1
|
Acidovorax citrulli Effector AopV Suppresses Plant Immunity and Interacts with Aromatic Dehydratase ADT6 in Watermelon. Int J Mol Sci 2022; 23:ijms231911719. [PMID: 36233021 PMCID: PMC9570411 DOI: 10.3390/ijms231911719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial fruit blotch (BFB) is a disease of cucurbit plants caused by Acidovorax citrulli. Although A. citrulli has great destructive potential, the molecular mechanisms of pathogenicity of A. citrulli are not clear, particularly with regard to its type III secreted effectors. In this study, we characterized the type III secreted effector protein, AopV, from A. citrulli strain Aac5. We show that AopV significantly inhibits reactive oxygen species and the expression of PTI marker genes, and helps the growth of Pseudomonas syringae D36E in Nicotiana benthamiana. In addition, we found that the aromatic dehydratase ADT6 from watermelon was a target of AopV. AopV interacts with ADT6 in vivo and in vitro. Subcellular localization indicated ADT6 and AopV were co-located at the cell membrane. Together, our results reveal that AopV suppresses plant immunity and targets ADT6 in the cell membrane. These findings provide an new characterization of the molecular interaction of A. citrulli effector protein AopV with host cells.
Collapse
|
2
|
Jiménez-Guerrero I, Medina C, Vinardell JM, Ollero FJ, López-Baena FJ. The Rhizobial Type 3 Secretion System: The Dr. Jekyll and Mr. Hyde in the Rhizobium–Legume Symbiosis. Int J Mol Sci 2022; 23:ijms231911089. [PMID: 36232385 PMCID: PMC9569860 DOI: 10.3390/ijms231911089] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 01/14/2023] Open
Abstract
Rhizobia are soil bacteria that can establish a symbiotic association with legumes. As a result, plant nodules are formed on the roots of the host plants where rhizobia differentiate to bacteroids capable of fixing atmospheric nitrogen into ammonia. This ammonia is transferred to the plant in exchange of a carbon source and an appropriate environment for bacterial survival. This process is subjected to a tight regulation with several checkpoints to allow the progression of the infection or its restriction. The type 3 secretion system (T3SS) is a secretory system that injects proteins, called effectors (T3E), directly into the cytoplasm of the host cell, altering host pathways or suppressing host defense responses. This secretion system is not present in all rhizobia but its role in symbiosis is crucial for some symbiotic associations, showing two possible faces as Dr. Jekyll and Mr. Hyde: it can be completely necessary for the formation of nodules, or it can block nodulation in different legume species/cultivars. In this review, we compile all the information currently available about the effects of different rhizobial effectors on plant symbiotic phenotypes. These phenotypes are diverse and highlight the importance of the T3SS in certain rhizobium–legume symbioses.
Collapse
|
3
|
Identification of IAA-regulated genes in Pseudomonas syringae pv. tomato strain DC3000. J Bacteriol 2021; 204:e0038021. [PMID: 34662236 DOI: 10.1128/jb.00380-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The auxin indole-3-acetic acid (IAA) is a plant hormone that not only regulates plant growth and development but also plays important roles in plant-microbe interactions. We previously reported that IAA alters expression of several virulence-related genes in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000 (PtoDC3000). To learn more about the impact of IAA on regulation of PtoDC3000 gene expression we performed a global transcriptomic analysis of bacteria grown in culture, in the presence or absence of exogenous IAA. We observed that IAA repressed expression of genes involved in the Type III secretion (T3S) system and motility and promoted expression of several known and putative transcriptional regulators. Several of these regulators are orthologs of factors known to regulate stress responses and accordingly expression of several stress response-related genes was also upregulated by IAA. Similar trends in expression for several genes were also observed by RT-qPCR. Using an Arabidopsis thaliana auxin receptor mutant that accumulates elevated auxin, we found that many of the P. syringae genes regulated by IAA in vitro were also regulated by auxin in planta. Collectively the data indicate that IAA modulates many aspects of PtoDC3000 biology, presumably to promote both virulence and survival under stressful conditions, including those encountered in or on plant leaves. IMPORTANCE Indole-3-acetic acid (IAA), a form of the plant hormone auxin, is used by many plant-associated bacteria as a cue to sense the plant environment. Previously, we showed that IAA can promote disease in interactions between the plant pathogen Pseudomonas syringae strain PtoDC000 and one of its hosts, Arabidopsis thaliana. However, the mechanisms by which IAA impacts the biology of PtoDC3000 and promotes disease are not well understood. Here we demonstrate that IAA is a signal molecule that regulates gene expression in PtoDC3000. The presence of exogenous IAA affects expression of over 700 genes in the bacteria, including genes involved in Type III secretion and genes involved in stress response. This work offers insight into the roles of auxin promoting pathogenesis.
Collapse
|
4
|
Sun H, Zhu X, Li C, Ma Z, Han X, Luo Y, Yang L, Yu J, Miao Y. Xanthomonas effector XopR hijacks host actin cytoskeleton via complex coacervation. Nat Commun 2021; 12:4064. [PMID: 34210966 PMCID: PMC8249405 DOI: 10.1038/s41467-021-24375-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 06/11/2021] [Indexed: 01/09/2023] Open
Abstract
The intrinsically disordered region (IDR) is a preserved signature of phytobacterial type III effectors (T3Es). The T3E IDR is thought to mediate unfolding during translocation into the host cell and to avoid host defense by sequence diversification. Here, we demonstrate a mechanism of host subversion via the T3E IDR. We report that the Xanthomonas campestris T3E XopR undergoes liquid-liquid phase separation (LLPS) via multivalent IDR-mediated interactions that hijack the Arabidopsis actin cytoskeleton. XopR is gradually translocated into host cells during infection and forms a macromolecular complex with actin-binding proteins at the cell cortex. By tuning the physical-chemical properties of XopR-complex coacervates, XopR progressively manipulates multiple steps of actin assembly, including formin-mediated nucleation, crosslinking of F-actin, and actin depolymerization, which occurs through competition for actin-depolymerizing factor and depends on constituent stoichiometry. Our findings unravel a sophisticated strategy in which bacterial T3E subverts the host actin cytoskeleton via protein complex coacervation.
Collapse
Affiliation(s)
- He Sun
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xinlu Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chuanxi Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiao Han
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuanyuan Luo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Liang Yang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
5
|
He Q, McLellan H, Boevink PC, Birch PR. All Roads Lead to Susceptibility: The Many Modes of Action of Fungal and Oomycete Intracellular Effectors. PLANT COMMUNICATIONS 2020; 1:100050. [PMID: 33367246 PMCID: PMC7748000 DOI: 10.1016/j.xplc.2020.100050] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 05/06/2023]
Abstract
The ability to secrete effector proteins that can enter plant cells and manipulate host processes is a key determinant of what makes a successful plant pathogen. Here, we review intracellular effectors from filamentous (fungal and oomycete) phytopathogens and the host proteins and processes that are targeted to promote disease. We cover contrasting virulence strategies and effector modes of action. Filamentous pathogen effectors alter the fates of host proteins that they target, changing their stability, their activity, their location, and the protein partners with which they interact. Some effectors inhibit target activity, whereas others enhance or utilize it, and some target multiple host proteins. We discuss the emerging topic of effectors that target negative regulators of immunity or other plant proteins with activities that support susceptibility. We also highlight the commonly targeted host proteins that are manipulated by effectors from multiple pathogens, including those representing different kingdoms of life.
Collapse
Affiliation(s)
- Qin He
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Division of Plant Sciences, School of Life Sciences, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Hazel McLellan
- Division of Plant Sciences, School of Life Sciences, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Petra C. Boevink
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Paul R.J. Birch
- Division of Plant Sciences, School of Life Sciences, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Corresponding author
| |
Collapse
|
6
|
Erickson JL, Adlung N, Lampe C, Bonas U, Schattat MH. The Xanthomonas effector XopL uncovers the role of microtubules in stromule extension and dynamics in Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:856-870. [PMID: 29285819 DOI: 10.1111/tpj.13813] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 05/26/2023]
Abstract
Xanthomonas campestris pv. vesicatoria type III-secreted effectors were screened for candidates influencing plant cell processes relevant to the formation and maintenance of stromules in Nicotiana benthamiana lower leaf epidermis. Transient expression of XopL, a unique type of E3 ubiquitin ligase, led to a nearly complete elimination of stromules and the relocation of plastids to the nucleus. Further characterization of XopL revealed that the E3 ligase activity is essential for the two plastid phenotypes. In contrast to the XopL wild type, a mutant XopL lacking E3 ligase activity specifically localized to microtubules. Interestingly, mutant XopL-labeled filaments frequently aligned with stromules, suggesting an important, yet unexplored, microtubule-stromule relationship. High time-resolution movies confirmed that microtubules provide a scaffold for stromule movement and contribute to stromule shape. Taken together, this study has defined two populations of stromules: microtubule-dependent stromules, which were found to move slower and persist longer, and microtubule-independent stromules, which move faster and are transient. Our results provide the basis for a new model of stromule dynamics including interactions with both actin and microtubules.
Collapse
Affiliation(s)
- Jessica L Erickson
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06099, Halle, Germany
- Department of Plant Physiology, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06099, Halle, Germany
| | - Norman Adlung
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06099, Halle, Germany
| | - Christina Lampe
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06099, Halle, Germany
- Department of Plant Physiology, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06099, Halle, Germany
| | - Ulla Bonas
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06099, Halle, Germany
| | - Martin H Schattat
- Department of Plant Physiology, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06099, Halle, Germany
| |
Collapse
|
7
|
Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 2018; 40:894-937. [PMID: 28201715 PMCID: PMC5091034 DOI: 10.1093/femsre/fuw026] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/03/2016] [Indexed: 01/30/2023] Open
Abstract
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed.
Collapse
Affiliation(s)
- Daniela Büttner
- Genetics Department, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
8
|
Kunkel BN, Harper CP. The roles of auxin during interactions between bacterial plant pathogens and their hosts. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:245-254. [PMID: 29272462 DOI: 10.1093/jxb/erx447] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant pathogens have evolved several strategies to manipulate the biology of their hosts to facilitate colonization, growth to high levels in plant tissue, and production of disease. One of the less well known of these strategies is the synthesis of plant hormones and hormone analogs, and there is growing evidence that modulation of host hormone signaling is important during pathogenesis. Several plant pathogens produce the auxin indole-3-acetic acid (IAA) and/or virulence factors that modulate host auxin signaling. Auxin is well known for being involved in many aspects of plant growth and development, but recent findings have revealed that elevated IAA levels or enhanced auxin signaling can also promote disease development in some plant-pathogen interactions. In addition to stimulating plant cell growth during infection by gall-forming bacteria, auxin and auxin signaling can antagonize plant defense responses. Auxin can also act as a microbial signaling molecule to impact the biology of some pathogens directly. In this review, we summarize recent progress towards elucidating the roles that auxin production, modification of host auxin signaling, and direct effects of auxin on pathogens play during pathogenesis, with emphasis on the impacts of auxin on interactions with bacterial pathogens.
Collapse
Affiliation(s)
- Barbara N Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
9
|
Wu J, van der Burgh AM, Bi G, Zhang L, Alfano JR, Martin GB, Joosten MHAJ. The Bacterial Effector AvrPto Targets the Regulatory Coreceptor SOBIR1 and Suppresses Defense Signaling Mediated by the Receptor-Like Protein Cf-4. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:75-85. [PMID: 28876174 DOI: 10.1094/mpmi-08-17-0203-fi] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Receptor-like proteins (RLPs) and receptor-like kinases (RLKs) are cell-surface receptors that are essential for detecting invading pathogens and subsequent activation of plant defense responses. RLPs lack a cytoplasmic kinase domain to trigger downstream signaling leading to host resistance. The RLK SOBIR1 constitutively interacts with the tomato RLP Cf-4, thereby providing Cf-4 with a kinase domain. SOBIR1 is required for Cf-4-mediated resistance to strains of the fungal tomato pathogen Cladosporium fulvum that secrete the effector Avr4. Upon perception of this effector by the Cf-4/SOBIR1 complex, the central regulatory RLK SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3a (SERK3a) is recruited to the complex and defense signaling is triggered. SOBIR1 is also required for RLP-mediated resistance to bacterial, fungal ,and oomycete pathogens, and we hypothesized that SOBIR1 is targeted by effectors of such pathogens to suppress host defense responses. In this study, we show that Pseudomonas syringae pv. tomato DC3000 effector AvrPto interacts with Arabidopsis SOBIR1 and its orthologs of tomato and Nicotiana benthamiana, independent of SOBIR1 kinase activity. Interestingly, AvrPto suppresses Arabidopsis SOBIR1-induced cell death in N. benthamiana. Furthermore, AvrPto compromises Avr4-triggered cell death in Cf-4-transgenic N. benthamiana, without affecting Cf-4/SOBIR1/SERK3a complex formation. Our study shows that the RLP coreceptor SOBIR1 is targeted by a bacterial effector, which results in compromised defense responses.
Collapse
Affiliation(s)
- Jinbin Wu
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Aranka M van der Burgh
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Guozhi Bi
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Lisha Zhang
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - James R Alfano
- 2 Center for Plant Science Innovation and
- 3 Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588, U.S.A
| | - Gregory B Martin
- 4 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.; and
- 5 Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Matthieu H A J Joosten
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
10
|
Mantelin S, Thorpe P, Jones JT. Translational biology of nematode effectors. Or, to put it another way, functional analysis of effectors – what’s the point? NEMATOLOGY 2017. [DOI: 10.1163/15685411-00003048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There has been a huge amount of work put into identifying and characterising effectors from plant-parasitic nematodes in recent years. Although this work has provided insights into the mechanisms by which nematodes can infect plants, the potential translational outputs of much of this research are not always clear. This short article will summarise how developments in effector biology have allowed, or will allow, new control strategies to be developed, drawing on examples from nematology and from other pathosystems.
Collapse
Affiliation(s)
- Sophie Mantelin
- Dundee Effector Consortium, Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Peter Thorpe
- Dundee Effector Consortium, Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - John T. Jones
- Dundee Effector Consortium, Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Biology Department, University of St Andrews, St Andrews, Fife KY16 9TZ, UK
| |
Collapse
|
11
|
Contributions of host cellular trafficking and organization to the outcomes of plant-pathogen interactions. Semin Cell Dev Biol 2016; 56:163-173. [DOI: 10.1016/j.semcdb.2016.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/16/2016] [Accepted: 05/20/2016] [Indexed: 11/23/2022]
|
12
|
Wang S, Sun Z, Wang H, Liu L, Lu F, Yang J, Zhang M, Zhang S, Guo Z, Bent AF, Sun W. Rice OsFLS2-Mediated Perception of Bacterial Flagellins Is Evaded by Xanthomonas oryzae pvs. oryzae and oryzicola. MOLECULAR PLANT 2015; 8:1024-37. [PMID: 25617720 DOI: 10.1016/j.molp.2015.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 01/10/2015] [Accepted: 01/11/2015] [Indexed: 05/26/2023]
Abstract
Bacterial flagellins are often recognized by the receptor kinase FLAGELLIN SENSITIVE2 (FLS2) and activate MAMP-triggered immunity in dicotyledonous plants. However, the capacity of monocotyledonous rice to recognize flagellins of key rice pathogens and its biological relevance remain poorly understood. We demonstrate that ectopically expressed OsFLS2 in Arabidopsis senses the eliciting flg22 peptide and in vitro purified Acidovorax avenae (Aa) flagellin in an expression level-dependent manner, but does not recognize purified flagellins or derivative flg22(Xo) peptides of Xanthomonas oryzae pvs. oryzae (Xoo) and oryzicola (Xoc). Consistently, the flg22 peptide and purified Aa flagellin, but not Xoo/Xoc flagellins, induce various immune responses such as defense gene induction and MAPK activation in rice. Perception of flagellin by rice does induce strong resistance to Xoo infection, as shown after pre-treatment of rice leaves with Aa flagellin. OsFLS2 was found to differ from AtFLS2 in its perception specificities or sensitivities to different flg22 sequences. In addition, post-translational modification of Xoc flagellin was altered by deletion of glycosyltransferase-encoding rbfC, but this had little effect on Xoc motility and rpfC mutation did not detectably reduce Xoc virulence on rice. Deletion of flagellin-encoding fliC from Xoo/Xoc blocked swimming motility but also did not significantly alter Xoo/Xoc virulence. These results suggest that Xoo/Xoc carry flg22-region amino acid changes that allow motility while evading the ancient flagellin detection system in rice, which retains recognition capacity for other bacterial pathogens.
Collapse
Affiliation(s)
- Shanzhi Wang
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Zhe Sun
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Huiqin Wang
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Lijuan Liu
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Fen Lu
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China; Rice Research Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong Province, China
| | - Min Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Shiyong Zhang
- Rice Research Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong Province, China
| | - Zejian Guo
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Andrew F Bent
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| | - Wenxian Sun
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Lozano-Durán R, Robatzek S. 14-3-3 proteins in plant-pathogen interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:511-8. [PMID: 25584723 DOI: 10.1094/mpmi-10-14-0322-cr] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
14-3-3 proteins define a eukaryotic-specific protein family with a general role in signal transduction. Primarily, 14-3-3 proteins act as phosphosensors, binding phosphorylated client proteins and modulating their functions. Since phosphorylation regulates a plethora of different physiological responses in plants, 14-3-3 proteins play roles in multiple signaling pathways, including those controlling metabolism, hormone signaling, cell division, and responses to abiotic and biotic stimuli. Increasing evidence supports a prominent role of 14-3-3 proteins in regulating plant immunity against pathogens at various levels. In this review, potential links between 14-3-3 function and the regulation of plant-pathogen interactions are discussed, with a special focus on the regulation of 14-3-3 proteins in response to pathogen perception, interactions between 14-3-3 proteins and defense-related proteins, and 14-3-3 proteins as targets of pathogen effectors.
Collapse
Affiliation(s)
- Rosa Lozano-Durán
- 1The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
- 2Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, 3888 Chenhua Rd, Shanghai 201602, China
| | - Silke Robatzek
- 1The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
| |
Collapse
|
14
|
Tan CM, Li MY, Yang PY, Chang SH, Ho YP, Lin H, Deng WL, Yang JY. Arabidopsis HFR1 is a potential nuclear substrate regulated by the Xanthomonas type III effector XopD(Xcc8004). PLoS One 2015; 10:e0117067. [PMID: 25647296 PMCID: PMC4315394 DOI: 10.1371/journal.pone.0117067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/18/2014] [Indexed: 11/18/2022] Open
Abstract
XopDXcc8004, a type III effector of Xanthomonas campestris pv. campestris (Xcc) 8004, is considered a shorter version of the XopD, which lacks the N-terminal domain. To understand the functions of XopDXcc8004, in planta, a transgenic approach combined with inducible promoter to analyze the effects of XopDXcc8004 in Arabidopsis was done. Here, the expression of XopDXcc8004, in Arabidopsis elicited the accumulation of host defense-response genes. These molecular changes were dependent on salicylic acid and correlated with lesion-mimic phenotypes observed in XVE::XopDXcc8004 transgenic plants. Moreover, XopDXcc8004 was able to desumoylate HFR1, a basic helix-loop-helix transcription factor involved in photomorphogenesis, through SUMO protease activity. Interestingly, the hfr1-201 mutant increased the expression of host defense-response genes and displayed a resistance phenotype to Xcc8004. These data suggest that HFR1 is involved in plant innate immunity and is potentially regulated by XopDXcc8004.
Collapse
Affiliation(s)
- Choon Meng Tan
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National ChungHsing University and Academia Sinica, Taipei, Taiwan
| | - Meng-Ying Li
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Pei-Yun Yang
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Shu Heng Chang
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Yi-Ping Ho
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Hong Lin
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Wen-Ling Deng
- Department of Plant Pathology, National ChungHsing University, Taichung, Taiwan
| | - Jun-Yi Yang
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National ChungHsing University and Academia Sinica, Taipei, Taiwan
- Institute of Biotechnology, National ChungHsing University, Taichung, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, National ChungHsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National ChungHsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Dudnik A, Dudler R. Virulence determinants of Pseudomonas syringae strains isolated from grasses in the context of a small type III effector repertoire. BMC Microbiol 2014; 14:304. [PMID: 25472590 PMCID: PMC4262972 DOI: 10.1186/s12866-014-0304-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/20/2014] [Indexed: 11/10/2022] Open
Abstract
Background Pseudomonas syringae is pathogenic to a large number of plant species. For host colonization and disease progression, strains of this bacterium utilize an array of type III-secreted effectors and other virulence factors, including small secreted molecules such as syringolin A, a peptide derivative that inhibits the eukaryotic proteasome. In strains colonizing dicotyledonous plants, the compound was demonstrated to suppress the salicylic-acid-dependent defense pathway. Here, we analyze virulence factors of three strains colonizing wheat (Triticum aestivum): P. syringae pathovar syringae (Psy) strains B64 and SM, as well as P. syringae BRIP34876. These strains have a relatively small repertoire of only seven to eleven type III secreted effectors (T3Es) and differ in their capacity to produce syringolin A. The aim of this study was to analyze the contribution of various known virulence factors in the context of a small T3E repertoire. Results We demonstrate that syringolin A production enhances disease symptom development upon direct infiltration of strains into wheat leaves. However, it is not universally required for colonization, as Psy SM, which lacks syringolin biosynthesis genes, reaches cell densities comparable to syringolin A producer P. syringae BRIP34876. Next, we show that despite the small set of T3E-encoding genes, the type III secretion system remains the key pathogenicity determinant in these strains, and that phenotypic effects of deleting T3E-coding genes become apparent only when multiple effectors are removed. Conclusions Whereas production of syringolin A is not required for successful colonization of wheat leaves by P. syringae strains, its production results in increased lesion formation. Despite the small number of known T3Es encoded by the analyzed strains, the type III secretion system is essential for endophytic growth of these strains. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0304-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexey Dudnik
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland. .,Present address: Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 4, Hørsholm, 2970, Denmark.
| | - Robert Dudler
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.
| |
Collapse
|
16
|
Ellinger D, Voigt CA. Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. ANNALS OF BOTANY 2014; 114:1349-58. [PMID: 24984713 PMCID: PMC4195556 DOI: 10.1093/aob/mcu120] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/16/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND (1,3)-β-Glucan callose is a cell wall polymer that is involved in several fundamental biological processes, ranging from plant development to the response to abiotic and biotic stresses. Despite its importance in maintaining plant integrity and plant defence, knowledge about the regulation of callose biosynthesis at its diverse sites of action within the plant is still limited. The moderately sized family of GSL (GLUCAN SYNTHASE-LIKE) genes is predicted to encode callose synthases with a specific biological function and subcellular localization. Phosphorylation and directed translocation of callose synthases seem to be key post-translational mechanisms of enzymatic regulation, whereas transcriptional control of GSL genes might only have a minor function in response to biotic or abiotic stresses. SCOPE AND CONCLUSIONS Among the different sites of callose biosynthesis within the plant, particular attention has been focused on the formation of callose in response to pathogen attack. Here, callose is deposited between the plasma membrane and the cell wall to act as a physical barrier to stop or slow invading pathogens. Arabidopsis (Arabidopsis thaliana) is one of the best-studied models not only for general plant defence responses but also for the regulation of pathogen-induced callose biosynthesis. Callose synthase GSL5 (GLUCAN SYNTHASE-LIKE5) has been shown to be responsible for stress-induced callose deposition. Within the last decade of research into stress-induced callose, growing evidence has been found that the timing of callose deposition in the multilayered system of plant defence responses could be the key parameter for optimal effectiveness. This timing seems to be achieved through co-ordinated transport and formation of the callose synthase complex.
Collapse
Affiliation(s)
- Dorothea Ellinger
- Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Christian A Voigt
- Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| |
Collapse
|
17
|
Üstün S, König P, Guttman DS, Börnke F. HopZ4 from Pseudomonas syringae, a member of the HopZ type III effector family from the YopJ superfamily, inhibits the proteasome in plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:611-23. [PMID: 24625030 DOI: 10.1094/mpmi-12-13-0363-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The YopJ family of type III effector proteins (T3E) is one of the largest and most widely distributed families of effector proteins, whose members are highly diversified in virulence functions. In the present study, HopZ4, a member of the YopJ family of T3E from the cucumber pathogen Pseudomonas syringae pv. lachrymans is described. HopZ4 shares high sequence similarity with the Xanthomonas T3E XopJ, and a functional analysis suggests a conserved virulence function between these two T3E. As has previously been shown for XopJ, HopZ4 interacts with the proteasomal subunit RPT6 in yeast and in planta to inhibit proteasome activity during infection. The inhibitory effect on the proteasome is dependent on localization of HopZ4 to the plasma membrane as well as on an intact catalytic triad of the effector protein. Furthermore, HopZ4 is able to complement loss of XopJ in Xanthomonas spp., as it prevents precocious host cell death during a compatible Xanthomonas-pepper interaction. The data presented here suggest that different bacterial species employ inhibition of the proteasome as a virulence strategy by making use of conserved T3E from the YopJ family of bacterial effector proteins.
Collapse
|