1
|
Fan Y, Gan R, Zhang Z, Xu J, Liu S, Bu Y, Cao C, Liu Q, Xia X, Kong B, Sun F. Flavor effect, application status, and research trend of umami peptides based on microbial fermentation in food. Food Microbiol 2025; 130:104769. [PMID: 40210398 DOI: 10.1016/j.fm.2025.104769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/11/2025] [Accepted: 03/06/2025] [Indexed: 04/12/2025]
Abstract
Umami peptides are important non-volatile compounds produced by protein degradation, contributing to food umami flavor and enhancing product quality. Microbial fermentation promotes the production of taste peptides, including umami peptides, which act as key flavor substances and precursors. Microbial-derived umami peptides are cost-effective, easy to produce, and a major source of umami peptide production. Although microbial fermentation of umami peptides has been extensively studied in preparation, screening, and evaluation, a systematic review of microbial fermentation is still lacking. Therefore, this paper aims to address the following aspects: (1) umami peptide taste characteristics, influencing factors, and preparation methods; (2) microbial sources of umami peptides; (3) the current application status of microbial fermentation-derived umami peptides in various foods; and (4) future directions for microbial fermentation of umami peptides. Consequently, this literature review seeks to offer insights for advancing microbial fermentation in umami peptide production.
Collapse
Affiliation(s)
- Yuhang Fan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Renjie Gan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ziyuan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiayu Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Sitong Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuyang Bu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Huang X, Yang J, Ho CT, Ke Q, Kou X. Functional flavor agents: enhancing health benefits and consumer preferences. Crit Rev Food Sci Nutr 2025:1-29. [PMID: 40338670 DOI: 10.1080/10408398.2025.2494297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Increasing health consciousness among consumers has significantly driven the demand for functional foods; however, market acceptance largely hinges on flavor profiles. Functional flavor agents, which simultaneously enhance taste and provide health benefits, meet the dual consumer demand for flavor and nutrition. This review classifies functional flavor agents into five categories based on their sensory characteristics. Their health benefits are explored with a focus on their potential roles in disease prevention and treatment, including improved energy metabolism, cardiovascular support, anti-tumor effects, modulation of gut microbiota, and enhancement of immune function. Emerging trends in the food industry are highlighted, underscoring the significant influence of these agents on product innovation. However, the integration of functional flavor agents into food products presents challenges, particularly in optimizing interactions to maximize both sensory appeal and health benefits. Innovative approaches are required to navigate the complex interplay between flavor agents and food components, enhancing flavor stability and sensory quality. Ultimately, the strategic application of functional flavor agents in food production holds promise for fostering a health-oriented market that aligns with consumer expectations for taste and nutrition.
Collapse
Affiliation(s)
- Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Jiaqi Yang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
3
|
Yi Q, Xiong L. From sensory organs to internal pathways: A comprehensive review of amino acid sensing in Drosophila. Comp Biochem Physiol A Mol Integr Physiol 2025; 303:111828. [PMID: 39983896 DOI: 10.1016/j.cbpa.2025.111828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Organisms require various nutrients to provide energy, support growth, and maintain metabolic balance. Amino acid is among the most basic nutrients, serving as fundamental building blocks for protein synthesis while playing vital roles in growth, development, and reproduction. Understanding the mechanisms by which organisms perceive amino acids is key to unraveling how they select appropriate food sources and adapt to environmental challenges. The fruit fly, Drosophila melanogaster, serves as a powerful model for understanding fundamental genetic and physiological processes. This review focuses on recent advances in amino acid sensing mechanisms in Drosophila melanogaster and their relevance to feeding behavior, nutrient homeostasis, and adaptive responses, and integrates insights into peripheral sensory systems, such as the legs and proboscis, as well as internal regulatory mechanisms within the gut, fat body, and brain. It highlights key molecular players, including ionotropic receptors, gut-derived hormones, neuropeptides, and the microbiome-gut-brain axis. Additionally, the manuscript identifies knowledge gaps and proposes directions for future research, providing a comprehensive overview of this dynamic field.
Collapse
Affiliation(s)
- Quan Yi
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liangyao Xiong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
4
|
Xu J, Shepard BD, Pluznick JL. Roles of sensory receptors in non-sensory organs: the kidney and beyond. Nat Rev Nephrol 2025; 21:253-263. [PMID: 39753689 PMCID: PMC11929601 DOI: 10.1038/s41581-024-00917-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 02/02/2025]
Abstract
Olfactory receptors (ORs), taste receptors and opsins are well-known for their pivotal roles in mediating the senses of smell, taste and sight, respectively. However, in the past two decades, research has shown that these sensory receptors also regulate physiological processes in a variety of non-sensory tissues. Although ORs, taste receptors and opsins have all been shown to have physiological roles beyond their traditional locations, most work in the kidney has focused on ORs. To date, renal ORs have been shown to have roles in blood pressure regulation (OLFR78 and OLFR558) and glucose homeostasis (OLFR1393). However, sensory receptors remain drastically understudied outside of traditional sensory systems, in part because of inherent challenges in studying these receptors. Increased knowledge of the physiological and pathophysiological roles of sensory receptors has the potential to substantially improve understanding of the function of numerous organs and systems, including the kidney. In addition, most sensory receptors are G protein-coupled receptors, which are considered to be the most druggable class of proteins, and thus could potentially be exploited as future therapeutic targets.
Collapse
Affiliation(s)
- Jiaojiao Xu
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, DC, USA
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Rudge R, Nicholson RA, Cottrell C, Collins J, Hoffman LC, Stokes JR, Smyth HE. Insights from traditional fermented legumes towards the innovation of modern plant-based meat analogues. Food Funct 2025; 16:2637-2655. [PMID: 40066599 DOI: 10.1039/d4fo02035a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
There has been a major growth in the development of plant-based meat alternatives (PBMA) in recent years. However, current PBMA often contain ultra processed ingredients and numerous additives to be able to mimic animal-based meat (ABM) including the meaty (umami) flavour, characteristic firm/chewy structure and juicy mouthfeel. In this review, the potential of ancient fermentation techniques as a minimally processed alternative to ABM and current PBMA are explored. Fermented foods including tempeh, natto, dawadawa and ugba are naturally high in protein and umami flavours. The nutritional, aroma, flavour and techno-functional properties are provided and discussed in the context of ABM and PBMA. The fermented foods have potential to be used as whole foods ingredients, or their constituents can be used as ingredients in plant-based foods. Particularly the umami flavours and high protein content combined with the naturally occurring high water holding capacity (WHC), solubility and other material properties make fermented legume foods suitable candidates for use in high-protein plant-based foods. Understanding the sensory characteristics and material properties generated during legume fermentation and their similarities to ABM can aid in stimulating innovations in food technology to obtain a new generation of less-processed PBMA with limited additives.
Collapse
Affiliation(s)
- Raisa Rudge
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, 4068, Australia.
| | | | | | - Janet Collins
- Motif FoodWorks, Inc., Boston, Massachusetts, 02210, USA
| | - Louwrens C Hoffman
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, 4068, Australia.
| | - Jason R Stokes
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Heather E Smyth
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, 4068, Australia.
| |
Collapse
|
6
|
Sakai K, Broches N, Okuda K, Okada M, Yamaguchi S. Umami and saltiness enhancements of textured pea proteins by combining protease- and glutaminase-catalyzed reactions. Curr Res Food Sci 2025; 10:101022. [PMID: 40130214 PMCID: PMC11931316 DOI: 10.1016/j.crfs.2025.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/26/2025] Open
Abstract
Plant-based meat analogs (PBMAs) have attracted attention owing to their various advantages, however, their taste limits their application, requiring improvement of the umami and saltiness levels while meeting clean-label requirements. Enzymatic treatments for food processing are effective strategies for developing clean-label food products because enzymes are not considered food additives. In this study, we aimed to enhance the umami and saltiness intensity of PBMA patties by combining protease- and glutaminase-catalyzed reactions. For the production of extrudates to construct PBMA patties, enzymatically hydrolyzed pea proteins (eHPP) were produced via enzyme catalysis combinations, followed by the preparation of eHPP-mixed textured pea protein (eTPP) from eHPP and starch. Sensory evaluation revealed that the umami, kokumi, and saltiness levels of the eTPP-based patties containing 0.5% NaCl were significantly higher than those of the control patties containing 0.5% NaCl. Notably, the eTPP-based patties exhibited a 20% salt reduction. By screening for saltiness-enhancing amino acids and peptides released from eTPP-based patties in artificial saliva, the combination of Glu, Arg, Lys, and the separated peptide 3 was determined important in enhancing the saltiness intensity of NaCl. Moreover, it was revealed that the saltiness-enhancing peptide 3 may be a Maillard-induced peptide, based on the Lys residues in Glu-Gly-Lys-Gly and 5-hydroxymethylfurfural condensed from Glucose in starch during the extrusion process. Our findings suggest that the combination of proteases and glutaminases could be an attractive approach to enhance the umami and saltiness levels of PBMA products while meeting clean-label requirements.
Collapse
Affiliation(s)
- Kiyota Sakai
- Amano Enzyme Inc. Innovation Center, Kakamigahara, Japan
| | | | - Keita Okuda
- Amano Enzyme Inc. Innovation Center, Kakamigahara, Japan
- Amano Enzyme U.S.A. Co., Ltd. IL, 60124, USA
| | | | | |
Collapse
|
7
|
Ueda S, Yoshida Y, Tateoka Y, Kebede B, Shinohara M, Nakanishi H, Fukuda I, Shirai Y. Metabolites and Free Fatty Acids in Japanese Black Beef During Wet Aging. Metabolites 2025; 15:94. [PMID: 39997719 PMCID: PMC11857383 DOI: 10.3390/metabo15020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/04/2025] [Accepted: 01/18/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Japanese Black beef is known for its high intramuscular fat content, an important factor in its distinctive Wagyu aroma. Wet aging, which involves vacuum-packing meat and storing it at low temperatures, enhances flavor, texture, and tenderness and is essential for maintaining and improving meat quality. In this study, changes in metabolites and lipid profiles were investigated during the wet aging of Japanese Black and Holstein beef. Methods/Results: Gas chromatography-mass spectrometry identified 113 metabolites in Japanese Black beef and 94 in Holstein beef, with significant increases in metabolites like aspartic acid and maleic acid over the aging period. Regarding lipid composition, total free fatty acids significantly increased with wet aging, with Japanese Black beef showing significantly higher concentrations of oleic and linoleic acids than Holstein beef. Additionally, lipid analysis by liquid chromatography-mass spectrometry revealed a reduction in specific phospholipids, particularly lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), with notable decreases in LPC (18:1), LPC (18:2), LPE (18:1), and LPE (18:2). Conclusions: These results suggest that wet aging influences the stability of membrane lipids, facilitating the degradation of phospholipids into free fatty acids, and improving the flavor of Japanese Black beef.
Collapse
Affiliation(s)
- Shuji Ueda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan (I.F.); (Y.S.)
| | - Yuka Yoshida
- Japan Meat Science and Technology Institute, Inc., Tokyo 150-0013, Japan
| | - Yuka Tateoka
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan (I.F.); (Y.S.)
| | - Biniam Kebede
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Masakazu Shinohara
- The Integrated Center for Mass Spectrometry, Kobe University, Kobe 650-0017, Japan;
| | | | - Itsuko Fukuda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan (I.F.); (Y.S.)
| | - Yasuhito Shirai
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan (I.F.); (Y.S.)
| |
Collapse
|
8
|
Şeref B, Yıldıran H. A new perspective on obesity: perception of fat taste and its relationship with obesity. Nutr Rev 2025; 83:e486-e492. [PMID: 38497969 DOI: 10.1093/nutrit/nuae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Background: Obesity, which results from a long-term positive energy balance, is affected by many factors, especially nutrition. The sensory properties of foods are associated with increased food intake through hedonic appetite. Taste perception, a component of flavor, is also responsible for increased consumption, through reward and hedonic mechanisms. Foods with high fat and energy content are among the foods that create the reward perception. The perception of fat taste, the primary taste that has recently entered the literature, may also be associated with increased food consumption and body weight. Therefore, in this review, the relationship between fat taste and obesity is examined, using the latest literature. RESULTS Different hypotheses have been proposed regarding the mechanism of the relationship between fat-taste perception and obesity, such as hedonic appetite, microbiota, decreased taste perception, and increased taste threshold level. In addition, some studies examining this relationship reported significant associations between the level of fat-taste perception and obesity, whereas others did not find a significant difference. CONCLUSION Considering the prevalence and contribution to obesity of Western-style nutrition, characterized by high amounts of fat and sugar consumption, elucidating this relationship may be an essential solution for preventing and treating obesity.
Collapse
Affiliation(s)
- Betül Şeref
- Department of Nutrition and Dietetics, Karamanoğlu Mehmetbey University, Karaman, Türkiye
| | - Hilal Yıldıran
- Department of Nutrition and Dietetics, Gazi University, Ankara, Türkiye
| |
Collapse
|
9
|
Ji S, Wu J, An F, Lou M, Zhang T, Guo J, Wu P, Zhu Y, Wu R. Umami-gcForest: Construction of a predictive model for umami peptides based on deep forest. Food Chem 2025; 464:141826. [PMID: 39522377 DOI: 10.1016/j.foodchem.2024.141826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/07/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Umami peptides have recently gained attention for their ability to enhance umami flavor, reduce salt content, and provide nutritional benefits. However, traditional wet laboratory methods to identify them are time-consuming, laborious, and costly. Therefore, we developed the Umami-gcForest model using the deep forest algorithm. It constructs amino acid feature matrices using ProtBERT, amino acid composition, composition-transition-distribution, and pseudo amino acid composition, applying mutual information for feature selection to optimize dimensions. Compared to other machine learning baseline, umami peptide prediction, and composite models, the validation results of Umami-gcForest on different test sets demonstrated outstanding predictive accuracy. Using SHapley Additive exPlanations to calculate feature contributions, we found that the key features of Umami-gcForest were hydrophobicity, charge, and polarity. Based on this, an online platform was developed to facilitate its user application. In conclusion, Umami-gcForest serves as a powerful tool, providing a solid foundation for the efficient and accurate screening of umami peptides.
Collapse
Affiliation(s)
- Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, PR China
| | - Mengxue Lou
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Taowei Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Jiawei Guo
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Penggong Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, PR China
| | - Yi Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, PR China.
| |
Collapse
|
10
|
Guo D, Liu C, Zhu H, Cheng Y, Huo X, Guo Y, Qian H. Food-Induced Adverse Reactions: A Review of Physiological Food Quality Control, Mucosal Defense Mechanisms, and Gastrointestinal Physiology. TOXICS 2025; 13:61. [PMID: 39853059 PMCID: PMC11769199 DOI: 10.3390/toxics13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/30/2024] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
Although food is essential for the survival of organisms, it can also trigger a variety of adverse reactions, ranging from nutrient intolerances to celiac disease and food allergies. Food not only contains essential nutrients but also includes numerous substances that may have positive or negative effects on the consuming organism. To protect against potentially harmful components, all animals have evolved defense mechanisms, which are similar to antimicrobial defenses but often come at the cost of the organism's health. When these defensive responses are exaggerated or misdirected, they can lead to adverse food reactions, where the costs outweigh the benefits. Furthermore, due to the persistent toxicity of harmful food components, the failure of defense mechanisms can also result in pathological effects triggered by food. This article review presents a food quality control framework that aims to clarify how these reactions relate to normal physiological processes. Organisms utilize several systems to coexist with symbiotic microbes, regulate them, and concurrently avoid, expel, or neutralize harmful pathogens. Similarly, food quality control systems allow organisms to absorb necessary nutrients while defending against low-quality or harmful components in food. Although many microbes are lethal in the absence of antimicrobial defenses, diseases related to microbiome dysregulation, such as inflammatory bowel disease, have significantly increased. Antitoxin defenses also come with costs and may fail due to insufficiencies, exaggerations, or misdirected actions, ultimately leading to adverse food reactions. With the changes in human diet and lifestyle, the failure of defense mechanisms has contributed to the rising incidence of food intolerances. This review explores the mechanisms of antitoxin defenses and analyzes how their failure can lead to adverse food reactions, emphasizing the importance of a comprehensive understanding of food quality control mechanisms for developing more effective treatments for food-triggered diseases.
Collapse
Affiliation(s)
- Dongdong Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chang Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongkang Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiang Huo
- Key Laboratory of Pathogenic Microorganisms for Emerging and Outbreaks of Major Infectious Diseases, Jiangsu Engineering Research Centre for Health Emergency Response, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Cai L, Hong J, Cui C. Application of multiple dynamic sensory techniques to N-lauroyl amino acids: Exposing the relationship between taste-enhancing properties and chemical structure. Food Chem 2025; 463:141419. [PMID: 39357345 DOI: 10.1016/j.foodchem.2024.141419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/07/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
This study investigated the taste enhancing effects of N-lauroyl amino acids, including N-lauroyl-phenylalanine, N-lauroyl-tryptophan and N-lauroyl-tyrosine. Sensory results obtained through TDS, TCATA, and TI assessments indicated that all N-Lau-AAs significantly increased the umami intensity and duration of solutions such as simulated chicken broth. Moreover, these compounds masked bitter taste, with LTR showing the most pronounced reduction of bitterness. LP had the effect of enhancing saltiness, whereas LTR and LTY diminished saltiness. Structural analysis revealed a correlation between the chemical structure of N-Lau-AAs and their sensory properties. The presence of carbon‑carbon double bond (CC) was positively correlated with umami intensity and negatively correlated with bitter and salty parameters. Phenolic hydroxyl groups (OH) were negatively correlated with umami intensity and positively correlated with a decrease in bitterness intensity and duration. Overall, this study provides valuable insights into the taste enhancement potential of N-Lau-AAs as taste enhancers in the food industry.
Collapse
Affiliation(s)
- Lei Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Jieshee Hong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
12
|
Pietan L, Phillippi E, Melo M, El-Shanti H, Smith BJ, Darbro B, Braun T, Casavant T. Genome-wide Machine Learning Analysis of Anosmia and Ageusia with COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.04.24318493. [PMID: 39677430 PMCID: PMC11643161 DOI: 10.1101/2024.12.04.24318493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The COVID-19 pandemic has caused substantial worldwide disruptions in health, economy, and society, manifesting symptoms such as loss of smell (anosmia) and loss of taste (ageusia), that can result in prolonged sensory impairment. Establishing the host genetic etiology of anosmia and ageusia in COVID-19 will aid in the overall understanding of the sensorineural aspect of the disease and contribute to possible treatments or cures. By using human genome sequencing data from the University of Iowa (UI) COVID-19 cohort (N=187) and the National Institute of Health All of Us (AoU) Research Program COVID-19 cohort (N=947), we investigated the genetics of anosmia and/or ageusia by employing feature selection techniques to construct a novel variant and gene prioritization pipeline, utilizing machine learning methods for the classification of patients. Models were assessed using a permutation-based variable importance (PVI) strategy for final prioritization of candidate variants and genes. The highest held-out test set area under the receiver operating characteristic (AUROC) curve for models and datasets from the UI cohort was 0.735 and 0.798 for the variant and gene analysis respectively and for the AoU cohort was 0.687 for the variant analysis. Our analysis prioritized several novel and known candidate host genetic factors involved in immune response, neuronal signaling, and calcium signaling supporting previously proposed hypotheses for anosmia/ageusia in COVID-19.
Collapse
Affiliation(s)
- Lucas Pietan
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Elizabeth Phillippi
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Marcelo Melo
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Hatem El-Shanti
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Brian J Smith
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin Darbro
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Terry Braun
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Center for Bioinformatics and Computational Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Thomas Casavant
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Center for Bioinformatics and Computational Biology, University of Iowa, Iowa City, IA 52242, USA
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
13
|
Dutta P, Gajula K, Verma N, Jain D, Gupta R, Rai B. Computational screening of umami tastants using deep learning. Mol Divers 2024:10.1007/s11030-024-11006-4. [PMID: 39422798 DOI: 10.1007/s11030-024-11006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
Umami, a fundamental human taste modality, refers to the savory flavors in meats and broths, often associated with monosodium glutamate and protein richness. With limited knowledge of umami molecules, the food industry seeks efficient approaches for identifying novel tastants. In this study, we have devised a virtual screening pipeline for identifying highly potent umami tastants from large molecular databases. We curated the most extensive classification dataset containing 439 umami and 428 non-umami molecules and trained a transformer-based architecture to differentiate between the two classes, achieving 93% accuracy. Additionally, we built a neural network model for predicting the potency of umami compounds, the first effort of its kind. The classification and potency prediction models were combined with similarity analysis and toxicity screening to build an end-to-end virtual framework for the rational discovery of novel tastants. We applied this framework to the FooDB database containing around 70,000 molecules as an illustrative use case for screening potent umami compounds. The screened molecules were validated using molecular docking with the umami taste receptor. This study demonstrates the potential of data-driven methods in discovering new tastants from structural and chemical features of molecules and proposes an efficient implementation for industrial applications.
Collapse
Affiliation(s)
- Prantar Dutta
- Physical Sciences Research Area, TCS Research, Tata Consultancy Services, Pune, India
| | - Kishore Gajula
- Physical Sciences Research Area, TCS Research, Tata Consultancy Services, Pune, India
| | - Nitu Verma
- Physical Sciences Research Area, TCS Research, Tata Consultancy Services, Pune, India
| | - Deepak Jain
- Physical Sciences Research Area, TCS Research, Tata Consultancy Services, Pune, India
| | - Rakesh Gupta
- Physical Sciences Research Area, TCS Research, Tata Consultancy Services, Pune, India.
| | - Beena Rai
- Physical Sciences Research Area, TCS Research, Tata Consultancy Services, Pune, India
| |
Collapse
|
14
|
Bi Y, Liang L, Qiao K, Luo J, Liu X, Sun B, Zhang Y. A comprehensive review of plant-derived salt substitutes: Classification, mechanism, and application. Food Res Int 2024; 194:114880. [PMID: 39232518 DOI: 10.1016/j.foodres.2024.114880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
The diseases caused by excessive sodium intake derived from NaCl consumption have attracted widespread attention worldwide, and many researchers are committed to finding suitable ways to reduce sodium intake during the dietary process. Salt substitute is considered an effective way to reduce sodium intake by replacing all/part of NaCl in food without reducing the saltiness while minimizing the impact on the taste and acceptability of the food. Plant-derived natural ingredients are generally considered safe and reliable, and extensive research has shown that certain plant extracts or specific components are effective salt substitutes, which can also give food additional health benefits. However, these plant-derived salt substitutes (PSS) have not been systematically recognized by the public and have not been well adopted in the food industry. Therefore, a comprehensive review of PSS, including its material basis, flavor characteristics, and taste mechanism is helpful for a deeper understanding of PSS, accelerating its research and development, and promoting its application.
Collapse
Affiliation(s)
- Yongzhao Bi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Kaina Qiao
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jin Luo
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xialei Liu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
15
|
Liu S, Shi T, Yu J, Li R, Lin H, Deng K. Research on Bitter Peptides in the Field of Bioinformatics: A Comprehensive Review. Int J Mol Sci 2024; 25:9844. [PMID: 39337334 PMCID: PMC11432553 DOI: 10.3390/ijms25189844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Bitter peptides are small molecular peptides produced by the hydrolysis of proteins under acidic, alkaline, or enzymatic conditions. These peptides can enhance food flavor and offer various health benefits, with attributes such as antihypertensive, antidiabetic, antioxidant, antibacterial, and immune-regulating properties. They show significant potential in the development of functional foods and the prevention and treatment of diseases. This review introduces the diverse sources of bitter peptides and discusses the mechanisms of bitterness generation and their physiological functions in the taste system. Additionally, it emphasizes the application of bioinformatics in bitter peptide research, including the establishment and improvement of bitter peptide databases, the use of quantitative structure-activity relationship (QSAR) models to predict bitterness thresholds, and the latest advancements in classification prediction models built using machine learning and deep learning algorithms for bitter peptide identification. Future research directions include enhancing databases, diversifying models, and applying generative models to advance bitter peptide research towards deepening and discovering more practical applications.
Collapse
Affiliation(s)
| | | | | | | | - Hao Lin
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; (S.L.); (T.S.); (J.Y.); (R.L.)
| | - Kejun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; (S.L.); (T.S.); (J.Y.); (R.L.)
| |
Collapse
|
16
|
Gu Y, Niu Y, Zhang J, Sun B, Mao X, Liu Z, Zhang Y. Identification of Novel Umami Peptides from Yeast Protein through Enzymatic, Sensory, and In Silico Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20014-20027. [PMID: 39186792 DOI: 10.1021/acs.jafc.3c08346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
This study aimed to rapidly develop novel umami peptides using yeast protein as an alternative protein source. Yeast protein hydrolysates exhibiting pronounced umami intensity were produced using flavorzyme under optimum conditions determined via a sensory-guided response surface methodology. Six out of 2138 peptides predicted to possess umami taste by composite machine learning and assessed as nontoxic, nonallergenic, water-soluble, and stable using integrated bioinformatics were screened as potential umami peptides. Sensory evaluation results revealed these peptides exhibited multiple taste attributes (detection threshold: 0.37 ± 0.10-1.1 ± 0.30 mmol/L), including umami. In light of the molecular docking outcomes, it is inferred that hydrogen bond, hydrophobic, and electrostatic interactions enhanced the theoretically stable binding of peptides to T1R1/T1R3, with their contributions gradually diminishing. Hydrophilic amino acids within T1R1/T1R3, especially Ser, may play a particularly pivotal role in binding with umami peptides. Future research will involve establishing heterologous cell models expressing T1R1 and T1R3 to delve into the cellular physiology of umami peptides. Peptide sequences (FADL, LPDP, and LDIGGDF) also had synergistic saltiness-enhancing effects; to overcome the limitation of not investigating the saltiness enhancement mechanism, comprehensive experiments at the molecular and cellular levels will also be conducted. This study offers a rapid umami peptide development framework and lays the groundwork for exploring yeast protein taste compounds.
Collapse
Affiliation(s)
- Yuxiang Gu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Yajie Niu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jingcheng Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zunying Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
17
|
Guillemin J, Li J, Li V, McDowell SAT, Audette K, Davis G, Jelen M, Slamani S, Kelliher L, Gordon MD, Stanley M. Taste cells expressing Ionotropic Receptor 94e reciprocally impact feeding and egg laying in Drosophila. Cell Rep 2024; 43:114625. [PMID: 39141516 DOI: 10.1016/j.celrep.2024.114625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/01/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
Chemosensory cells across the body of Drosophila melanogaster evaluate the environment to prioritize certain behaviors. Previous mapping of gustatory receptor neurons (GRNs) on the fly labellum identified a set of neurons in L-type sensilla that express Ionotropic Receptor 94e (IR94e), but the impact of IR94e GRNs on behavior remains unclear. We used optogenetics and chemogenetics to activate IR94e neurons and found that they drive mild feeding suppression but enhance egg laying. In vivo calcium imaging revealed that IR94e GRNs respond strongly to certain amino acids, including glutamate, and that IR94e plus co-receptors IR25a and IR76b are required for amino acid detection. Furthermore, IR94e mutants show behavioral changes to solutions containing amino acids, including increased consumption and decreased egg laying. Overall, our results suggest that IR94e GRNs on the fly labellum discourage feeding and encourage egg laying as part of an important behavioral switch in response to certain chemical cues.
Collapse
Affiliation(s)
| | - Jinfang Li
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Viktoriya Li
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sasha A T McDowell
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kayla Audette
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
| | - Grace Davis
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
| | - Meghan Jelen
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Samy Slamani
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
| | - Liam Kelliher
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
| | - Michael D Gordon
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Molly Stanley
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
18
|
Sakai K, Okada M, Yamaguchi S. Umami and saltiness enhancements of vegetable soup by enzyme-produced glutamic acid and branched-chain amino acids. Front Nutr 2024; 11:1436113. [PMID: 39224182 PMCID: PMC11368061 DOI: 10.3389/fnut.2024.1436113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction One major challenge of reducing salt content in food is the risk of the overall taste becoming bland. Enhancing saltiness is an effective strategy for salt reduction, and the development of salt-reduced foods using these saltiness-enhancing flavorants as food additives is underway. However, an increasing number of consumers demand a reduction in additives in clean-label foods. Objective Enzyme processing of food is an attractive strategy for developing clean-label foods because enzymes are not considered additives. We aimed to improve the saltiness and umami intensity of vegetable soups by enzyme treatment while meeting clean-label requirements. We first optimized the enzymatic reaction conditions of a protease and glutaminase blend and then investigated the synergistic effects of this enzyme blend on the taste of vegetable soup. Results Sensory evaluations indicated that the reaction products (e.g., protein hydrolysates or amino acids) could enhance the umami, kokumi, and saltiness intensity of vegetable soup supplemented with 0.5% NaCl. Notably, the saltiness intensity ratio of the enzyme-treated soup with 0.50, 0.45, and 0.40% NaCl were increased by 1.31-, 1.16-, and 0.99-fold, respectively, when this ratio for the control soup with 0.50% NaCl was set to 1.0. This indicates a 20% salt reduction rate can be achieved by enzyme treatment. Moreover, we found that these enhancements were synergically caused by enzyme-produced glutamic acid and branched-chain amino acids. Conclusion Our findings suggest that using enzyme blends of bacterial and fungal proteases and glutaminase is an effective approach to enhancing the saltiness levels of vegetable soups while meeting clean-label requirements.
Collapse
Affiliation(s)
- Kiyota Sakai
- Innovation Center, Amano Enzyme Inc., Kakamigahara, Japan
| | | | | |
Collapse
|
19
|
Gerber S, Roberts SB. Peanut hulls, an underutilized nutritious culinary ingredient: valorizing food waste for global food, health, and farm economies-a narrative review. Front Nutr 2024; 11:1453315. [PMID: 39224180 PMCID: PMC11368060 DOI: 10.3389/fnut.2024.1453315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Peanut hulls (PHs) are an edible food waste that is an underutilized food source for human consumption. While edible and palatable, currently they are mainly diverted to livestock feed or building materials. Here, we describe existing literature supporting human food valorization of PHs, and propose methods to optimize recapturing nutrients (protein, fiber, phenols and other phytonutrients) lost by treating PHs as waste. Incorporated into common foods, PHs could be processed into functional ingredients to improve nutrient-density with anticipated corresponding positive health outcomes associated with increases in plant foods. Valorization of PHs addresses multiple priorities of the UN Sustainable Development Goals using a Food Systems Approach (FSA) including reducing food waste, increasing economic opportunities for farmers, and increasing the availability of healthy shelf-stable foodstuffs to address food security. Recent advances in sustainable food processing technologies can be utilized to safely incorporate PHs into human food streams. We propose future applications that could make meaningful impacts for food availability and the nutritional composition of common foods like bread and plant-based meat alternatives. While the limited literature on this topic spans several decades, no commercial operations currently exist to process PHs for human consumption, and most literature on the topic precedes the technological "green revolution." The approaches outlined in this review may help bolster commercialization of this underutilized and nutritious food potentially improving opportunities for multiple global stakeholders.
Collapse
Affiliation(s)
- Suzannah Gerber
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Susan B. Roberts
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
20
|
Verma K, Ramadoss R, Sundar S, Panneer Selvam S, K H. Comparative Quantification of Fungiform Papillae Density and Taste Perception in Anemic and Healthy Controls: A Case-Control Study. Cureus 2024; 16:e67082. [PMID: 39286718 PMCID: PMC11405077 DOI: 10.7759/cureus.67082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Background Taste perception is crucial for dietary choices, nutrition, and overall health. The human tongue, particularly the fungiform papillae, plays a significant role in taste sensation, especially for sweet and umami flavors. Anemia, a common condition characterized by low hemoglobin levels, can affect sensory perception, including taste. Recent research has begun to explore the relationship between fungiform papillae density and taste perception in individuals with anemia. Objective This study aimed to investigate the comparative quantification of fungiform papillae density and its correlation with taste perception in anemic and healthy individuals, with the goal of understanding the underlying mechanisms linking anemia to taste disturbances. Methods A total of 100 adults (50 anemic and 50 healthy controls) aged 18-65 participated in the study. Demographic data, dietary habits, and medical history were collected. Taste perception was assessed using a taste strip test and psychophysical scaling methods, including magnitude estimation and the method of constant stimuli. Fungiform papillae density was quantified using high-resolution images of the tongue. Statistical analyses, including t-tests and correlation analyses, were conducted to compare the groups and explore relationships between hemoglobin levels, papillae density, and taste perception. Results The study found that anemic individuals had a slightly lower mean fungiform papillae density (49 papillae per square centimeter) compared to healthy controls (57 papillae per square centimeter). In the taste strip test, anemic participants showed reduced accuracy in taste perception, particularly for bitter flavors. However, psychophysical scaling results, as measured by magnitude estimation, revealed no statistically significant difference in subjective taste intensity between the anemic and healthy control groups (p=0.8666). Conclusion The study suggests that while anemic individuals may exhibit reduced fungiform papillae density and altered taste perception, particularly for bitter flavors, the overall subjective perception of taste intensity does not significantly differ from that of healthy controls. These findings contribute to the understanding of taste disturbances in anemia and may inform future diagnostic and therapeutic approaches for managing taste disorders in affected individuals.
Collapse
Affiliation(s)
- Krishna Verma
- Oral Biology, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Ramya Ramadoss
- Oral Pathology and Oral Biology, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Sandhya Sundar
- Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Suganya Panneer Selvam
- Oral Pathology and Oral Biology, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Hemashree K
- Oral and Maxillofacial Pathology, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
21
|
Korn LL, Kutyavin VI, Bachtel ND, Medzhitov R. Adverse Food Reactions: Physiological and Ecological Perspectives. Annu Rev Nutr 2024; 44:155-178. [PMID: 38724028 DOI: 10.1146/annurev-nutr-061021-022909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
While food is essential for survival, it can also cause a variety of harmful effects, ranging from intolerance to specific nutrients to celiac disease and food allergies. In addition to nutrients, foods contain myriads of substances that can have either beneficial or detrimental effects on the animals consuming them. Consequently, all animals evolved defense mechanisms that protect them from harmful food components. These "antitoxin" defenses have some parallels with antimicrobial defenses and operate at a cost to the animal's fitness. These costs outweigh benefits when defense responses are exaggerated or mistargeted, resulting in adverse reactions to foods. Additionally, pathological effects of foods can stem from insufficient defenses, due to unabated toxicity of harmful food components. We discuss the structure of antitoxin defenses and how their failures can lead to a variety of adverse food reactions.
Collapse
Affiliation(s)
- Lisa L Korn
- Department of Medicine, Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Vassily I Kutyavin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Nathaniel D Bachtel
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Ruslan Medzhitov
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
22
|
Guo J, Zhao J, Han P, Wu Y, Zheng K, Huang C, Wang Y, Chen C, Guo Q. Finding the best predictive model for hypertensive depression in older adults based on machine learning and metabolomics research. Front Psychiatry 2024; 15:1370602. [PMID: 38993388 PMCID: PMC11236531 DOI: 10.3389/fpsyt.2024.1370602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Objective Depression is a common comorbidity in hypertensive older adults, yet depression is more difficult to diagnose correctly. Our goal is to find predictive models of depression in hypertensive patients using a combination of various machine learning (ML) methods and metabolomics. Methods Methods We recruited 379 elderly people aged ≥65 years from the Chinese community. Plasma samples were collected and assayed by gas chromatography/liquid chromatography-mass spectrometry (GC/LC-MS). Orthogonal partial least squares discriminant analysis (OPLS-DA), volcano diagrams and thermograms were used to distinguish metabolites. The attribute discriminators CfsSubsetEval combined with search method BestFirst in WEKA software was used to find the best predicted metabolite combinations, and then 24 classification methods with 10-fold cross-validation were used for prediction. Results 34 individuals were considered hypertensive combined with depression according to our criteria, and 34 subjects with hypertension only were matched according to age and sex. 19 metabolites by GC-MS and 65 metabolites by LC-MS contributed significantly to the differentiation between the depressed and non-depressed cohorts, with a VIP value of more than 1 and a P value of less than 0.05. There were multiple metabolic pathway alterations. The metabolite combinations screened with WEKA for optimal diagnostic value included 12 metabolites. The machine learning methods with AUC values greater than 0.9 were bayesNet and random forests, and their other evaluation measures are also better. Conclusion Altered metabolites and metabolic pathways are present in older adults with hypertension combined with depression. Methods using metabolomics and machine learning performed quite well in predicting depression in hypertensive older adults, contributing to further clinical research.
Collapse
Affiliation(s)
- Jiangling Guo
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingwang Zhao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Peipei Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yahui Wu
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Kai Zheng
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chuanjun Huang
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yue Wang
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Cheng Chen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Qi Guo
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
23
|
Gao X, Zhang M, Li J, Gu L, Chang C, Huang Z, Yang Y, Su Y. Novel Insights into the Effects of Different Cooking Methods on Salted Egg Yolks: Physicochemical and Sensory Analysis. Foods 2024; 13:1963. [PMID: 38998469 PMCID: PMC11240978 DOI: 10.3390/foods13131963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
In this study, the flavor characteristics and physicochemical properties of salted egg yolk (SEY) under different cooking methods (steaming/baking/microwaving) were investigated. The microwave-treated SEY exhibited the highest levels of salt content, cooking loss, lightness, and b* value, as well as the highest content of flavor amino acids. A total of 31, 27, and 29 volatile compounds were detected after steaming, baking, and microwave treatments, respectively, covering 10 chemical families. The partial least squares discriminant analysis confirmed that 21 compounds, including octanol, pyrazine, 2-pentyl-furan, and 1-octen-3-ol, were the key volatile compounds affecting the classification of SEY aroma. The electronic nose revealed a sharp distinction in the overall flavor profile of SEY with varying heat treatments. However, no dramatic differences were observed in terms of fatty acid composition. Microwave treatment was identified as presenting a promising approach for enhancing the aroma profile of SEY. These findings contribute novel insights into flavor evaluation and the development of egg products as ingredients for thermal processing.
Collapse
Affiliation(s)
- Xuejing Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengya Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zijian Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
24
|
Ma F, Li Y, Zhang Y, Zhang Q, Li X, Cao Q, Ma H, Xie D, Zhang B, Yu J, Li X, Xie Q, Wan G, Guo M, Guo J, Yin J, Liu G. Effects of umami substances as taste enhancers on salt reduction in meat products: A review. Food Res Int 2024; 185:114248. [PMID: 38658067 DOI: 10.1016/j.foodres.2024.114248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Sodium is one of the essential additives in meat processing, but excessive sodium intake may increase risk of hypertension and cardiovascular disease. However, reducing salt content while preserving its preservative effect, organoleptic properties, and technological characteristics poses challenges. In this review, the mechanism of salt reduction of umami substances was introduced from the perspective of gustation-taste interaction, and the effects of the addition of traditional umami substances (amino acids, nucleotides, organic acids(OAs)) and natural umami ingredients (mushrooms, seaweeds, tomatoes, soybeans, tea, grains) on the sensory properties of the meat with reduced-salt contents were summarized. In addition, the impacts of taste enhancers on eating quality (color, sensory, textural characteristics, and water-holding capacity (WHC)), and processing quality (lipid oxidation, pH) of meat products (MP) and their related mechanisms were also discussed. Among them, natural umami ingredients exhibit distinct advantages over traditional umami substances in terms of enhancing quality and nutritional value. On the basis of salt reduction, natural umami ingredients improve the flavor, texture, WHC and antioxidant capacity. This comprehensive review may provide the food industry with a theoretical foundation for mitigating salt consumption through the utilization of umami substances and natural ingredients.
Collapse
Affiliation(s)
- Fang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yuanlv Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qian Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaoxue Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qingqing Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Haiyang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Delang Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Bingbing Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jia Yu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaojun Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guoling Wan
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
25
|
Arntsen C, Guillemin J, Audette K, Stanley M. Tastant-receptor interactions: insights from the fruit fly. Front Nutr 2024; 11:1394697. [PMID: 38665300 PMCID: PMC11043608 DOI: 10.3389/fnut.2024.1394697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Across species, taste provides important chemical information about potential food sources and the surrounding environment. As details about the chemicals and receptors responsible for gustation are discovered, a complex view of the taste system is emerging with significant contributions from research using the fruit fly, Drosophila melanogaster, as a model organism. In this brief review, we summarize recent advances in Drosophila gustation and their relevance to taste research more broadly. Our goal is to highlight the molecular mechanisms underlying the first step of gustatory circuits: ligand-receptor interactions in primary taste cells. After an introduction to the Drosophila taste system and how it encodes the canonical taste modalities sweet, bitter, and salty, we describe recent insights into the complex nature of carboxylic acid and amino acid detection in the context of sour and umami taste, respectively. Our analysis extends to non-canonical taste modalities including metals, fatty acids, and bacterial components, and highlights unexpected receptors and signaling pathways that have recently been identified in Drosophila taste cells. Comparing the intricate molecular and cellular underpinnings of how ligands are detected in vivo in fruit flies reveals both specific and promiscuous receptor selectivity for taste encoding. Throughout this review, we compare and contextualize these Drosophila findings with mammalian research to not only emphasize the conservation of these chemosensory systems, but to demonstrate the power of this model organism in elucidating the neurobiology of taste and feeding.
Collapse
Affiliation(s)
| | | | | | - Molly Stanley
- Department of Biology, University of Vermont, Burlington, VT, United States
| |
Collapse
|
26
|
Zhao J, Xie Y, Xiang Y, Jiang C, Tang Z, Zhao J, Xu M, Liu P, Lin H, Tang J. Taste Mechanism of Umami Molecules from Fermented Broad Bean Paste Based on In Silico Analysis and Peptidomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38557018 DOI: 10.1021/acs.jafc.3c09545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this study, in silico analysis and peptidomics were performed to examine the generation mechanism of the umami taste of fermented broad bean paste (FBBP). Based on the information from peptidomics, a total of 470 free peptides were identified from FBBP, most of which were increased after fermentation. Additionally, the increase of the content of umami peptides, organic acids, and amino acids during fermentation contributed to the perception of umami taste in FBBP. Molecule docking results inferred that these umami molecules were easy to connect with Ser, Glu, His, and Gln in the T1R3 subunit through hydrogen bonds and electrostatic interaction force. The binding sites His145, Gln389, and Glu301 particularly contributed to the formation of the ligand-receptor complexes. The aromatic interaction, hydrogen bond, hydrophilicity, and solvent-accessible surface (SAS) played key roles in the receptor-peptide interaction. Sensory evaluation and electronic tongue results showed that EDEDE, DLSESV, SNGDDE, DETL, CDLSD, and TDEE screened from FBBP had umami characteristics and umami-enhancing effects (umami threshold values ranging from 0.131 to 0.394 mmol/L). This work provides new insight into the rapid and efficient screening of novel umami peptides and a deeper understanding of the taste mechanisms of umami molecules from FBBP.
Collapse
Affiliation(s)
- Jianhua Zhao
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Yuqing Xie
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Yue Xiang
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Chunyan Jiang
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Zhirui Tang
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Jie Zhao
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Min Xu
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Ping Liu
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
- Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China
| | - Hongbin Lin
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
- Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China
| | - Jie Tang
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| |
Collapse
|
27
|
Meng H, Cui Z, Yu Y, Li Y, Jiang S, Liu Y. From Molecular Dynamics to Taste Sensory Perception: A Comprehensive Study on the Interaction of Umami Peptides with the T1R1/T1R3-VFT Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6533-6543. [PMID: 38488059 DOI: 10.1021/acs.jafc.3c09598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The research on the umami receptor-ligand interaction is crucial for understanding umami perception. This study integrated molecular simulations, sensory evaluation, and biosensor technology to analyze the interaction between umami peptides and the umami receptor T1R1/T1R3-VFT. Molecular dynamics simulations were used to investigate the dissociation process of seven umami peptides with the umami receptor T1R1/T1R3-VFT, and by calculating the potential mean force curve using the Jarzynski equation, it was found that the binding free energy of umami peptide is between -58.80 and -12.17 kcal/mol, which had a strong correlation with the umami intensity obtained by time intensity sensory evaluation. Through correlation analysis, the dissociation rate constants (0.0126-0.394 1/s) of umami peptides were found to have a great impact on umami perception. The faster the dissociation rate of umami peptides from receptors, the stronger the perceived intensity of the umami taste. This research aims to elucidate the relationship between the umami peptide-receptor interaction and umami perception, providing theoretical support for the exploration of umami perception mechanisms.
Collapse
Affiliation(s)
- Hengli Meng
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyong Cui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanyang Yu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingqiu Li
- Secondary College of Cereals and Tourism, Guangxi Vocational College of Technology and Business, Nanning 530005, China
| | - Shui Jiang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
28
|
Duppeti H, Nakkarike Manjabhatta S, Kempaiah BB. Flavor profile and role of macromolecules in the flavor generation of shrimp meat and valorization of shrimp by-products as a source of flavor compounds: a review. Crit Rev Food Sci Nutr 2023; 65:123-142. [PMID: 37880974 DOI: 10.1080/10408398.2023.2268708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Shrimps are a widely cultivated species among crustaceans worldwide due to their nutritional profile and delicacy. Because of their unique flavor, shrimp-based food products are gaining consumer demand, so there is a need to understand the flavor chemistry of shrimp meat. Further, the processing and macromolecules of shrimp meat play a significant role in flavor generation and suggest a focus on their research. However, shrimp processing generates a large amount of solid and liquid waste, creating disposal problems and environmental hazards. To overcome this, utilizing these waste products, a rich source of valuable flavor compounds is necessary. This review comprehensively discusses the nutritional aspects, flavor profile, and role of macromolecules in the flavor generation of shrimp meat. Besides, recent trends in analyzing the aroma profile of shrimp and the benefits of shrimp by-products as a source of flavor compounds have been addressed. The delicious flavor of shrimp meat is due to its volatile and nonvolatile flavor compounds. Proteins play a major role in the textural and flavor adsorption properties of shrimp meat-based products. Green extraction technologies, especially ultrasonication, are recommended for valorizing shrimp by-products as a source of flavor compounds, which have enormous applications in the food and flavor industries.
Collapse
Affiliation(s)
- Haritha Duppeti
- Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Microbiology and FST (Food Science and Technology), GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, India
| | - Sachindra Nakkarike Manjabhatta
- Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bettadaiah Bheemanakere Kempaiah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Plantation Products, Spices and Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| |
Collapse
|
29
|
Obayashi N, Sugita M, Shintani T, Nishi H, Ando T, Kajiya M, Kawaguchi H, Ohge H, Naito M. Taste-taste associations in chemotherapy-induced subjective taste alterations: findings from a questionnaire survey in an outpatient clinic. Support Care Cancer 2023; 31:552. [PMID: 37658917 DOI: 10.1007/s00520-023-08013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE Chemotherapy-induced taste alteration is a side effect that can result in malnutrition and reduced quality of life in cancer patients. However, the underlying causes of this phenomenon remain unclear, and evidence-based treatments have not been established. This study focused on patients' subjective symptoms of taste alterations aimed to explore how the sensitivity to basic tastes changes due to anticancer agents and how alterations in one taste perception are associated with changes in other tastes during chemotherapy. METHODS A cross-sectional questionnaire-based interview survey was conducted on 215 patients undergoing chemotherapy. The subjective sensitivity to each basic taste was assessed using a visual analog scale, and the incidence of taste alterations due to different chemotherapy regimens was calculated. Multivariate logistic regression analysis was performed to determine whether there were associations between changes in one taste sensitivity and changes in other taste sensitivities. RESULTS Approximately half (49.5%) of the patients experienced chemotherapy-induced taste alterations. An analysis of subjective changes in basic tastes revealed that the salt and umami taste systems were more sensitive to chemotherapy than other taste systems. Patients with altered sensitivity to sweet taste were significantly more likely to report altered sensitivity to salt, bitter, and sour tastes. Moreover, umami-salt and bitter-sour taste sensitivities were significantly related to each other. CONCLUSION This study suggests that changes in subjective sensitivities to one basic taste during chemotherapy may be accompanied by changes in other tastes in specific combinations. Considering taste associations in dietary guidance may help improve the nutritional status of cancer patients experiencing taste alterations due to chemotherapy.
Collapse
Affiliation(s)
- Nami Obayashi
- Department of General Dentistry, Hiroshima University Hospital, Kasumi 1-2-3, Minami-Ku, Hiroshima, 734-8551, Japan.
- Center of Oral Clinical Examination, Hiroshima University Hospital, Kasumi 1-2-3, Minami-Ku, Hiroshima, 734-8551, Japan.
- Department of Physiology and Oral Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Makoto Sugita
- Department of Physiology and Oral Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Kasumi 1-2-3, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Hiromi Nishi
- Department of General Dentistry, Hiroshima University Hospital, Kasumi 1-2-3, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Toshinori Ando
- Center of Oral Clinical Examination, Hiroshima University Hospital, Kasumi 1-2-3, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Mikihito Kajiya
- Center of Oral Clinical Examination, Hiroshima University Hospital, Kasumi 1-2-3, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Hiroyuki Kawaguchi
- Department of General Dentistry, Hiroshima University Hospital, Kasumi 1-2-3, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan
| | - Mariko Naito
- Department of Oral Epidemiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
30
|
Ju Y, Sun L, Zhang X, Li W, Hou L. Fractionation, identification and umami characteristics of flavor peptides in natural brewed soy sauce. Food Chem 2023; 425:136501. [PMID: 37279620 DOI: 10.1016/j.foodchem.2023.136501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/08/2023]
Abstract
To investigate the umami mechanisms and characteristics of soy sauce flavor peptides, four fractions from natural brewed soy sauce were separated using ultrafiltration and Sephadex G-15 gel filtration chromatography. Sensory and ligand-receptor interaction tests showed that the umami strengths of the fractions were related as follows: U1 > U2, G3 > G2, and G3 > U1. Peptide identification revealed that the < 550-Da peptides might be the major contributors to the umami taste of U1 and G3. The higher umami strength of G3 might be attributable to its higher content of umami peptides. G3's concentration-relative umami intensity curve was plotted using a two-alternative forced choice test. It was also revealed that less sourness, higher saltiness and cool (4 ℃) and hot (50 ℃) serving conditions were conductive to the umami perception of G3. The results could provide a reference for the application of soy-sauce flavor peptides in food.
Collapse
Affiliation(s)
- Yaojun Ju
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Liting Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Xiangdi Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Wanning Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Lihua Hou
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China.
| |
Collapse
|
31
|
Lif Holgerson P, Hasslöf P, Esberg A, Haworth S, Domellöf M, West CE, Johansson I. Genetic Preference for Sweet Taste in Mothers Associates with Mother-Child Preference and Intake. Nutrients 2023; 15:nu15112565. [PMID: 37299528 DOI: 10.3390/nu15112565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Taste perception is a well-documented driving force in food selection, with variations in, e.g., taste receptor encoding and glucose transporter genes conferring differences in taste sensitivity and food intake. We explored the impact of maternal innate driving forces on sweet taste preference and intake and assessed whether their children differed in their intake of sweet foods or traits related to sweet intake. A total of 133 single nucleotide polymorphisms (SNPs) in genes reported to associate with eating preferences were sequenced from saliva-DNA from 187 mother-and-child pairs. Preference and intake of sweet-, bitter-, sour-, and umami-tasting foods were estimated from questionnaires. A total of 32 SNP variants associated with a preference for sweet taste or intake at a p-value < 0.05 in additive, dominant major, or dominant minor allele models, with two passing corrections for multiple testing (q < 0.05). These were rs7513755 in the TAS1R2 gene and rs34162196 in the OR10G3 gene. Having the T allele of rs34162196 was associated with higher sweet intake in mothers and their children, along with a higher BMI in mothers. Having the G allele of rs7513755 was associated with a higher preference for sweets in the mothers. The rs34162196 might be a candidate for a genetic score for sweet intake to complement self-reported intakes.
Collapse
Affiliation(s)
- Pernilla Lif Holgerson
- Department of Odontology, Section of Pediatric Dentistry, Faculty of Medicine, Umeå University, SE-90185 Umeå, Sweden
| | - Pamela Hasslöf
- Department of Odontology, Section of Pediatric Dentistry, Faculty of Medicine, Umeå University, SE-90185 Umeå, Sweden
| | - Anders Esberg
- Department of Odontology, Section of Cariology, Faculty of Medicine, Umeå University, SE-90185 Umeå, Sweden
| | - Simon Haworth
- Bristol Dental School, University of Bristol, Bristol BS8 2BN, UK
- MRC Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Magnus Domellöf
- Department of Clinical Sciences, Section of Pediatric medicine, Faculty of Medicine, Umeå University, SE-90185 Umeå, Sweden
| | - Christina E West
- Department of Clinical Sciences, Section of Pediatric medicine, Faculty of Medicine, Umeå University, SE-90185 Umeå, Sweden
| | - Ingegerd Johansson
- Department of Odontology, Section of Cariology, Faculty of Medicine, Umeå University, SE-90185 Umeå, Sweden
| |
Collapse
|
32
|
Kouakou YI, Lee RJ. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms 2023; 11:1295. [PMID: 37317269 PMCID: PMC10221136 DOI: 10.3390/microorganisms11051295] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Bitter and sweet taste G protein-coupled receptors (known as T2Rs and T1Rs, respectively) were originally identified in type II taste cells on the tongue, where they signal perception of bitter and sweet tastes, respectively. Over the past ~15 years, taste receptors have been identified in cells all over the body, demonstrating a more general chemosensory role beyond taste. Bitter and sweet taste receptors regulate gut epithelial function, pancreatic β cell secretion, thyroid hormone secretion, adipocyte function, and many other processes. Emerging data from a variety of tissues suggest that taste receptors are also used by mammalian cells to "eavesdrop" on bacterial communications. These receptors are activated by several quorum-sensing molecules, including acyl-homoserine lactones and quinolones from Gram-negative bacteria such as Pseudomonas aeruginosa, competence stimulating peptides from Streptococcus mutans, and D-amino acids from Staphylococcus aureus. Taste receptors are an arm of immune surveillance similar to Toll-like receptors and other pattern recognition receptors. Because they are activated by quorum-sensing molecules, taste receptors report information about microbial population density based on the chemical composition of the extracellular environment. This review summarizes current knowledge of bacterial activation of taste receptors and identifies important questions remaining in this field.
Collapse
Affiliation(s)
- Yobouet Ines Kouakou
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Robert J. Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Zhou Y, Sui H, Wang Y, Yong L, Zhang L, Liang J, Zhou J, Xu L, Zhong Y, Chen J, Song Y. Dietary Exposure to Glutamates of 2- to 5-Year-Old Toddlers in China Using the Duplicate Diet Method. Foods 2023; 12:foods12091898. [PMID: 37174436 PMCID: PMC10178738 DOI: 10.3390/foods12091898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
A duplicate diet collection method was used to estimate dietary exposure to glutamates in children aged 2-5 years in selected provinces of China. Daily duplicate diet samples were collected from 86 healthy toddlers over three consecutive days. Glutamates were analyzed using ultra-high-pressure liquid chromatography-MS/MS (UHPLC-MS/MS). Results showed that the highest glutamates content was found in mixed meals, at 5.12 mg/kg, followed by powdered formula (3.89 mg/kg), and milk and dairy products (2.29 mg/kg). The total mean daily dietary exposure for subjects was 0.20 mg/kg BW, and P95 daily dietary exposure was 0.44 mg/kg BW, both below the acceptable daily intake (ADI) (120 mg/kg BW) recommended by the Joint (FAO/WHO) Expert Committee on Food Additives (JECFA) and the ADI (30 mg/kg BW) set by the European Food Safety Authority (EFSA). Hence it can be considered that glutamates exposure would cause low risk in this group.
Collapse
Affiliation(s)
- Yanjun Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Haixia Sui
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Yibaina Wang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Ling Yong
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Lei Zhang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Jiang Liang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Jing Zhou
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
| | - Lili Xu
- Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, China
| | - Yanxu Zhong
- Guangxi Center for Disease Prevention and Control, Nanning 530028, China
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Song
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| |
Collapse
|
34
|
Eom S, Lee S, Lee J, Pyeon M, Yeom HD, Song JH, Choi EJ, Lee M, Lee JH, Chang JY. Molecular Mechanism of L-Pyroglutamic Acid Interaction with the Human Sour Receptor. J Microbiol Biotechnol 2023; 33:203-210. [PMID: 36655284 PMCID: PMC9998207 DOI: 10.4014/jmb.2212.12007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/20/2023]
Abstract
Taste is classified into five types, each of which has evolved to play its respective role in mammalian survival. Sour taste is one of the important ways to judge whether food has gone bad, and the sour taste receptor (PKD2L1) is the gene behind it. Here, we investigated whether L-pyroglutamic acid interacts with sour taste receptors through electrophysiology and mutation experiments using Xenopus oocytes. R299 of hPKD2L1 was revealed to be involved in L-pyroglutamic acid binding in a concentration-dependent manner. As a result, it is possible to objectify the change in signal intensity according to the concentration of L-pyroglutamic acid, an active ingredient involved in the taste of kimchi, at the molecular level. Since the taste of other ingredients can also be measured with the method used in this experiment, it is expected that an objective database of taste can be created.
Collapse
Affiliation(s)
- Sanung Eom
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shinhui Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jiwon Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Minsu Pyeon
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hye Duck Yeom
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Hee Song
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Eun Ji Choi
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Moeun Lee
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Junho H Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji Yoon Chang
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
35
|
Sodium Homeostasis, a Balance Necessary for Life. Nutrients 2023; 15:nu15020395. [PMID: 36678265 PMCID: PMC9862583 DOI: 10.3390/nu15020395] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Body sodium (Na) levels must be maintained within a narrow range for the correct functioning of the organism (Na homeostasis). Na disorders include not only elevated levels of this solute (hypernatremia), as in diabetes insipidus, but also reduced levels (hyponatremia), as in cerebral salt wasting syndrome. The balance in body Na levels therefore requires a delicate equilibrium to be maintained between the ingestion and excretion of Na. Salt (NaCl) intake is processed by receptors in the tongue and digestive system, which transmit the information to the nucleus of the solitary tract via a neural pathway (chorda tympani/vagus nerves) and to circumventricular organs, including the subfornical organ and area postrema, via a humoral pathway (blood/cerebrospinal fluid). Circuits are formed that stimulate or inhibit homeostatic Na intake involving participation of the parabrachial nucleus, pre-locus coeruleus, medial tuberomammillary nuclei, median eminence, paraventricular and supraoptic nuclei, and other structures with reward properties such as the bed nucleus of the stria terminalis, central amygdala, and ventral tegmental area. Finally, the kidney uses neural signals (e.g., renal sympathetic nerves) and vascular (e.g., renal perfusion pressure) and humoral (e.g., renin-angiotensin-aldosterone system, cardiac natriuretic peptides, antidiuretic hormone, and oxytocin) factors to promote Na excretion or retention and thereby maintain extracellular fluid volume. All these intake and excretion processes are modulated by chemical messengers, many of which (e.g., aldosterone, angiotensin II, and oxytocin) have effects that are coordinated at peripheral and central level to ensure Na homeostasis.
Collapse
|
36
|
Dubovski N, Fierro F, Margulis E, Ben Shoshan-Galeczki Y, Peri L, Niv MY. Taste GPCRs and their ligands. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:177-193. [PMID: 36357077 DOI: 10.1016/bs.pmbts.2022.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Taste GPCRs are expressed in taste buds on the tongue and play a key role in food choice and consumption. They are also expressed extra-orally, with various physiological roles that are currently under study. Unraveling the roles of these receptors relies on the knowledge of their ligands. Combining sensory, cell-based and computational approaches enabled the discovery of numerous agonists and several antagonists. Here we provide a short overview of taste receptor families, main recent methods for ligands discovery, and current sources of information about known ligands. The future directions that are likely to impact the taste GPCR field include focus on ligand interactions with naturally occurring polymorphisms, as well as harnessing the power of CryoEM and of multiple signaling readout techniques.
Collapse
Affiliation(s)
- Nitzan Dubovski
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Fabrizio Fierro
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Eitan Margulis
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yaron Ben Shoshan-Galeczki
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior Peri
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|