1
|
Huang Y, An W, Ning T, Ma Z, Li Y, Liu K, Ji L, Liu H, Hui D, Ren H. Functionality of bacterial communities in constructed wetlands used for water purification: influence of root components and seasonality. FRONTIERS IN PLANT SCIENCE 2025; 16:1480099. [PMID: 40007956 PMCID: PMC11850325 DOI: 10.3389/fpls.2025.1480099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/09/2025] [Indexed: 02/27/2025]
Abstract
Introduction Constructed wetlands have become crucial ecosystems for the purification of industrial and agricultural water. The health of wetland plants and the efficacy of water purification are strongly influenced by root-associated bacteria. However, our understanding of the functions of bacterial communities in the plant different root components (i.e., rhizosphere, rhizoplane, and endosphere) and their impact on water purification is still limited. Methods To address this knowledge gap, we employed high-resolution 16S rRNA deep amplicon sequencing to explore the bacterial community structure and assembly within the root components of three plant species (i.e. Iris ensata, Canna indica, and Hymenocallis littoralis) found in constructed wetlands. Results Our findings revealed that the pollutant removal efficiency was higher in the wet season than in the dry season. The specific root compartment, plant species, environmental factors, and seasonality significantly influenced the bacterial composition, diversity and abundance. Across all three plant species, Proteobacteria emerged as the dominant bacterial groups in all root components. The abundance and diversity of bacterial communities exhibited a decline from the rhizosphere to the endosphere, accompanied by an increase in the number of distinctive biomarkers from the rhizosphere to the endosphere. The bacterial composition exhibited significant similarity in the rhizosphere in the dry season and the endosphere in the wet season. Bacterial genes in the rhizosphere-rhizoplane were associated with environmental information processing, transportation and metabolism, while those in the rhizoplane-endosphere primarily handle metabolic processes. The bacterial community positively correlated with total nitrogen content, chemical oxygen demand, and NO4 +-N in the dry season, while associated with total phosphorus, total organic carbon, and NO3 +-N content in the wet season. Discussion The structure and function of the bacterial community within the root rhizoplane-endosphere can serve as indicators of the water purification efficacy of constructed wetlands.
Collapse
Affiliation(s)
- Yao Huang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- School of Ecology, Hainan University, Haikou, China
| | - Weili An
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Tianzhu Ning
- China State Construction Engineering Cooperation, Lanzhou, China
| | - Zhiguang Ma
- China State Construction Engineering Cooperation, Lanzhou, China
| | - Yuelin Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ke Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Lingbo Ji
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Ecology and Environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hongxiao Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States
| | - Hai Ren
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Li H, Zou Y, Song W, Xin J, Gao J. Effects of frequency and amount of stover mulching on the microbial community composition and structure in the endosphere and rhizosphere. Front Microbiol 2024; 15:1372471. [PMID: 38468854 PMCID: PMC10925793 DOI: 10.3389/fmicb.2024.1372471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
Stover mulching, as a sustainable agricultural conservation practice, has been shown to effectively increase soil organic matter and enhance crop yields. The impact of stover mulching on soil microorganisms has been extensively studied. However, less attention has been given to endophytic and rhizospheric microorganisms that have closer relationships with crops. How do the quality and frequency of stover mulching affect the composition and structure of these endosphere and rhizosphere microbial communities? And what is their influence on critical indicators of soil health such as bacterial plant pathogen and Rhizobiales? These questions remain unresolved. Therefore, we investigated the responses of the microbial functional guilds in the endosphere and rhizosphere to maize stover mulching qualities (0%, 33%, 67%, and total stover mulching every year) and frequencies (once every 3 years and twice every 3 years) under 10-year no-till management. Results showed significant correlations between Bacillales and Rhizobiales orders and soil SOC, NO3-N, and NH4+N; Hypocreales and Eurotiales orders were significantly correlated with soil NO3-N, with the Aspergillus genus also showing a significant correlation with soil SOC. The frequency and quality of stover mulching had a significant effect on root and rhizospheric microbial communities, with the lowest relative abundance of bacterial plant pathogens and highest relative abundance of nitrogen-fixing bacteria such as Rhizobiales and Hypocreales observed under F1/3 and F2/3 conditions. The most complex structures in endosphere and rhizospheric microbial communities were found under Q33 and Q67 conditions, respectively. This research indicates that from a soil health perspective, low-frequency high-coverage stover mulching is beneficial for the composition of endosphere and rhizosphere microbial communities, while moderate coverage levels are conducive to more complex structures within these communities. This study holds significant ecological implications for agricultural production and crop protection.
Collapse
Affiliation(s)
- Haowen Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yawen Zou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Wenchen Song
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jiaxun Xin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jian Gao
- School of Ecology and Environment, Baotou Teachers’ College, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
3
|
Li J, Hou L, Zhang G, Cheng L, Liu Y. Comparative Analysis of Rhizosphere and Endosphere Fungal Communities in Healthy and Diseased Faba Bean Plants. J Fungi (Basel) 2024; 10:84. [PMID: 38276030 PMCID: PMC10817651 DOI: 10.3390/jof10010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
This study used the ITS approach based on Illumina MiSeq sequencing to assess the endosphere and rhizosphere fungal communities in healthy and diseased faba bean plants. The findings indicate that the most predominant phyla in all samples were Ascomycota (49.89-99.56%) and Basidiomycota (0.33-25.78%). In healthy endosphere samples, Glomeromycota (0.08-1.17%) was the only predominant phylum. In diseased endosphere samples, Olpidiomycota (0.04-1.75%) was the only predominant phylum. At the genus level, Penicillium (0.47-35.21%) was more abundant in rhizosphere soil, while Paraphoma (3.48-91.16%) was predominant in the endosphere roots of faba bean plants. Significant differences were observed in the alpha diversity of rhizosphere samples from different germplasm resources (p < 0.05). The fungal community structures were clearly distinguished between rhizosphere and endosphere samples and between healthy and diseased endosphere samples (p < 0.05). Saccharomyces was significantly enriched in diseased endosphere samples, whereas Apiotrichum was enriched in healthy endosphere samples. Vishniacozyma and Phialophora were enriched in diseased rhizosphere samples, while Pseudogymnoascus was enriched in healthy rhizosphere samples. Diseased samples displayed more strongly correlated genera than healthy samples. Saprotrophs accounted for a larger proportion of the fungal microbes in rhizosphere soil than in endosphere roots. This study provides a better understanding of the composition and diversity of fungal communities in the rhizosphere and endosphere of faba bean plants as well as a theoretical guidance for future research on the prevention or control of faba bean root rot disease.
Collapse
Affiliation(s)
- Juan Li
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Lu Hou
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Gui Zhang
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Liang Cheng
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yujiao Liu
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (J.L.); (G.Z.); (L.C.)
- Key Laboratory of Agricultural Integrated Pest Management, Xining 810016, China
- Key Laboratory of Qinghai Tibetan Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| |
Collapse
|
4
|
Du Y, Zhang Q, Yu M, Yin M, Chen F. Effect of sodium alginate-gelatin-polyvinyl pyrrolidone microspheres on cucumber plants, soil, and microbial communities under lead stress. Int J Biol Macromol 2023; 247:125688. [PMID: 37423439 DOI: 10.1016/j.ijbiomac.2023.125688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/21/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Lead is highly persistent and toxic in soil, hindering plant growth. Microspheres are a novel, functional, and slow-release preparation commonly used for controlled release of agricultural chemicals. However, their application in the remediation of Pb-contaminated soil has not been studied; furthermore, the remediation mechanism involved has not been systematically assessed. Herein, we evaluated the Pb stress mitigation ability of sodium alginate-gelatin-polyvinyl pyrrolidone composite microspheres. Microspheres effectively attenuated the Pb toxic effect on cucumber seedlings. Furthermore, they boosted cucumber growth, increased peroxidase activity, and chlorophyll content, while reducing malondialdehyde content in leaves. Microspheres promoted Pb enrichment in cucumber, especially in roots (about 4.5 times). They also improved soil physicochemical properties, promoted enzyme activity, and increased soil available Pb concentration in the short term. In addition, microspheres selectively enriched functional (heavy metal-tolerating and plant growth promoting) bacteria to adapt to and resist Pb stress by improving soil properties and nutrients. These results indicated that even a small amount (0.025-0.3 %) of microspheres can significantly reduce the adverse effects of Pb on plants, soil, and bacterial communities. Composite microspheres have shown great value in Pb remediation, and their application potential in phytoremediation is also worth evaluating to expand the application.
Collapse
Affiliation(s)
- Yu Du
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qizhen Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Manli Yu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingming Yin
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fuliang Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Ji C, Li Y, Xiao Q, Li Z, Wang B, Geng X, Lin K, Zhang Q, Jin Y, Zhai Y, Li X, Chen J. Combined Application Effects of Arbuscular Mycorrhizal Fungi and Biochar on the Rhizosphere Fungal Community of Allium fistulosum L. J Microbiol Biotechnol 2023; 33:1013-1022. [PMID: 37435864 PMCID: PMC10468682 DOI: 10.4014/jmb.2303.03026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/16/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are widespread soil endophytic fungi, forming mutualistic relationships with the vast majority of land plants. Biochar (BC) has been reported to improve soil fertility and promote plant growth. However, limited studies are available concerning the combined effects of AMF and BC on soil community structure and plant growth. In this work, a pot experiment was designed to investigate the effects of AMF and BC on the rhizosphere microbial community of Allium fistulosum L. Using Illumina high-throughput sequencing, we showed that inoculation of AMF and BC had a significant impact on soil microbial community composition, diversity, and versatility. Increases were observed in both plant growth (the plant height by 8.6%, shoot fresh weight by 12.1%) and root morphological traits (average diameter by 20.5%). The phylogenetic tree also showed differences in the fungal community composition in A. fistulosum. In addition, Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed that 16 biomarkers were detected in the control (CK) and AMF treatment, while only 3 were detected in the AMF + BC treatment. Molecular ecological network analysis showed that the AMF + BC treatment group had a more complex network of fungal communities, as evidenced by higher average connectivity. The functional composition spectrum showed significant differences in the functional distribution of soil microbial communities among different fungal genera. The structural equation model (SEM) confirmed that AMF could improve the microbial multifunctionality by regulating the rhizosphere fungal diversity and soil properties. Our findings provide new information on the effects of AMF and biochar on plants and soil microbial communities.
Collapse
Affiliation(s)
- Chunxiang Ji
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, P.R. China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, P.R. China
- Anhui Province Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Yingyue Li
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, P.R. China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, P.R. China
- Anhui Province Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Qingchen Xiao
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, P.R. China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, P.R. China
- Anhui Province Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Zishan Li
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, P.R. China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, P.R. China
- Anhui Province Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Boyan Wang
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, P.R. China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, P.R. China
- Anhui Province Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Xiaowan Geng
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, P.R. China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, P.R. China
- Anhui Province Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Keqing Lin
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, P.R. China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, P.R. China
- Anhui Province Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Qing Zhang
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, P.R. China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, P.R. China
- Anhui Province Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Yuan Jin
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, P.R. China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, P.R. China
- Anhui Province Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Yuqian Zhai
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, P.R. China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, P.R. China
- Anhui Province Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Xiaoyu Li
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, P.R. China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, P.R. China
- Anhui Province Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Jin Chen
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, P.R. China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, P.R. China
- Anhui Province Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei 230036, P.R. China
| |
Collapse
|
6
|
Zhou L, Wu S, Ma M. First insights into diversity and potential metabolic pathways of bacterial and fungal communities in the rhizosphere of Argemonemexicana L. (Papaveraceae) from the water-level-fluctuation zone of Wudongde Reservoir of the upper Yangtze river, China. Biodivers Data J 2023; 11:e101950. [PMID: 38327346 PMCID: PMC10848652 DOI: 10.3897/bdj.11.e101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/26/2023] [Indexed: 02/09/2024] Open
Abstract
The water-level fluctuation zone (WLFZ) of Wudongde reservoir of the upper Yangtze river is a completely new aquatic-terrestrial transitional zone, and its plant degenerate issue is attracting global concerns. Uncovering the unknown rhizosphere microbiome of dominant plants of this zone is helpful in understanding the plant-microbe interactions and their growth under the largely varying environment. Here, a first exploration of the rhizosphere bacterial and fungal communities of wilted (JB) and unwilted (JA) Argemonemexicana L. individuals from the WLFZ of Wudongde reservoir was carried out using high-throughput sequencing and MetaCyc metabolic pathway analyses. The results showed that rhizosphere of wilted A.mexicana L individuals exhibited a higher microbial richness and diversity than the unwilted ones, irrespective of the bacterial and fungal communities. It was noted that 837 common bacterial amplicon sequence variants (ASV) and 92 common fungal ASV were presented in both JA and JB with 3108 bacteria and 212 fungi unique to JA, and 3569 bacteria and 693 fungi unique to JB. Linear discriminant analysis effect Size (LEfSe) analyses indicated that the taxa that had the most contribution to observed differences between both JA and JB was Proteobacteria, Actinobacteria and Ascomycota for JA, and Bacteroidetes, Firmicutes, Verrucomicrobia, Basidiomycota and Ascomycota for JB. Organic compound conversion pathway (degradation/reduction/oxidation) was consistently highly represented in the rhizosphere microbiomes of both JA and JB. Overall, this study provides insights into the rhizosphere microbiome composition, diversity and metabolic pathways of both wilted and unwilted A.mexicana L. individuals in the WLFZ of Wudongde reservoir, and the results give valuable clues for manipulating microbes to support plant growth in such a recently-formed WLFZ under a dry-hot valley environment.
Collapse
Affiliation(s)
- Lanfang Zhou
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, ChinaSchool of River and Ocean Engineering, Chongqing Jiaotong UniversityChongqingChina
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, ChinaKey Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of SciencesChongqingChina
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, ChinaChongqing School, University of Chinese Academy of SciencesChongqingChina
| | - Shengjun Wu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, ChinaKey Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of SciencesChongqingChina
| | - Maohua Ma
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, ChinaKey Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of SciencesChongqingChina
| |
Collapse
|
7
|
Li L, Wang Y, Yu C, Li S, Lin T, Han S, Zhu T, Li S. Seasonal changes in the abundance Fusarium proliferatium, microbial endophytes and nutrient levels in the roots of hybrid bamboo Bambusa pervariabilis × Dendrocalamopsis grandis. FRONTIERS IN PLANT SCIENCE 2023; 14:1185449. [PMID: 37538062 PMCID: PMC10394707 DOI: 10.3389/fpls.2023.1185449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Plant root pathogens invade the soil around plant roots, disturbing the systemic balance, reducing plant defenses, and causing severe disease. At present, there are few studies on the severity of plant diseases caused by pathogen invasion in different seasons and how pathogens affect root microecology. In this study, we compared the levels of nutrients in the root tissues of the two groups of plants. We used 16S and ITS amplicon sequencing with Illumina NovaSeq 6000 to compare seasonal changes in the composition and structure of microbial communities from healthy roots of bamboo Bambusa pervariabilis × Dendrocalamopsis grandis and roots infected by the soilborne pathogen Fusarium proliferatum. We have found that the invasion of the pathogen led to a substantial decrease in nutrient elements in bamboo roots, except for nitrogen. The pathogen presence correlated with seasonal changes in the bamboo root microbiome and decreased bacterial richness in diseased plants. The root microbial community structure of healthy plants was more stable than that of their diseased counterparts. Furthermore, we identified the lesion area and relative abundance of F. proliferatum were significant predictors of disease progression. The potassium tissue content and the disease lesion area were identified as factors linked with the observed changes in the bamboo root microbiome. This study provides a theoretical foundation for understanding the seasonal dynamics F. proliferatum, an economically important soilborne pathogen of hybrid bamboo grown in Sichuan Province, China.
Collapse
Affiliation(s)
- Lin Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yaxuan Wang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Cailin Yu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shuying Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tiantian Lin
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu, China
| |
Collapse
|
8
|
Xu D, Yu X, Chen J, Liu H, Zheng Y, Qu H, Bao Y. Microbial Assemblages Associated with the Soil-Root Continuum of an Endangered Plant, Helianthemum songaricum Schrenk. Microbiol Spectr 2023; 11:e0338922. [PMID: 37222598 PMCID: PMC10269481 DOI: 10.1128/spectrum.03389-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/22/2023] [Indexed: 05/25/2023] Open
Abstract
The microbial network of the soil-root continuum plays a key role in plant growth. To date, limited information is available about the microbial assemblages in the rhizosphere and endosphere of endangered plants. We suspect that unknown microorganisms in roots and soil play an important role in the survival strategies of endangered plants. To address this research gap, we investigated the diversity and composition of the microbial communities of the soil-root continuum of the endangered shrub Helianthemum songaricum and observed that the microbial communities and structures of the rhizosphere and endosphere samples were distinguishable. The dominant rhizosphere bacteria were Actinobacteria (36.98%) and Acidobacteria (18.15%), whereas most endophytes were Alphaproteobacteria (23.17%) as well as Actinobacteria (29.94%). The relative abundance of rhizosphere bacteria was higher than that in endosphere samples. Fungal rhizosphere and endophyte samples had approximately equal abundances of the Sordariomycetes (23%), while the Pezizomycetes were more abundant in the soil (31.95%) than in the roots (5.70%). The phylogenetic relationships of the abundances of microbes in root and soil samples also showed that the most abundant bacterial and fungal reads tended to be dominant in either the soil or root samples but not both. Additionally, Pearson correlation heatmap analysis showed that the diversity and composition of soil bacteria and fungi were closely related to pH, total nitrogen, total phosphorus, and organic matter, of which pH and organic matter were the main drivers. These results clarify the different patterns of microbial communities of the soil-root continuum, in support of the better conservation and utilization of endangered desert plants in Inner Mongolia. IMPORTANCE Microbial assemblages play significant roles in plant survival, health, and ecological services. The symbiosis between soil microorganisms and these plants and their interactions with soil factors are important features of the adaptation of desert plants to an arid and barren environment. Therefore, the profound study of the microbial diversity of rare desert plants can provide important data to support the protection and utilization of rare desert plants. Accordingly, in this study, high-throughput sequencing technology was applied to study the microbial diversity in plant roots and rhizosphere soils. We expect that research on the relationship between soil and root microbial diversity and the environment will improve the survival of endangered plants in this environment. In summary, this study is the first to study the microbial diversity and community structure of Helianthemum songaricum Schrenk and compare the diversity and composition of the root and soil microbiomes.
Collapse
Affiliation(s)
- Daolong Xu
- Inner Mongolia University, School of Life Sciences, Ministry of Education, Key Laboratory of Forage and Endemic Crop Biotechnology, Hohhot, People’s Republic of China
| | - Xiaowen Yu
- Inner Mongolia Autonomous Region Environmental Monitoring Station, Hohhot, People’s Republic of China
| | - Jin Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Haijing Liu
- Inner Mongolia University, School of Life Sciences, Ministry of Education, Key Laboratory of Forage and Endemic Crop Biotechnology, Hohhot, People’s Republic of China
| | - Yaxin Zheng
- Inner Mongolia University, School of Life Sciences, Ministry of Education, Key Laboratory of Forage and Endemic Crop Biotechnology, Hohhot, People’s Republic of China
| | - Hanqing Qu
- Inner Mongolia University, School of Life Sciences, Ministry of Education, Key Laboratory of Forage and Endemic Crop Biotechnology, Hohhot, People’s Republic of China
| | - Yuying Bao
- Inner Mongolia University, School of Life Sciences, Ministry of Education, Key Laboratory of Forage and Endemic Crop Biotechnology, Hohhot, People’s Republic of China
| |
Collapse
|
9
|
Zheng Y, Wang J, Zhang X, Lei L, Yu R, Yao M, Han D, Zeng Q, Li X. Core root-associated prokaryotic community and its relationship to host traits across wheat varieties. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2740-2753. [PMID: 36807675 DOI: 10.1093/jxb/erad066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/17/2023] [Indexed: 06/06/2023]
Abstract
The root-associated microbiomes play important roles in plant growth. However, it is largely unknown how wheat variety evolutionary relatedness shapes each subcommunity in the root microbiome and, in turn, how these microbes affect wheat yield and quality. Here we studied the prokaryotic communities associated with the rhizosphere and root endosphere in 95 wheat varieties at regreening and heading stages. The results indicated that the less diverse but abundant core prokaryotic taxa occurred among all varieties. Among these core taxa, we identified 49 and 108 heritable amplicon sequence variants, whose variations in relative abundances across the root endosphere and rhizosphere samples were significantly affected by wheat variety. The significant correlations between phylogenetic distance of wheat varieties and prokaryotic community dissimilarity were only observed in non-core and abundant subcommunities in the endosphere samples. Again, wheat yield was only significantly associated with root endosphere microbiota at the heading stage. Additionally, wheat yield could be predicted using the total abundance of 94 prokaryotic taxa as an indicator. Our results demonstrated that the prokaryotic communities in the root endosphere had higher correlations with wheat yield and quality than those in the rhizosphere; thus, managing root endosphere microbiota, especially core taxa, through agronomic practices and crop breeding, is important for promoting wheat yield and quality.
Collapse
Affiliation(s)
- Yuyin Zheng
- Engineering Research Center of Soil Remediation of Fujian Province University; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jialong Wang
- Engineering Research Center of Soil Remediation of Fujian Province University; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xue Zhang
- Engineering Research Center of Soil Remediation of Fujian Province University; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Lei
- Engineering Research Center of Soil Remediation of Fujian Province University; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Minjie Yao
- Engineering Research Center of Soil Remediation of Fujian Province University; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
10
|
Cui Z, Li R, Li F, Jin L, Wu H, Cheng C, Ma Y, Wang Z, Wang Y. Structural characteristics and diversity of the rhizosphere bacterial communities of wild Fritillaria przewalskii Maxim. in the northeastern Tibetan Plateau. Front Microbiol 2023; 14:1070815. [PMID: 36876117 PMCID: PMC9981654 DOI: 10.3389/fmicb.2023.1070815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction Fritillaria przewalskii Maxim. is a Chinese endemic species with high medicinal value distributed in the northeastern part of the Tibetan Plateau. F. przewalskii root-associated rhizosphere bacterial communities shaped by soil properties may maintain the stability of soil structure and regulate F. przewalskii growth, but the rhizosphere bacterial community structure of wild F. przewalskii from natural populations is not clear. Methods In the current study, soil samples from 12 sites within the natural range of wild F. przewalskii were collected to investigate the compositions of bacterial communities via high-throughput sequencing of 16S rRNA genes and multivariate statistical analysis combined with soil properties and plant phenotypic characteristics. Results Bacterial communities varied between rhizosphere and bulk soil, and also between sites. Co-occurrence networks were more complex in rhizosphere soil (1,169 edges) than in bulk soil (676 edges). There were differences in bacterial communities between regions, including diversity and composition. Proteobacteria (26.47-37.61%), Bacteroidetes (10.53-25.22%), and Acidobacteria (10.45-23.54%) were the dominant bacteria, and all are associated with nutrient cycling. In multivariate statistical analysis, both soil properties and plant phenotypic characteristics were significantly associated with the bacterial community (p < 0.05). Soil physicochemical properties accounted for most community differences, and pH was a key factor (p < 0.01). Interestingly, when the rhizosphere soil environment remained alkaline, the C and N contents were lowest, as was the biomass of the medicinal part bulb. This might relate to the specific distribution of genera, such as Pseudonocardia, Ohtaekwangia, Flavobacterium (relative abundance >0.01), which all have significantly correlated with the biomass of F. przewalskii (p < 0.05). Discussion F. przewalskii is evidently averse to alkaline soil with high potassium contents, but this requires future verification. The results of the present study may provide theoretical guidance and new insights for the cultivation and domestication of F. przewalskii.
Collapse
Affiliation(s)
- Zhijia Cui
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China.,Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, Gansu, China
| | - Ran Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fan Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China.,Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, Gansu, China
| | - Haixu Wu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunya Cheng
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yi Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China.,Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, Gansu, China
| | - Zhenheng Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China.,Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, Gansu, China
| | - Yuanyuan Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Ohore OE, Wei Y, Wang J, Wang Y, Ifon BE, Liu W, Wang Z. Vertical characterisation of phylogenetic divergence of microbial community structures, interaction, and sustainability in estuary and marine ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158369. [PMID: 36049676 DOI: 10.1016/j.scitotenv.2022.158369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The changes in the aquatic environmental conditions often influence the microbial community assemblages and genome repertoire. Studies investigating the aquatic diversity and ecosystem services were primarily conducted in horizontal environments while neglecting the microbial phylogenetic divergences, biotrophic interactions, and eco-sustainability at water vertical layers. We investigated the mechanisms of microbial transitions, and the ecological significance of water depth layers in the estuary and marine ecosystems. The results demonstrated that the salinity and turbidity increased with increasing water depth (0-50 m), while temperature and pH decreased significantly. The bacterial and eukaryotic diversity and composition significantly increased with an elevating water depth. Bacterial phyla such as Desulfobacterota, Acidobacteriota, Myxococcota, Gemmatimonadota, Campilobacterota, and Latescibacterota were increased significantly. However, niche preference occurred, and some microbes showed differential nestedness at water vertical layers. In the eukaryotic community, Eustigmatales group were the only clades predominantly phylogenetically nested at the surface water depth. c_Conoidasida, o_Gregarinasina, f_Eugregarinorida, and g_Lankesteria were the most predominant at the middle depth. While Mediophyceae clades, p_SAR, and the Animalia clades were the most predominant groups nested at the bottom depths. The microbial interaction, structure, and stability were increased with increasing depth. The vertical phylogenetic turnover of the microbial community was related to the feeding mechanisms. Phototrophic organisms were particularly adapted at the surface, and middle depth by parasitic and pathogenic organisms, while the bottom was inhabited by diatoms, decomposers, and detritus protists. This study demonstrated that the bottom depth was the most ecologically stable area with more profound ecosystem services.
Collapse
Affiliation(s)
- Okugbe Ebiotubo Ohore
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| | - Yunjie Wei
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Jinhui Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yuwen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Binessi Edouard Ifon
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Laboratory of Physical Chemistry, University of Abomey-Calavi, Republic of Benin, Cotonou 01 BP 4521, Benin
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| |
Collapse
|
12
|
Ye F, Hong Y, Wu J, Yi X, Op den Camp HJM, Moore SS, Vamerali T, Wang Y. Succession of soil microbial community in a developing mid-channel bar: The role of environmental disturbance and plant community. Front Microbiol 2022; 13:970529. [PMID: 36060763 PMCID: PMC9428583 DOI: 10.3389/fmicb.2022.970529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Succession of microbial and plant communities is crucial for the development and the stability of soil ecological functions. The relative role of plant communities and environmental disturbance in shaping the microbial community in a newly established habitat remains unclear. In this study, a mid-channel bar (MCB) exposed to an environmental disturbance gradient in the Yangtze River was studied to explore the effects of such disturbance and plant community traits on the succession of the soil microbial community. Bulk and rhizospheric soils were collected from the MCB and classified according to their level of exposure to environmental disturbance: head, central and tail. These subsequently underwent high-throughput sequencing and interdomain ecological network (IDEN) analysis to identify and characterize the predominant microbial groups present in the soils at each disturbance level. Furthermore, at each site, the presence and distribution of the plant community was also noted. The present study demonstrated that both bulk soil nutrients and plant community exhibited significant spatial distribution dependent on the level of disturbance and this influenced the composition of the microbial community. In less eroded parts of the MCB, i.e., the central, nutrients accumulated, promoting growths of plants. This in turn encouraged a more diverse microbial community, dominated by the bacterial genus Pseudarthrobacter. Plant showed a stronger association with bulk soil microbial communities compared to rhizosphere soil microbial communities. Particularly, Triarrhena sacchariflora and Hemarthria altissima, present in sites of low disturbance, exhibiting a more extensive plant-microbe association. They thus played a key role in shaping the soil microbial community. In general, however, plant species did not directly determine the composition of the bacterial community, but instead altered the nutritive state of the soil to promote microbial growth. Such findings are of significant value for conservation practices of newly formed ecosystems, which requires an integrated understanding of the role of environmental disturbance and plants on soil microbial community assemblage.
Collapse
Affiliation(s)
- Fei Ye
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, China
| | - Yiguo Hong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, China
| | - Jiapeng Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, China
| | - Xuemei Yi
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Huub J. M. Op den Camp
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University Nijmegen, Nijmegen, Netherlands
| | - Selina Sterup Moore
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| | - Teofilo Vamerali
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| | - Yu Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, China
| |
Collapse
|
13
|
Genetically related genotypes of cowpea present similar bacterial community in the rhizosphere. Sci Rep 2022; 12:3472. [PMID: 35236879 PMCID: PMC8891268 DOI: 10.1038/s41598-022-06860-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/08/2022] [Indexed: 12/31/2022] Open
Abstract
Plant breeding reduces the genetic diversity of plants and could influence the composition, structure, and diversity of the rhizosphere microbiome, selecting more homogeneous and specialized microbes. In this study, we used 16S rRNA sequencing to assess the bacterial community in the rhizosphere of different lines and modern cowpea cultivars, to investigate the effect of cowpea breeding on bacterial community assembly. Thus, two African lines (IT85F-2687 and IT82D-60) and two Brazilian cultivars (BRS-Guariba and BRS-Tumucumaque) of cowpea were assessed to verify if the generation advance and genetic breeding influence the bacterial community in the rhizosphere. No significant differences were found in the structure, richness, and diversity of bacterial community structure between the rhizosphere of the different cowpea genotypes, and only slight differences were found at the OTU level. The complexity of the co-occurrence network decreased from African lines to Brazilian cultivars. Regarding functional prediction, the core functions were significantly altered according to the genotypes. In general, African lines presented a more abundance of groups related to chemoheterotrophy, while the rhizosphere of the modern cultivars decreased functions related to cellulolysis. This study showed that the genetic breeding process affects the dynamics of the rhizosphere community, decreasing the complexity of interaction in one cultivar. As these cowpea genotypes are genetically related, it could suggest a new hypothesis of how genetic breeding of similar genotypes could influence the rhizosphere microbiome.
Collapse
|
14
|
Luo J, Zhang Z, Hou Y, Diao F, Hao B, Bao Z, Wang L, Guo W. Exploring Microbial Resource of Different Rhizocompartments of Dominant Plants Along the Salinity Gradient Around the Hypersaline Lake Ejinur. Front Microbiol 2021; 12:698479. [PMID: 34322109 PMCID: PMC8312270 DOI: 10.3389/fmicb.2021.698479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Lake littoral zones can also be regarded as another extremely hypersaline environment due to hypersaline properties of salt lakes. In this study, high-throughput sequencing technique was used to analyze bacteria and fungi from different rhizocompartments (rhizosphere and endosphere) of four dominant plants along the salinity gradient in the littoral zones of Ejinur Salt Lake. The study found that microbial α-diversity did not increase with the decrease of salinity, indicating that salinity was not the main factor on the effect of microbial diversity. Distance-based redundancy analysis and regression analysis were used to further reveal the relationship between microorganisms from different rhizocompartments and plant species and soil physicochemical properties. Bacteria and fungi in the rhizosphere and endosphere were the most significantly affected by SO4 2-, SOC, HCO3 -, and SOC, respectively. Correlation network analysis revealed the potential role of microorganisms in different root compartments on the regulation of salt stress through synergistic and antagonistic interactions. LEfSe analysis further indicated that dominant microbial taxa in different rhizocompartments had a positive response to plants, such as Marinobacter, Palleronia, Arthrobacter, and Penicillium. This study was of great significance and practical value for understanding salt environments around salt lakes to excavate the potential microbial resources.
Collapse
Affiliation(s)
- Junqing Luo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yazhou Hou
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Fengwei Diao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhihua Bao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lixin Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
15
|
Hao L, Zhang Z, Hao B, Diao F, Zhang J, Bao Z, Guo W. Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111996. [PMID: 33545409 DOI: 10.1016/j.ecoenv.2021.111996] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 05/22/2023]
Abstract
Rhizosphere microbes are essential partners for plant stress tolerance. Recent studies indicate that arbuscular mycorrhizal fungi (AMF) can facilitate the revegetation of soils contaminated by heavy metals though interacting with rhizosphere microbiome. However, it is unclear how AMF affect rhizosphere microbiome to improve the growth of plant under rare earth elements (REEs) stress. AMF (Claroideoglomus etunicatum) was inoculated to maize grown in soils spiked with Lanthanum (0 mg kg-1, La0; 10 mg kg-1, La10; 100 mg kg-1, La100; 500 mg kg-1, La500). Plant biomass, nutrient uptake, REE uptake and rhizosphere bacterial and fungal community were evaluated. The results indicated that La100 and La500 decreased significantly root colonization rates and nutrition uptake (K, P, Ca and Mg content). La500 decreased significantly α-diversity indexes of bacterial and fungal community. AMF enhanced significantly the shoot and root fresh and dry weight of maize in all La treatments (except for the root fresh and dry weight of La0 and La10 treatment). For La100 and La500 treatments, AMF increased significantly nutrition uptake (K, P, Ca and Mg content) in shoot of maize by 27.40-441.77%. For La500 treatment, AMF decreased significantly shoot La concentration by 51.53% in maize, but increased significantly root La concentration by 30.45%. In addition, AMF decreased bacterial and fungal Shannon index in La0 treatment, but increased bacterial Shannon index in La500 treatment. Both AMF and La500 affected significantly the bacterial and fungal community composition, and AMF led to more influence than La. AMF promoted the enrichment of bacteria, including Planomicrobium, Lysobacter, Saccharothrix, Agrococcus, Microbacterium, Streptomyces, Penicillium and other unclassified genus, and fungi (Penicillium) in La500, which showed the function for promoting plant growth and tolerance of heavy metal. The study revealed that AMF can regulate the rhizosphere bacterial and fungal composition and foster certain beneficial microbes to enhance the tolerance of maize under La stress. Phytoremediation assisted by AMF is an attractive approach to ameliorate REEs-contaminated soils.
Collapse
Affiliation(s)
- Lijun Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Fengwei Diao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jingxia Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhihua Bao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|