cytoprotective effects of MCFA on hepatocellular injury were investigated. Results showed that the optimal condition for the DILI model was treatment with 10 mM AP or 600 µM RFP for 24 hr. LCFA treatment markedly reduced the cell viability and increased the activities of alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase. Meanwhile, LCFA treatment aggravated cell apoptosis, mitochondrial dysfunction, and oxidative stress. The mRNA and protein expression levels of inflammatory cytokines (IL-1β and TNF-α) were significantly elevated by LCFA. In contrast, MCFA treatment did not significantly affect cell viability, apoptosis, oxidative, stress and inflammation, and it did not produce the detrimental effects on DILI models. Therefore, we proposed that MCFA may be more safe and suitable than LCFA as nutrition support or the selection of daily dietary oil and fat for the patients with DILI.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
- Jiangxi Province Key Laboratory of Edible and Medicinal Plant ResourcesNanchang UniversityNanchangChina
- College of Food and TechnologyNanchang UniversityNanchangChina
| | - Ting Peng
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
- Jiangxi Province Key Laboratory of Edible and Medicinal Plant ResourcesNanchang UniversityNanchangChina
- College of Food and TechnologyNanchang UniversityNanchangChina
| | - Jiyong Huang
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
- Jiangxi Province Key Laboratory of Edible and Medicinal Plant ResourcesNanchang UniversityNanchangChina
- School of Environmental and Chemical EngineeringNanchang UniversityNanchangChina
| | - Guohua Zhang
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
- Jiangxi Province Key Laboratory of Edible and Medicinal Plant ResourcesNanchang UniversityNanchangChina
- College of Food and TechnologyNanchang UniversityNanchangChina
| | - Jiaheng Xia
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
- Jiangxi Province Key Laboratory of Edible and Medicinal Plant ResourcesNanchang UniversityNanchangChina
- School of Environmental and Chemical EngineeringNanchang UniversityNanchangChina
| | - Maomao Ma
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
- Jiangxi Province Key Laboratory of Edible and Medicinal Plant ResourcesNanchang UniversityNanchangChina
- College of Food and TechnologyNanchang UniversityNanchangChina
| | - Danwen Deng
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
- Jiangxi Province Key Laboratory of Edible and Medicinal Plant ResourcesNanchang UniversityNanchangChina
| | - Deming Gong
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
- Jiangxi Province Key Laboratory of Edible and Medicinal Plant ResourcesNanchang UniversityNanchangChina
- Department of BiomedicineNew Zealand Institute of Natural Medicine ResearchAucklandNew Zealand
| | - Zheling Zeng
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
- Jiangxi Province Key Laboratory of Edible and Medicinal Plant ResourcesNanchang UniversityNanchangChina
- School of Environmental and Chemical EngineeringNanchang UniversityNanchangChina
| |
Collapse
|
28
|
A high-fat diet enriched in medium chain triglycerides triggers hepatic thermogenesis and improves metabolic health in lean and obese mice. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158582. [DOI: 10.1016/j.bbalip.2019.158582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023]
|
29
|
Therapeutic effect of treatment with metformin and/or 4-hydroxychalcone in male Wistar rats with nonalcoholic fatty liver disease. Eur J Pharmacol 2019; 863:172699. [DOI: 10.1016/j.ejphar.2019.172699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/27/2022]
|
30
|
Chain length of dietary fatty acids determines gastrointestinal motility and visceromotor function in mice in a fatty acid binding protein 4-dependent manner. Eur J Nutr 2019; 59:2481-2496. [PMID: 31562532 PMCID: PMC7413912 DOI: 10.1007/s00394-019-02094-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/19/2019] [Indexed: 12/14/2022]
Abstract
Purpose We hypothesize that different types of dietary fatty acids (FAs) affect gastrointestinal (GI) motility and visceromotor function and that this effect can be regulated by the fatty acid binding protein 4 (FABP4). Methods Mice were fed for 60 days with standard diet (STD), STD with 7% (by weight) coconut oil, rich in medium-chain FAs (MCFAs) (COCO), or with 7% evening primrose oil, rich in long-chain FAs (LCFAs) (EPO). In each group, half of the mice received FABP4 inhibitor, BMS309403 (1 mg/kg; i.p.) twice a week. Body weight (BW) and food intake were measured; well-established tests were performed to characterize the changes in GI motility and visceral pain. White adipose tissue and colonic samples were collected for cell culturing and molecular studies. Results COCO significantly increased GI transit, but not colonic motility. COCO and EPO delayed the onset of diarrhea, but none affected the effect of loperamide. EPO reduced BW and increased the visceromotor response (VMR) to colorectal distension (CRD). COCO and EPO reduced differentiation of preadipocytes. Treatment with BMS309403: (1) reversed the effects induced by COCO in physiological conditions and in mouse models of diarrhea; (2) prevented the effects of EPO on BW, VMR to CRD and castor oil-induced diarrhea; (3) affected proliferation of preadipocytes; (4) changed the expression of Fabp4 in colonic and adipocyte samples from COCO and EPO. Conclusion Modifying dietary intake of MCFAs and LCFAs may be used to control GI motility or visceral pain and thus modulate the symptoms of functional GI disorders. The effect is dependent on the expression of FABP4. Electronic supplementary material The online version of this article (10.1007/s00394-019-02094-2) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Guimarães J, Bargut TCL, Mandarim-de-Lacerda CA, Aguila MB. Medium-chain triglyceride reinforce the hepatic damage caused by fructose intake in mice. Prostaglandins Leukot Essent Fatty Acids 2019; 140:64-71. [PMID: 30553406 DOI: 10.1016/j.plefa.2018.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 01/16/2023]
Abstract
We aimed to investigate the effects of medium-chain triglyceride oil on the high fructose diet-provoked hepatic abnormalities in mice. We used C57bl/6 mice of 3-months-old divided into four groups for 12 weeks: control (C), control with MCT (C-MCT), fructose (F), and fructose with MCT (F-MCT). We investigated food and water intake, body mass, blood pressure, glucose tolerance, plasma and liver biochemistry, hepatic protein and gene expression. There were no changes in body mass, food intake and glucose tolerance among the groups. The F group presented increased water intake and blood pressure associated with hepatic steatosis and elevated de novo lipogenesis, beta-oxidation, mitochondrial biogenesis and inflammation in the liver. Surprisingly, the C-MCT group also showed hepatic steatosis and inflammation in the liver, and the F-MCT group had no exacerbations of fructose-induced abnormalities, showing marked hepatic steatosis, lipogenesis de novo and hepatic inflammation. The MCT oil groups also presented increased beta-oxidation and mitochondrial biogenesis. In conclusion, MCT oil showed detrimental hepatic effects and should be used with caution, especially in the presence of hepatic alterations.
Collapse
Affiliation(s)
- Janaina Guimarães
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Medium-Chain Triglycerides Attenuate Liver Injury in Lipopolysaccharide-Challenged Pigs by Inhibiting Necroptotic and Inflammatory Signaling Pathways. Int J Mol Sci 2018; 19:ijms19113697. [PMID: 30469452 PMCID: PMC6274951 DOI: 10.3390/ijms19113697] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
This study was conducted to investigate whether medium-chain triglycerides (MCTs) attenuated lipopolysaccharide (LPS)-induced liver injury by down-regulating necroptotic and inflammatory signaling pathways. A total of 24 pigs were randomly allotted to four treatments in a 2 × 2 factorial design including diet (0 and 4% MCTs) and immunological challenge (saline and LPS). After three weeks of feeding with or without 4% MCTs, pigs were challenged with saline or LPS. MCTs led to a significant increase in eicosapentaenoic acid, docosahexaenoic acid and total (n-3) polyunsaturated fatty acid concentrations. MCTs attenuated LPS-induced liver injury as indicated by an improvement in liver histomorphology and ultrastructural morphology of hepatocytes, a reduction in serum alanine aminotransferase and alkaline phosphatase activities as well as an increase in claudin-1 protein expression. In addition, MCTs also reduced serum tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 concentrations, liver TNF-α and IL-1β mRNA expression and protein concentrations and enhanced liver heat shock protein 70 protein expression in LPS-challenged pigs. Moreover, MCTs decreased mRNA expression of receptor-interacting serine/threonine-protein kinase (RIP) 3, mixed-lineage kinase domain-like protein (MLKL) and phosphoglycerate mutase 5 and inhibited MLKL phosphorylation in the liver. Finally, MCTs decreased liver mRNA expression of toll-like receptor (TLR) 4, nucleotide-binding oligomerization domain protein (NOD) 1 and multiple downstream signaling molecules. MCTs also suppressed LPS-induced p38 mitogen-activated protein kinase (MAPK) phosphorylation and increased extracellular signal-related kinase 1/2 phosphorylation in the liver. These results indicated that MCTs are capable of attenuating LPS-induced liver damage by suppressing hepatic necroptotic (RIP1/RIP3/MLKL) and inflammatory (TLR4/NOD1/p38 MAPK) signaling pathways.
Collapse
|
33
|
Luo Y, Zhang Y, Yuan F, Gao B, Wang Z, Yu L(L. Triacylglycerols composition analysis of olive oils by ultra‐performance convergence chromatography combined with quadrupole time‐of‐flight mass spectrometry. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yinghua Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology& Business University (BTBU) Beijing 100048 China
- Institute of Food and Nutraceutical Science School of Agriculture & Biology Shanghai Jiao Tong University Shanghai 200240 China
- Department of Nutrition and Food Science University of Maryland College Park MD 20742 USA
| | - Yaqiong Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology& Business University (BTBU) Beijing 100048 China
- Institute of Food and Nutraceutical Science School of Agriculture & Biology Shanghai Jiao Tong University Shanghai 200240 China
| | - Fanghao Yuan
- Institute of Food and Nutraceutical Science School of Agriculture & Biology Shanghai Jiao Tong University Shanghai 200240 China
| | - Boyan Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology& Business University (BTBU) Beijing 100048 China
- Institute of Food and Nutraceutical Science School of Agriculture & Biology Shanghai Jiao Tong University Shanghai 200240 China
- Department of Nutrition and Food Science University of Maryland College Park MD 20742 USA
| | - Ziyuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology& Business University (BTBU) Beijing 100048 China
| | - Liangli (Lucy) Yu
- Department of Nutrition and Food Science University of Maryland College Park MD 20742 USA
| |
Collapse
|
34
|
Rial SA, Ravaut G, Malaret TB, Bergeron KF, Mounier C. Hexanoic, Octanoic and Decanoic Acids Promote Basal and Insulin-Induced Phosphorylation of the Akt-mTOR Axis and a Balanced Lipid Metabolism in the HepG2 Hepatoma Cell Line. Molecules 2018; 23:molecules23092315. [PMID: 30208604 PMCID: PMC6225498 DOI: 10.3390/molecules23092315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 12/29/2022] Open
Abstract
Metabolic illnesses such as non-alcoholic fatty liver disease (NAFLD) are in constant increase worldwide. Highly consumed long chain fatty acids (LCFA) are among the most obesogenic and steatogenic nutrients. Hepatic steatosis is associated with several complications such as insulin resistance. Growing evidence points to medium chain fatty acids (MCFA), more efficiently oxidized than LCFA, as a promising dietary alternative against NAFLD. However, reports on the hepatic effects of MCFA are sometimes conflicting. In this study we exposed HepG2 cells, a human hepatocellular model, to 0.25 mM of hexanoic (C6), or octanoic (C8), and decanoic (C10) acids separately or in a C8 + C10 equimolar mix reflecting commercially available MCFA-rich oils. We found that C6, a poorly studied MCFA, as well as C8 and C10 did not provoke the deleterious lipid anabolism runaway typically induced by LCFA palmitate. MCFA tended, instead, to promote a balanced metabolic profile and were generally non-cytotoxic. Accordingly, mitochondrial integrity was mostly preserved following MCFA treatment. However, treatments with C8 induced a mitochondrial membrane potential decrease, suggesting prolonged exposure to this lipid could be problematic. Finally, MCFA treatments maintained optimal insulin sensitivity and even fostered basal and insulin-dependent phosphorylation of the Akt-mTOR pathway. Overall, MCFA could constitute an effective nutritional tool to manage liver steatosis and hepatic insulin resistance.
Collapse
Affiliation(s)
- Sabri Ahmed Rial
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| | - Gaetan Ravaut
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| | - Tommy B Malaret
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| | - Karl-F Bergeron
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| | - Catherine Mounier
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| |
Collapse
|
35
|
Wang L, Luo L, Zhao W, Yang K, Shu G, Wang S, Gao P, Zhu X, Xi Q, Zhang Y, Jiang Q, Wang L. Lauric Acid Accelerates Glycolytic Muscle Fiber Formation through TLR4 Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6308-6316. [PMID: 29877088 DOI: 10.1021/acs.jafc.8b01753] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lauric acid (LA), which is the primary fatty acid in coconut oil, was reported to have many metabolic benefits. TLR4 is a common receptor of lipopolysaccharides and involved mainly in inflammation responses. Here, we focused on the effects of LA on skeletal muscle fiber types and metabolism. We found that 200 μM LA treatment in C2C12 or dietary supplementation of 1% LA increased MHCIIb protein expression and the proportion of type IIb muscle fibers from 0.452 ± 0.0165 to 0.572 ± 0.0153, increasing the mRNA expression of genes involved in glycolysis, such as HK2 and LDH2 (from 1.00 ± 0.110 to 1.35 ± 0.0843 and from 1.00 ± 0.123 to 1.71 ± 0.302 in vivo, respectively), decreasing the catalytic activity of lactate dehydrogenase (LDH), and transforming lactic acid to pyruvic acid. Furthermore, LA activated TLR4 signaling, and TLR4 knockdown reversed the effect of LA on muscle fiber type and glycolysis. Thus, we inferred that LA promoted glycolytic fiber formation through TLR4 signaling.
Collapse
|
36
|
Zhou S, Wang Y, Jacoby JJ, Jiang Y, Zhang Y, Yu LL. Effects of Medium- and Long-Chain Triacylglycerols on Lipid Metabolism and Gut Microbiota Composition in C57BL/6J Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6599-6607. [PMID: 28704610 DOI: 10.1021/acs.jafc.7b01803] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Obesity is related to an increasing risk of chronic diseases. Medium- and long-chain triacylglycerols (MLCT) have been recognized as a promising choice to reduce body weight. In this study, three MLCT with different contents of medium-chain fatty acids (MCFA) (10-30%, w/w) were prepared, and their effects on lipid metabolism and fecal gut microbiota composition of C57BL/6J mice were systematically investigated. MLCT with 30% (w/w) MCFA showed the best performance in decreasing body weight gain as well as optimizing serum lipid parameters and liver triacylglycerol content. The expression levels of genes encoding enzymes for fatty acid degradation increased markedly and expression levels of genes encoding enzymes for de novo fatty acid biosynthesis decreased significantly in the liver of mice treated with MLCT containing 30% (w/w) MCFA. Interestingly, the dietary intake of a high fat diet containing MLCT did significantly decrease the ratio of Firmicutes to Bacteroidetes and down-regulate the relative abundance of Proteobacteria that may attribute to weight loss. Furthermore, we found a notable increase in the total short-chain fatty acid (SCFA) content in feces of mice on a MLCT containing diet. All these results may be concomitantly responsible for the antiobesity effect of MLCT with relatively high contents of MCFA.
Collapse
Affiliation(s)
- Shengmin Zhou
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University , Shanghai, 200240, China
| | - Yueqiang Wang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd. , Shanghai, 200137, China
| | - Jörg J Jacoby
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd. , Shanghai, 200137, China
| | - Yuanrong Jiang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd. , Shanghai, 200137, China
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University , Shanghai, 200240, China
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|