1
|
Yang X, Zhang S, Liu B, Mao W, Gong P, Guo L, Wu J, Zhao Y, Wang Y, Hasi S, Cao J. Dual roles of the TLR2/TLR4/NLRP3-H-PGDS-PGD 2 axis in regulating the inflammatory response in Escherichia coli-infected bovine bone marrow-derived macrophages and endometrial tissue. Theriogenology 2025; 239:117374. [PMID: 40112766 DOI: 10.1016/j.theriogenology.2025.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Endometritis in dairy cows is associated with pathogenic microorganisms, local inflammatory injuries, and uterine microecological disorders. Escherichia coli (E. coli) is the primary pathogen responsible for bovine endometritis onset; however, the underlying pathomechanisms remain unclear. In this study, we aimed to investigate E. coli-induced endometritis mechanisms in dairy cows using bovine bone marrow-derived macrophages and endometrial tissue. Following E. coli infection of macrophages, we observed a significant increase in the mRNA expression levels of innate immune recognition receptors, including toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), as well as prostaglandin D2 (PGD2)-related enzymes (cyclooxygenase-2 and hematopoietic prostaglandin D synthase). Furthermore, the secretion of PGD2, a major mediator of inflammation, was markedly upregulated. In E. coli-infected macrophages, TLR2, TLR4, and NLRP3 increased the secretion of inflammatory mediators, including PGD2, by activating mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB). This lead to enhanced inflammatory response. During early E. coli infection, PGD2 inhibitors reduced the secretion of inflammatory mediators by modulating MAPK and NF-κB pathway activation and enhancing macrophage bacterial killing, thereby alleviating endometrial tissue damage in dairy cows. In contrast, in the later stages of infection, PGD2 inhibitors exacerbated the inflammatory response and impaired the killing capacity of macrophages, which lead to increased endometrial tissue damage. Therefore, our findings highlight that TLR2, TLR4, and NLRP3 are pivotal in regulating PGD2 secretion during E. coli-induced endometritis in dairy cows. PGD2 had a pro-inflammatory effect in the early stages of E. coli infection and anti-inflammatory effects in the later stages. These findings can help develop strategies benefiting endometritis treatment.
Collapse
Affiliation(s)
- Xiaolin Yang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Shuangyi Zhang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Bo Liu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Wei Mao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Pengfei Gong
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Lili Guo
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Jingze Wu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Yi Zhao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Yongfei Wang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Surong Hasi
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China.
| | - Jinshan Cao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China.
| |
Collapse
|
2
|
Dai O, Fan Y, Zhou Q, Liu J, Zuo J, Wang F, Li L, Wang F, Xiong L. Effect of Leonurus japonicus alkaloids on endometrial inflammation and its mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119432. [PMID: 39904422 DOI: 10.1016/j.jep.2025.119432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The aerial parts of Leonurus japonicus Houtt. (Chinese motherwort) are famous for their efficacy in treating obstetrical and gynecological diseases in traditional Chinese medicine (TCM). Alkaloids are the major bioactive components of motherwort and have gained extensive attention for alleviating several symptoms of obstetrical and gynecological diseases such as postpartum hemorrhage, postpartum rehabilitation, irregular menstruation, and dysmenorrhea. However, the effects of motherwort alkaloids on endometritis remain unclear. AIM OF THE STUDY The aim of this study was to investigate the effect of motherwort total alkaloids (MTAs) on endometritis and explore the molecular mechanisms using an integrating network analysis and in vitro experimental verification. MATERIALS AND METHODS Ultra-high performance liquid chromatography-tandem quadrupole-orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap HRMS) was used to analyze and identify the components in the MTAs. The effects of MTAs were evaluated using bacteria-induced endometritis in rats. Network pharmacology was conducted to predict possible mechanism pathways of MTAs in endometritis. Finally, lipopolysaccharide-stimulated mouse mononuclear macrophage (RAW 264.7) cells and human endometrial epithelial cells were used to identify signaling pathways through which MTAs exert their effects. RESULTS Thirty-nine alkaloids were identified in MTAs using the UPLC-Q-Orbitrap HRMS analysis. Their corresponding putative targets were then predicted. The MTAs exerted pharmacological effects on endometritis through a multi-ingredient and multi-target pattern. Network pharmacology showed that the MTAs had 152 candidate targets in treating endometritis. According to the KEGG analysis, the MTAs were found to potentially affect the PI3K-AKT and NF-κB signaling pathways. The following experiments showed that the MTAs exhibited significant effects on endometritis in vivo, significantly reduced the overproduction of inflammatory mediators, and promoted endometrial cell repair via the PI3K/AKT/NF-κB signaling pathway. CONCLUSIONS Motherwort alkaloids can be used to treat endometrial inflammation by regulating the PI3K/AKT/NF-κB pathway. This study provides a scientific basis for the use of MTAs for treating endometritis.
Collapse
Affiliation(s)
- Ou Dai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yunqiu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China; Department of Clinical Medicine, Luzhou People's Hospital, Luzhou, 646000, Sichuan, China
| | - Qinmei Zhou
- Institute of Traditional Chinese Medicine Innovation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Juanru Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Jing Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Fang Wang
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China
| | - Lei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
3
|
Xiong S, Xu C, Yang C, Luo H, Xie J, Xia B, Zhang Z, Liao Y, Li C, Li Y, Lin L. FuKe QianJin capsule alleviates endometritis via inhibiting inflammation and pyroptosis through modulating TLR4/ NF-κB /NLRP3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118962. [PMID: 39426577 DOI: 10.1016/j.jep.2024.118962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuke Qianjin Capsule (FKC), a traditional Chinese medicine commonly employed for treating endometritis, lacks reported treatment mechanisms. AIM OF THE STUDY The aim of the present study was to explore the role and mechanism of FKC in lipopolysaccharide (LPS)-induced endometritis. MATERIALS AND METHODS The main active ingredients of FKC were identified via high-performance liquid chromatography (HPLC) in conjunction with standard substances. Prior to endometritis induction, Sprague Dawley female rats received FKC for 7 days. The endometritis model was established through an intrauterine injection of 1 mg/kg LPS. Concurrently, an LPS-induced RAW264.7 cell inflammation model was utilized, in which the cells were treated with serum containing Fuke Qianjin Capsule. Pathological alterations in the endometrium were assessed via H&E staining and transmission electron microscopy (TEM). The contents of MPO in uterine tissues, and NO release in cells, along with the secretion of IL-18, IL-1β, IL-6, and TNF-α in both tissues and cells, were determined via assay kits. The mRNA levels of Nlrp3, Caspase-1, Gsdmd, and Il-1β in uterine tissues and cells were analyzed via qPCR. The protein levels of TLR4, p65, p-P65, NLRP3, Caspase-1, GSDMD, and IL-1β in these samples were evaluated through Western blot analysis. Immunofluorescence was used to assess the protein levels of p-P65 and NLRP3 in uterine tissues and cells. RESULTS Five primary active components of FKC were identified. Treatment with FKC in vivo mitigated endometrial pathological damage and significantly decreased the levels of MPO, IL-18, IL-1β, IL-6, and TNF-α, as well as the levels of Nlrp3, Caspase-1, Gsdmd, and Il-1β mRNA in tissue samples. Treatment with FKC inhibited the expression of TLR4, p-P65, NLRP3, Caspase-1, GSDMD, and IL-1β, as well as reduced NLRP3 protein fluorescence intensity, and inhibited P65 phosphorylation. In vitro findings demonstrated that FKC-containing serum reduced IL-18, IL-1β, IL-6, and TNF-α levels, as well as reduced Nlrp3, Caspase-1, Gsdmd, and Il-1β mRNA levels. In addition, FKC-containing serum inhibited the protein expression of TLR4, p-P65, NLRP3, Caspase-1, GSDMD, and IL-1β. FKC-containing serum also reduced NLRP3 protein fluorescence intensity and suppressed P65 phosphorylation. CONCLUSION FKC reverses the LPS induced NLRP3 inflammasome activation, and mitigates inflammation and pyroptosis through the modulation of the TLR4/NF-κB/NLRP3 pathway, thereby alleviating endometritis.
Collapse
Affiliation(s)
- Suhui Xiong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Chunfang Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Chen Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Hongshan Luo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Jingchen Xie
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Bohou Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Zhimin Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Yingyan Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yamei Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Limei Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
4
|
Guo J, Cao X, Li Z, Wang C, Zhong C, Wang S, Fan Z, Zhao J, Wang J, Fang Y, Liu H, Ding H, Ma X, Lu W. Protective effects of engineered Lactobacillus johnsonii expressing bovine granulocyte-macrophage colony-stimulating factor on bovine postpartum endometritis. Front Vet Sci 2024; 11:1418091. [PMID: 39176400 PMCID: PMC11338911 DOI: 10.3389/fvets.2024.1418091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Postpartum endometritis is a prevalent reproductive disorder in bovines, leading to a prolonged open period, infertility, and other complications. While Lactobacillus strains can mitigate these conditions by reducing uterine inflammation, their effectiveness is limited due to a lack of direct anti microbial action and extended treatment duration. This study aimed to construct a recombinant Lactobacillus johnsonii strain expressing bovine Granulocyte-macrophage colony-stimulating factor (GM-CSF) to evaluate its potential in reducing postpartum uterine inflammation. Methods The recombinant Lactobacillus johnsonii strain was engineered to express bovine GM-CSF and administered to pregnant mice via vaginal perfusion. Postpartum endometritis was induced using E. coli infection, and the protective effects of the engineered strain were assessed. Inflammatory markers (IL-6, IL-1β, TNF-α), myeloperoxidase (MPO) activity, and nitric oxide (NO) concentration were measured. Histological examination was performed to evaluate uterine morphology and pathological damage. Results The recombinant L. johnsonii strain expressing GM-CSF significantly reduced inflammation levels induced by E. coli infection in the uterus. This reduction was evidenced by decreased expression of IL-6, IL-1β, TNF-α, as well as reduced MPO activity and NO concentration. Histological examination revealed improved uterine morphology and reduced pathological damage in mice treated with the recombinant GM-CSF strain. Crucially, the recombinant strain also exerts beneficial effects on bovine endometritis by reducing levels of inflammatory cytokines, suggesting a beneficial effect on clinical bovine endometritis. Conclusion The recombinant Lactobacillus johnsonii expressing GM-CSF demonstrated protective effects against postpartum endometritis in bovines by reducing inflammatory cytokines. The findings indicate the potential clinical application of this engineered strain in preventing postpartum uterine inflammation, offering a novel and effective protective option for related disorders and improving bovine reproductive efficiency.
Collapse
Affiliation(s)
- Jing Guo
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Xu Cao
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Zhiqiang Li
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Caiyu Wang
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Chengkun Zhong
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Simin Wang
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Zhile Fan
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Jing Zhao
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Jun Wang
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Yi Fang
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Hongyu Liu
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - He Ding
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Xin Ma
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Wenfa Lu
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
He Q, Wan S, Jiang M, Li W, Zhang Y, Zhang L, Wu M, Lin J, Zou L, Hu Y. Exploring the therapeutic potential of tonic Chinese herbal medicine for gynecological disorders: An updated review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118144. [PMID: 38583732 DOI: 10.1016/j.jep.2024.118144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynecological disorders have the characteristics of high incidence and recurrence rate, which sorely affects female's health. Since ancient times, traditional Chinese medicine (TCM), especially tonic medicine (TM), has been used to deal with gynecological disorders and has unique advantages in effectiveness and safety. AIM OF THE REVIEW In this article, we aim to summarize the research progress of TMs in-vivo and in-vitro, including their formulas, single herbs, and compounds, for gynecological disorders treatment in recent years, and to offer a reference for further research on the treatment of gynecological disorders and their clinical application in the treatment of TMs. MATERIALS AND METHODS Relevant information on the therapeutic potential of TMs against gynecological disorders was collected from several scientific databases including Web of Science, PubMed, CNKI, Google Scholar and other literature sources. RESULTS So far, there are 46 different formulas, 3 single herbs, and 24 compounds used in the treatment of various gynecological disorders such as premature ovarian failure, endometriosis breast cancer, and so on. Many experimental results have shown that TMs can regulate apoptosis, invasion, migration, oxidative stress, and the immune system. In addition, the effect of TMs in gynecological disorders treatment may be due to the regulation of VEGF, PI3K-AKT, MAPK, NF-κB, and other signaling pathways. Apparently, TMs play an active role in the treatment of gynecological disorders by regulating these signaling pathways. CONCLUSION TMs have a curative effect on the prevention and treatment of gynecological disorders. It could relieve and treat gynecological disorders through a variety of pathways. Therefore, the appropriate TM treatment program makes it more possible to treat gynecological disorders.
Collapse
Affiliation(s)
- Qizhi He
- School of Pharmacy, Zunyi Medical University, Guizhou, China; School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Shun Wan
- Hunan University of Chinese Medicine, Changsha, China
| | - Mingli Jiang
- School of Pharmacy, Zunyi Medical University, Guizhou, China
| | - Wei Li
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Yan Zhang
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Lele Zhang
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Mengyao Wu
- Department of Pharmacology, Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, China
| | - Jie Lin
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Liang Zou
- School of Pharmacy, Zunyi Medical University, Guizhou, China; Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China.
| | - Yingfan Hu
- School of Preclinical Medicine, Chengdu University, Chengdu, China.
| |
Collapse
|
6
|
Jiang T, Xu X. Protective effect of Timosaponin AIII on Escherichia coli-induced endometritis in mice through inhibiting inflammatory response and regulating uterine microbiota structure. Int Immunopharmacol 2024; 130:111649. [PMID: 38367462 DOI: 10.1016/j.intimp.2024.111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
Endometritis is a sort of general reproductive disease, which can lead to infertility in both humans and animals. Escherichia coli (E. coli) is recognised as the main bacterial etiology of endometritis among livestock and causes huge economic losses to dairy farming industry. Antibiotics are frequently used in the clinical treatment of endometritis; nevertheless, long-term use may result in adverse effects, including bacterial resistance and food safety concerns. TSAIII, one of the active pharmacological components of A. asphodeloides, has exhibited multiple biological activities, including anticancer, anti-angiogenesis, and anti-inflammatory properties. However, the protective effects of TSAIII in E. coli-challenged endometritis remain unclear. This study aimed to clarify the role of TSAIII in E. coli-induced endometritis in mice and elucidate its specific molecular mechanisms. In the present research, TSAIII treatment markedly alleviated the E. coli-induced uterine histopathological injury, and decreased myeloperoxidase (MPO) activity and pro-inflammatory cytokines levels in uterine tissue. Our results further demonstrated that TSAIII improved uterine epithelial barrier function by restoring the expressions of tight junction proteins. Furthermore, TSAIII administration noticeably suppressed the activation of the TLR4/NF-κB pathway and the NLRP3 inflammasome. Importantly, we found that TSAIII could regulate the uterine microbiota structure and composition in E. coli-induced mouse endometritis. In conclusion, these data demonstrate that treatment with TSAIII protects against E. coli-induced endometritis via modulating uterine microbiota composition, inhibiting TLR4/NF-κB pathway and NLRP3 inflammasome activation, in addition to improving uterine epithelial barrier function. Therefore, the results of this study provide a new therapeutic to potentially prevent endometritis.
Collapse
Affiliation(s)
- Tao Jiang
- China-Japan Union Hospital, Jilin University, Jilin, China
| | - Xuesong Xu
- China-Japan Union Hospital, Jilin University, Jilin, China.
| |
Collapse
|
7
|
Li Z, Teng Y, Feng S, Hu Z, Zhao J, Ding H, Fang Y, Liu H, Ma X, Guo J, Wang J, Lv W. Microbial responses and changes in metabolic products in bovine uteri infected with Staphylococcus aureus. Int J Biol Macromol 2024; 262:130039. [PMID: 38354917 DOI: 10.1016/j.ijbiomac.2024.130039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
There is mounting evidence that the uterine microbiota has an important role in the pathogenesis of endometritis, with invasion of pathogenic bacteria being a main cause of uterine microbial imbalance. However, mechanisms of uterine microbiota resistance to pathogen invasion remain unclear. In this study, an intrauterine infusion of Staphylococcus aureus was used as a bovine endometritis model; it significantly increased abundance of pathogenic bacteria (Streptococcus, Helccoccus, Fusobacterium, and Escherichia-Shigella) and significantly decreased abundance of probiotics (Allstipes, Bacteroides, Phascolarctobacterium, Romboutsia, and Prevotella). In addition, the metabolite aloe-emodin was positively correlated with Prevotella and based on combined analyses of omics and probiotics, the presence of its metabolite aloe-emodin in the uterus at least partially resisted Staphylococcus aureus invasion. Therefore, Aloe-emodin has potential for regulating microbial structure and preventing endometritis.
Collapse
Affiliation(s)
- Zhiqiang Li
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yunkun Teng
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Feng
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhuoqun Hu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - He Ding
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yi Fang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Liu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xin Ma
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Guo
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Wenfa Lv
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
8
|
Ma JW, Xiong ZY, Cai XC, Li X, Ren SY, An SQ, Zhang ZY, Zhang YZ. Ningxin-Tongyu-Zishen formula alleviates the senescence of granulosa cells on D-galactose-induced premature ovarian insufficiency mice. Aging (Albany NY) 2024; 16:4541-4562. [PMID: 38428403 PMCID: PMC10968698 DOI: 10.18632/aging.205607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/19/2024] [Indexed: 03/03/2024]
Abstract
Ningxin-Tongyu-Zishen formula (NTZF) is a clinical experience formula for the treatment of premature ovarian insufficiency (POI) in traditional Chinese medicine (TCM), and the potential mechanism is unknown. For in vivo experiments, POI mouse models (C57BL/6 mice), were constructed by subcutaneous injection of D-galactose (D-gal, 200 mg/kg). After treatment of NTZF (10.14, 20.27, 40.54 g/kg;) or estradiol valerate (0.15 mg/kg), ovarian function, oxidative stress (OS) and protein expression of Sirt1/p53 were evaluated. For in vitro experiments, H2O2 (200 μM) was used to treat KGN to construct ovarian granulosa cells (OGCs) cell senescence model. Pretreatment with NTZF (1.06 mg/mL) or p53 inhibitor (Pifithrin-α, 1 μM) was performed before induction of senescence, and further evaluated the cell senescence, OS, mRNA and protein expression of Sirt1/p53. In vivo, NTZF improved ovarian function, alleviated OS and Sirt1/p53 signaling abnormalities in POI mice. In vitro experiments showed that NTZF reduced the level of OS and alleviated the senescence of H2O2-induced KGN. In addition, NTZF activated the protein expression of Sirt1, inhibited the mRNA transcription and protein expression of p53 and p21. Alleviating OGCs senescence and protecting ovarian function through Sirt1/p53 is one of the potential mechanisms of NTZF in the treatment of POI.
Collapse
Affiliation(s)
- Jia-Wen Ma
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zeng-Yan Xiong
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xing-Chu Cai
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shi-Yan Ren
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuai-Qi An
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zai-Yang Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi-Zhou Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Famous Chinese Medicine Clinic, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Xi Y, Zhang C, Feng Y, Zhao S, Zhang Y, Duan G, Wang W, Wang J. Genetically predicted the causal relationship between gut microbiota and infertility: bidirectional Mendelian randomization analysis in the framework of predictive, preventive, and personalized medicine. EPMA J 2023; 14:405-416. [PMID: 37605651 PMCID: PMC10439866 DOI: 10.1007/s13167-023-00332-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/26/2023] [Indexed: 08/23/2023]
Abstract
Objective Several studies have reported the association between gut microbiota and infertility; however, the causal association between them remains unclear. This study aimed to explore the causal relationship between gut microbiota and infertility and evaluate how specific gut microbiota can support early monitoring and prevention of infertility in the context of predictive, preventive, and personalized medicine (PPPM/3PM). Methods The gut microbiota GWAS data included 18,340 individuals. Female infertility (6481 cases and 68,969 controls) and male infertility data (680 cases and 72,799 controls) were obtained from the FinnGen consortium. The inverse variance weighting (IVW), MR-Egger, weighted median (WM), Cochran Q tests, MR-PRESSO, and leave-one-out were used as a supplement to Mendelian randomization (MR) results and sensitivity analysis. Results The results of MR analysis indicated a significant causal association between Eubacterium oxidoreducens (OR = 2.048, P = 0.008), Lactococcus (OR = 1.445, P = 0.042), Eubacterium ventriosum (OR = 0.436, P = 0.018), Eubacterium rectale (OR = 0.306, P = 0.002), and Ruminococcaceae NK4A214 (OR = 0.537, P = 0.045) and male infertility. Genetically predicted Eubacterium ventriosum (OR = 0.809, P = 0.018), Holdemania (OR = 0.836, P = 0.037), Lactococcus (OR = 0.867, P = 0.020), Ruminococcaceae NK4A214 (OR = 0.830, P < 0.050), Ruminococcus torques (OR = 0.739, P = 0.022), and Faecalibacterium (OR = 1.311, P = 0.007) were associated with female infertility. Sensitivity analysis did not detect heterogeneity and pleiotropy (P > 0.05). Conclusions Our results provided evidence for the causal relationship between some gut microbiota and male and female infertility. These findings might be valuable in providing personalized treatment options for preventing infertility and improving reproductive function by monitoring and regulating the gut microbiota of infertility patients in the context of PPPM. Moreover, detecting the abundance of microbiota in feces can support preventive and personalized strategies, which may benefit more infertility patients. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00332-6.
Collapse
Affiliation(s)
- Yujia Xi
- Department of Urology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001 Shanxi China
- Second School of Clinical Medicine, Shanxi Medical University, Taiyuan, 030000 China
| | - Chenwei Zhang
- Second School of Clinical Medicine, Shanxi Medical University, Taiyuan, 030000 China
| | - Yiqian Feng
- First School of Clinical Medicine, Shanxi Medical University, Taiyuan, 030000 China
| | - Shurui Zhao
- First School of Clinical Medicine, Shanxi Medical University, Taiyuan, 030000 China
- Department of Obstetrics and Gynecology, The First Hospital Shanxi Medical University, Taiyuan, 030000 China
| | - Yukai Zhang
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030000 China
| | - Guosheng Duan
- Second School of Clinical Medicine, Shanxi Medical University, Taiyuan, 030000 China
| | - Wei Wang
- Department of Urology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001 Shanxi China
| | - Jingqi Wang
- Department of Urology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001 Shanxi China
| |
Collapse
|