1
|
Zhang Y, Zheng BY, Zhang QF, Zhao YN, Yu QM, Liu X, Ding SY, Qian SS, Wu H, Wu QY, Zhang YH, Zheng L, Zhang XH, Zhang HF, Hao YM, Lu JC, Wang L, Wen JK, Zheng B. Nanoparticles targeting OPN loaded with BY1 inhibits vascular restenosis by inducing FTH1-dependent ferroptosis in vascular smooth muscle cells. Biomaterials 2024; 309:122613. [PMID: 38759485 DOI: 10.1016/j.biomaterials.2024.122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Vascular restenosis following angioplasty continues to pose a significant challenge. The heterocyclic trioxirane compound [1, 3, 5-tris((oxiran-2-yl)methyl)-1, 3, 5-triazinane-2, 4, 6-trione (TGIC)], known for its anticancer activity, was utilized as the parent ring to conjugate with a non-steroidal anti-inflammatory drug, resulting in the creation of the spliced conjugated compound BY1. We found that BY1 induced ferroptosis in VSMCs as well as in neointima hyperplasia. Furthermore, ferroptosis inducers amplified BY1-induced cell death, while inhibitors mitigated it, indicating the contribution of ferroptosis to BY1-induced cell death. Additionally, we established that ferritin heavy chain1 (FTH1) played a pivotal role in BY1-induced ferroptosis, as evidenced by the fact that FTH1 overexpression abrogated BY1-induced ferroptosis, while FTH1 knockdown exacerbated it. Further study found that BY1 induced ferroptosis by enhancing the NCOA4-FTH1 interaction and increasing the amount of intracellular ferrous. We compared the effectiveness of various administration routes for BY1, including BY1-coated balloons, hydrogel-based BY1 delivery, and nanoparticles targeting OPN loaded with BY1 (TOP@MPDA@BY1) for targeting proliferated VSMCs, for prevention and treatment of the restenosis. Our results indicated that TOP@MPDA@BY1 was the most effective among the three administration routes, positioning BY1 as a highly promising candidate for the development of drug-eluting stents or treatments for restenosis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Bo-Yang Zheng
- Department of tumor biotherapy, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Qian-Fan Zhang
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ya-Nan Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qi-Ming Yu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xin Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Si-Ying Ding
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shuang-Shuang Qian
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Han Wu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qian-Yu Wu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu-Han Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Lei Zheng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xin-Hua Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China; Institution of Chinese Integrative Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, China
| | - Hao-Feng Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Hebei Province Key Laboratory of Innovative Drug Research and Evaluation, Shijiazhuang, 050017, China
| | - Yi-Ming Hao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jing-Chao Lu
- Department of Cardiovascular Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Hebei Province Key Laboratory of Innovative Drug Research and Evaluation, Shijiazhuang, 050017, China.
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
2
|
Li YS, Yang RR, Li XY, Liu WW, Zhao YM, Zu MM, Gao YH, Huo MQ, Jiang YT, Li BY. Fluoride impairs vascular smooth muscle A7R5 cell lines via disrupting amino acids metabolism. J Transl Med 2024; 22:528. [PMID: 38824544 PMCID: PMC11143695 DOI: 10.1186/s12967-024-05350-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
Given the insidious and high-fatality nature of cardiovascular diseases (CVDs), the emergence of fluoride as a newly identified risk factor demands serious consideration alongside traditional risk factors. While vascular smooth muscle cells (VSMCs) play a pivotal role in the progression of CVDs, the toxicological impact of fluoride on VSMCs remains largely uncharted. In this study, we constructed fluorosis model in SD rats and A7R5 aortic smooth muscle cell lines to confirm fluoride impaired VSMCs. Fluoride aggravated the pathological damage of rat aorta in vivo. Then A7R5 were exposed to fluoride with concentration ranging from 0 to 1200 μmol/L over a 24-h period, revealing a dose-dependent inhibition of cell proliferation and migration. The further metabolomic analysis showed alterations in metabolite profiles induced by fluoride exposure, notably decreasing organic acids and lipid molecules level. Additionally, gene network analysis underscored the frequency of fluoride's interference with amino acids metabolism, potentially impacting the tricarboxylic acid (TCA) cycle. Our results also highlighted the ATP-binding cassette (ABC) transporters pathway as a central element in VSMC impairment. Moreover, we observed a dose-dependent increase in osteopontin (OPN) and α-smooth muscle actin (α-SMA) mRNA level and a dose-dependent decrease in ABC subfamily C member 1 (ABCC1) and bestrophin 1 (BEST1) mRNA level. These findings advance our understanding of fluoride as a CVD risk factor and its influence on VSMCs and metabolic pathways, warranting further investigation into this emerging risk factor.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Fluorides/pharmacology
- Rats, Sprague-Dawley
- Cell Line
- Amino Acids/metabolism
- Cell Proliferation/drug effects
- Rats
- Cell Movement/drug effects
- Male
- Aorta/pathology
- Aorta/drug effects
- Aorta/metabolism
- Metabolomics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Gene Regulatory Networks/drug effects
Collapse
Affiliation(s)
- Yan-Shu Li
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Ru-Ru Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Harbin Medical University, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Xin-Ying Li
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Wei-Wei Liu
- Weihai Municipal Hospital, Weihai, 264299, Shandong Province, China
| | - Yi-Ming Zhao
- Xinyi Center for Disease Control and Prevention, Xinyi, China
| | - Ming-Man Zu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Harbin Medical University, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Yi-Hong Gao
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Min-Qi Huo
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China
| | - Yu-Ting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Harbin Medical University, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Bing-Yun Li
- School of Public Health, Shantou University, 243 Daxue Road, Jinping District, Shantou, 515063, Guangdong Province, China.
| |
Collapse
|
3
|
Chen Y, He S, Zeng A, He S, Jin X, Li C, Mei W, Lu Q. Inhibitory Effect of β-Sitosterol on the Ang II-Induced Proliferation of A7r5 Aortic Smooth Muscle Cells. Anal Cell Pathol (Amst) 2023; 2023:2677020. [PMID: 38028434 PMCID: PMC10645495 DOI: 10.1155/2023/2677020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/01/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Objective To explore the effects of β-sitosterol on VSMC proliferation. Materials and Methods A7r5 cells were pretreated with 2 µM angiotensin II (Ang II) for 24 hr to establish an excessive VSMC proliferation model, followed by treatment with β-sitosterol for 24 hr. Cells were divided into five groups: control, Ang II, and Ang II + β-sitosterol (2, 4, 8 µM). CCK-8 assay, flow cytometry, and Ad-mCherry-GFP-LC3B assay analyzed cell proliferation, cell cycle, cell apoptosis, and autophagic flux. Additionally, the expression of proteins was detected by the western blotting. Results β-Sitosterol effectively inhibited Ang II-induced A7r5 cell proliferation (IC50 : 6.841 µM at 24 hr). It achieved this by arresting cell cycle progression, promoting apoptosis, inhibiting autophagy, and suppressing the contractile-synthetic phenotypic switch. Mechanistically, β-sitosterol downregulated PCNA, Cyclin D1, and Bcl-2, while upregulating pro-caspase 3, cleaved-caspase 3, and Bax to induce cell cycle arrest and apoptosis. Additionally, it suppressed the contractile-synthetic phenotypic transformation by downregulating OPN and upregulating α-SMA. The Ad-mCherry-GFP-LC3B Assay and western blotting revealed β-sitosterol's autophagy inhibitory effects by downregulating LC3, ULK1, and Beclin-1 while upregulating P62 expression. Discussion and Conclusion. This study found for the first time that β-sitosterol could inhibit the proliferation of A7r5 cells induced by Ang II. β-Sitosterol treatment may be recommended as a therapeutic strategy to prevent the cardiovascular diseases.
Collapse
Affiliation(s)
- Yuankun Chen
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shumiao He
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ao Zeng
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
| | - Siqing He
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
| | - Xiaobao Jin
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chunmei Li
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
- Guangdong Province Engineering and Technology Center for Molecular Probe and Bio-medicine Imaging, Guangzhou, China
| | - Wenjie Mei
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qun Lu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Province Engineering and Technology Center for Molecular Probe and Bio-medicine Imaging, Guangzhou, China
| |
Collapse
|
4
|
Bellavite P, Fazio S, Affuso F. A Descriptive Review of the Action Mechanisms of Berberine, Quercetin and Silymarin on Insulin Resistance/Hyperinsulinemia and Cardiovascular Prevention. Molecules 2023; 28:4491. [PMID: 37298967 PMCID: PMC10254920 DOI: 10.3390/molecules28114491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Insulin resistance (IR) and the associated hyperinsulinemia are early pathophysiological changes which, if not well treated, can lead to type 2 diabetes, endothelial dysfunction and cardiovascular disease. While diabetes care is fairly well standardized, the prevention and treatment of IR lacks a single pharmaceutical approach and many lifestyle and dietary interventions have been proposed, including a wide range of food supplements. Among the most interesting and well-known natural remedies, alkaloid berberine and the flavonol quercetin have particular relevance in the literature, while silymarin-the active principle of the Silybum marianum thistle-was traditionally used for lipid metabolism disorders and to sustain liver function. This review describes the major defects of insulin signaling leading to IR and the main properties of the three mentioned natural substances, their molecular targets and synergistic action mechanisms. The actions of berberine, quercetin and silymarin are partially superimposable as remedies against reactive oxygen intermediates generated by a high-lipid diet and by NADPH oxidase, which is triggered by phagocyte activation. Furthermore, these compounds inhibit the secretion of a battery of pro-inflammatory cytokines, modulate intestinal microbiota and are especially able to control the various disorders of the insulin receptor and post-receptor signaling systems. Although most of the evidence on the effects of berberine, quercetin and silymarin in modulating insulin resistance and preventing cardiovascular disease derive from experimental studies on animals, the amount of pre-clinical knowledge strongly suggests the need to investigate the therapeutic potential of these substances in human pathology.
Collapse
Affiliation(s)
- Paolo Bellavite
- Pathophysiology Chair, Homeopathic Medical School of Verona, 37121 Verona, Italy
| | - Serafino Fazio
- Department of Internal Medicine, University of Naples Federico II, 80138 Naples, Italy;
| | | |
Collapse
|
5
|
Kelland E, Patil MS, Patel S, Cartland SP, Kavurma MM. The Prognostic, Diagnostic, and Therapeutic Potential of TRAIL Signalling in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24076725. [PMID: 37047698 PMCID: PMC10095395 DOI: 10.3390/ijms24076725] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) was originally discovered, almost 20 years ago, for its ability to kill cancer cells. More recent evidence has described pleiotropic functions, particularly in the cardiovascular system. There is potential for TRAIL concentrations in the circulation to act as prognostic and/or diagnostic factors for cardiovascular diseases (CVD). Pre-clinical studies also describe the therapeutic capacity for TRAIL signals, particularly in the context of atherosclerotic disease and diseases of the myocardium. Because diabetes mellitus significantly contributes to the progression and pathogenesis of CVDs, in this review we highlight recent evidence for the prognostic, diagnostic, and therapeutic potential of TRAIL signals in CVDs, and where relevant, the impact of diabetes mellitus. A greater understanding of how TRAIL signals regulate cardiovascular protection and pathology may offer new diagnostic and therapeutic avenues for patients suffering from CVDs.
Collapse
Affiliation(s)
- Elaina Kelland
- Heart Research Institute, The University of Sydney, Sydney 2042, Australia
| | - Manisha S. Patil
- Heart Research Institute, The University of Sydney, Sydney 2042, Australia
| | - Sanjay Patel
- Heart Research Institute, The University of Sydney, Sydney 2042, Australia
- Royal Prince Alfred Hospital, Sydney 2006, Australia
| | - Siân P. Cartland
- Heart Research Institute, The University of Sydney, Sydney 2042, Australia
| | - Mary M. Kavurma
- Heart Research Institute, The University of Sydney, Sydney 2042, Australia
| |
Collapse
|
6
|
Dai Y, Chen D, Xu T. DNA Methylation Aberrant in Atherosclerosis. Front Pharmacol 2022; 13:815977. [PMID: 35308237 PMCID: PMC8927809 DOI: 10.3389/fphar.2022.815977] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis (AS) is a pathological process involving lipid oxidation, immune system activation, and endothelial dysfunction. The activated immune system could lead to inflammation and oxidative stress. Risk factors like aging and hyperhomocysteinemia also promote the progression of AS. Epigenetic modifications, including DNA methylation, histone modification, and non-coding RNA, are involved in the modulation of genes between the environment and AS formation. DNA methylation is one of the most important epigenetic mechanisms in the pathogenesis of AS. However, the relationship between the progression of AS and DNA methylation is not completely understood. This review will discuss the abnormal changes of DNA methylation in AS, including genome-wide hypermethylation dominating in AS with an increase of age, hypermethylation links with methyl supply and generating hyperhomocysteinemia, and the influence of oxidative stress with the demethylation process by interfering with the hydroxyl-methylation of TET proteins. The review will also summarize the current status of epigenetic treatment, which may provide new direction and potential therapeutic targets for AS.
Collapse
|
7
|
Cen HH, Hussein B, Botezelli JD, Wang S, Zhang JA, Noursadeghi N, Jessen N, Rodrigues B, Timmons JA, Johnson JD. Human and mouse muscle transcriptomic analyses identify insulin receptor mRNA downregulation in hyperinsulinemia-associated insulin resistance. FASEB J 2022; 36:e22088. [PMID: 34921686 PMCID: PMC9255858 DOI: 10.1096/fj.202100497rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Hyperinsulinemia is commonly viewed as a compensatory response to insulin resistance, yet studies have demonstrated that chronically elevated insulin may also drive insulin resistance. The molecular mechanisms underpinning this potentially cyclic process remain poorly defined, especially on a transcriptome-wide level. Transcriptomic meta-analysis in >450 human samples demonstrated that fasting insulin reliably and negatively correlated with INSR mRNA in skeletal muscle. To establish causality and study the direct effects of prolonged exposure to excess insulin in muscle cells, we incubated C2C12 myotubes with elevated insulin for 16 h, followed by 6 h of serum starvation, and established that acute AKT and ERK signaling were attenuated in this model of in vitro hyperinsulinemia. Global RNA-sequencing of cells both before and after nutrient withdrawal highlighted genes in the insulin receptor (INSR) signaling, FOXO signaling, and glucose metabolism pathways indicative of 'hyperinsulinemia' and 'starvation' programs. Consistently, we observed that hyperinsulinemia led to a substantial reduction in Insr gene expression, and subsequently a reduced surface INSR and total INSR protein, both in vitro and in vivo. Bioinformatic modeling combined with RNAi identified SIN3A as a negative regulator of Insr mRNA (and JUND, MAX, and MXI as positive regulators of Irs2 mRNA). Together, our analysis identifies mechanisms which may explain the cyclic processes underlying hyperinsulinemia-induced insulin resistance in muscle, a process directly relevant to the etiology and disease progression of type 2 diabetes.
Collapse
Affiliation(s)
- Haoning Howard Cen
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - José Diego Botezelli
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Su Wang
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiashuo Aaron Zhang
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nilou Noursadeghi
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - James A Timmons
- Augur Precision Medicine LTD, Stirling University Innovation Park, Stirling, Scotland.,William Harvey Research Institute, Queen Mary University of London, London, UK
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Wang Y, Zhang H, Wang Z, Wei Y, Wang M, Liu M, Wang X, Jiang Y, Shi G, Zhao D, Yang Z, Ren Z, Li J, Zhang Z, Wang Z, Zhang B, Zong B, Lou X, Liu C, Wang Z, Zhang H, Tao N, Li X, Zhang X, Guo Y, Ye Y, Qi Y, Li H, Wang M, Guo R, Cheng G, Li S, Zhang J, Liu G, Chai L, Lou Q, Li X, Cui X, Gao E, Dong Z, Hu Y, Chen YH, Ma Y. Blocking the death checkpoint protein TRAIL improves cardiac function after myocardial infarction in monkeys, pigs, and rats. Sci Transl Med 2021; 12:12/540/eaaw3172. [PMID: 32321866 DOI: 10.1126/scitranslmed.aaw3172] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 06/26/2019] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
Myocardial infarction (MI) is a leading cause of death worldwide for which there is no cure. Although cardiac cell death is a well-recognized pathological mechanism of MI, therapeutic blockade of cell death to treat MI is not straightforward. Death receptor 5 (DR5) and its ligand TRAIL [tumor necrosis factor (TNF)-related apoptosis-inducing ligand] are up-regulated in MI, but their roles in pathological remodeling are unknown. Here, we report that blocking TRAIL with a soluble DR5 immunoglobulin fusion protein diminished MI by preventing cardiac cell death and inflammation in rats, pigs, and monkeys. Mechanistically, TRAIL induced the death of cardiomyocytes and recruited and activated leukocytes, directly and indirectly causing cardiac injury. Transcriptome profiling revealed increased expression of inflammatory cytokines in infarcted heart tissue, which was markedly reduced by TRAIL blockade. Together, our findings indicate that TRAIL mediates MI directly by targeting cardiomyocytes and indirectly by affecting myeloid cells, supporting TRAIL blockade as a potential therapeutic strategy for treating MI.
Collapse
Affiliation(s)
- Yaohui Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Hailong Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Zhizeng Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Yinxiang Wei
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Mingli Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Meichen Liu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Xuance Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China.,Henan University affiliated Huaihe Hospital, Kaifeng 475004, P.R. China
| | - Yinan Jiang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Gongning Shi
- Henan University affiliated Huaihe Hospital, Kaifeng 475004, P.R. China
| | - Dongmei Zhao
- Henan University affiliated Huaihe Hospital, Kaifeng 475004, P.R. China
| | - Zhengyan Yang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Zhiguang Ren
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Jing Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Zhenkai Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Zhenfeng Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Bei Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Beibei Zong
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Xueke Lou
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Chengguo Liu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Zihui Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Hao Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Ningya Tao
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Xuefang Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Xingkun Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Yafei Guo
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Yang Ye
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Yu Qi
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Man Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Rongxin Guo
- Henan University affiliated Huaihe Hospital, Kaifeng 475004, P.R. China
| | - Guanchang Cheng
- Henan University affiliated Huaihe Hospital, Kaifeng 475004, P.R. China
| | - Shulian Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Guangchao Liu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Lihui Chai
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Qiang Lou
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China.
| |
Collapse
|
9
|
Patil MS, Cartland SP, Kavurma MM. TRAIL signals, extracellular matrix and vessel remodelling. VASCULAR BIOLOGY 2020; 2:R73-R84. [PMID: 32923976 PMCID: PMC7439926 DOI: 10.1530/vb-20-0005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
The extracellular matrix (ECM) is an essential part of the vasculature, not only providing structural support to the blood vessel wall, but also in its ability to interact with cells to regulate cell phenotype and function including proliferation, migration, differentiation and death – processes important in vascular remodelling. Increasing evidence implicates TNF-related apoptosis-inducing ligand (TRAIL) signalling in the modulation of vascular cell function and remodelling under normal and pathological conditions such as in atherosclerosis. TRAIL can also stimulate synthesis of multiple ECM components within blood vessels. This review explores the relationship between TRAIL signals, the ECM, and its implications in vessel remodelling in cardiovascular disease.
Collapse
Affiliation(s)
- Manisha S Patil
- Heart Research Institute, Sydney, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Siân P Cartland
- Heart Research Institute, Sydney, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Mary M Kavurma
- Heart Research Institute, Sydney, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
10
|
Cartland SP, Lin RCY, Genner S, Patil MS, Martínez GJ, Barraclough JY, Gloss B, Misra A, Patel S, Kavurma MM. Vascular transcriptome landscape of Trail -/- mice: Implications and therapeutic strategies for diabetic vascular disease. FASEB J 2020; 34:9547-9562. [PMID: 32501591 DOI: 10.1096/fj.201902785r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 12/20/2022]
Abstract
Circulating plasma TRAIL levels are suppressed in patients with cardiovascular and diabetic diseases. To identify novel targets in vascular metabolic diseases, genome-wide transcriptome of aortic tissue from Trail-/- versus Trail+/+ mice were interrogated. We found 861 genes differentially expressed with TRAIL deletion. Gene enrichment analyses showed many of these genes were related to inflammation, cell-to-cell cytoskeletal interactions, and transcriptional modulation. We identified vascular protective and pathological gene clusters, with Ifi205 as the most significantly reduced vascular protective gene, whereas Glut1, the most significantly increased pathological gene with TRAIL deletion. We hypothesized that therapeutic targets could be devised from such integrated analysis and validated our findings from vascular tissues of diabetic mice. From the differentially expressed gene targets, enriched transcription factor (TF) and microRNA binding motifs were identified. The top two TFs were Elk1 and Sp1, with enrichment to eight gene targets common to both. miR-520d-3p and miR-377-3p were the top enriched microRNAs with TRAIL deletion; with four overlapping genes enriched for both microRNAs. Our findings offer an alternate in silico approach for therapeutic target identification and present a deeper understanding of gene signatures and pathways altered with TRAIL suppression in the vasculature.
Collapse
Affiliation(s)
- Siân P Cartland
- Heart Research Institute, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ruby C Y Lin
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Scott Genner
- Heart Research Institute, Sydney, NSW, Australia
| | - Manisha S Patil
- Heart Research Institute, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Gonzalo J Martínez
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Sydney, NSW, Australia.,División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile
| | - Jennifer Y Barraclough
- Heart Research Institute, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Brian Gloss
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Ashish Misra
- Heart Research Institute, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sanjay Patel
- Heart Research Institute, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Mary M Kavurma
- Heart Research Institute, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Gu C, Li P, Liu W, Zhou Y, Tan W. The role of insulin in transdifferentiated hepatocyte proliferation and function in serum-free medium. J Cell Mol Med 2019; 23:4165-4178. [PMID: 30950200 PMCID: PMC6533558 DOI: 10.1111/jcmm.14303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/20/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
Transdifferentiated hepatocytes are potential seeding cells for bioartificial liver (BAL) treatment, and it is important to obtain a sufficient number of functional hepatocytes in serum-free medium (SFM). Although insulin plays an essential role in promoting cell proliferation and metabolism, the functions of insulin in transdifferentiated cells remain poorly understood. Here, we found that 1.0 mg/L insulin significantly increased human-induced hepatocyte-like cells (hiHeps) proliferation and viability in SFM. The pro-proliferative effect of insulin on these cells occurred via augmented cyclin D1 expression that was mediated by activation of the Akt1/mTOR/p70S6K and Akt1/P53 pathways. Further studies revealed that insulin also enhanced the specific liver function of hiHeps in SFM. Additionally, Western blotting and siHNF1A transfection analysis showed that insulin increased the protein expression of Albumin (ALB) and UDP-glucuronosyltransferase1A1 (UGT1A1 ) in hiHeps via HNF1A. Finally, hiHep proliferation and the expression of specific genes were maintained during long-term passaging in SFM supplemented with 1.0 mg/L insulin. Collectively, our findings show that insulin promotes transdifferentiated hiHep proliferation and specific functional expression. These findings have important implications for the expansion of functional hiHeps prior to clinical applications of BALs.
Collapse
Affiliation(s)
- Ce Gu
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Panpan Li
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Wei Liu
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Yan Zhou
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Wen‐Song Tan
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| |
Collapse
|
12
|
Cartland SP, Genner SW, Martínez GJ, Robertson S, Kockx M, Lin RC, O'Sullivan JF, Koay YC, Manuneedhi Cholan P, Kebede MA, Murphy AJ, Masters S, Bennett MR, Jessup W, Kritharides L, Geczy C, Patel S, Kavurma MM. TRAIL-Expressing Monocyte/Macrophages Are Critical for Reducing Inflammation and Atherosclerosis. iScience 2019; 12:41-52. [PMID: 30665196 PMCID: PMC6348195 DOI: 10.1016/j.isci.2018.12.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/12/2018] [Accepted: 12/28/2018] [Indexed: 12/31/2022] Open
Abstract
Circulating tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) levels are reduced in patients with cardiovascular disease, and TRAIL gene deletion in mice exacerbates atherosclerosis and inflammation. How TRAIL protects against atherosclerosis and why levels are reduced in disease is unknown. Here, multiple strategies were used to identify the protective source of TRAIL and its mechanism(s) of action. Samples from patients with coronary artery disease and bone-marrow transplantation experiments in mice lacking TRAIL revealed monocytes/macrophages as the main protective source. Accordingly, deletion of TRAIL caused a more inflammatory macrophage with reduced migration, displaying impaired reverse cholesterol efflux and efferocytosis. Furthermore, interleukin (IL)-18, commonly increased in plasma of patients with cardiovascular disease, negatively regulated TRAIL transcription and gene expression, revealing an IL-18-TRAIL axis. These findings demonstrate that TRAIL is protective of atherosclerosis by modulating monocyte/macrophage phenotype and function. Manipulating TRAIL levels in these cells highlights a different therapeutic avenue in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Siân P Cartland
- Heart Research Institute, 7 Eliza St, Newtown, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, Australia
| | - Scott W Genner
- Heart Research Institute, 7 Eliza St, Newtown, Sydney, Australia
| | - Gonzalo J Martínez
- Sydney Medical School, University of Sydney, Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia; División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Stacy Robertson
- Heart Research Institute, 7 Eliza St, Newtown, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, Australia
| | | | - Ruby Cy Lin
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - John F O'Sullivan
- Heart Research Institute, 7 Eliza St, Newtown, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Yen Chin Koay
- Heart Research Institute, 7 Eliza St, Newtown, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, Australia
| | - Pradeep Manuneedhi Cholan
- Heart Research Institute, 7 Eliza St, Newtown, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, Australia
| | - Melkam A Kebede
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Seth Masters
- Walter and Elisa Hall Institute of Medical Research, Melbourne, Australia
| | - Martin R Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Carolyn Geczy
- Heart Research Institute, 7 Eliza St, Newtown, Sydney, Australia; School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Sanjay Patel
- Heart Research Institute, 7 Eliza St, Newtown, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Mary M Kavurma
- Heart Research Institute, 7 Eliza St, Newtown, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, Australia.
| |
Collapse
|
13
|
Braithwaite AT, Marriott HM, Lawrie A. Divergent Roles for TRAIL in Lung Diseases. Front Med (Lausanne) 2018; 5:212. [PMID: 30101145 PMCID: PMC6072839 DOI: 10.3389/fmed.2018.00212] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
The tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a widely expressed cytokine that can bind five different receptors. TRAIL has been of particular interest for its proposed ability to selectively induce apoptosis in tumour cells. However, it has also been found to regulate a wide variety of non-canonical cellular effects including survival, migration and proliferation via kinase signalling pathways. Lung diseases represent a wide range of conditions affecting multiple tissues. TRAIL has been implicated in several biological processes underlying lung diseases, including angiogenesis, inflammation, and immune regulation. For example, TRAIL is detrimental in pulmonary arterial hypertension—it is upregulated in patient serum and lungs, and drives the underlying proliferative pulmonary vascular remodelling in rodent models. However, TRAIL protects against pulmonary fibrosis in mice models—by inducing apoptosis of neutrophils—and reduced serum TRAIL is found in patients. Conversely, in the airways TRAIL positively regulates inflammation and immune response. In COPD patients and asthmatic patients challenged with antigen, TRAIL and its death receptors are upregulated in serum and airways. Furthermore, TRAIL-deleted mouse models have reduced airway inflammation and remodelling. In the context of respiratory infections, TRAIL assists in immune response, e.g., via T-cell toxicity in influenza infection, and neutrophil killing in S. pneumoniae infection. In this mini-review, we examine the functions of TRAIL and highlight the diverse roles TRAIL has in diseases affecting the lung. Disentangling the facets of TRAIL signalling in lung diseases could help in understanding their pathogenic processes and targeting novel treatments.
Collapse
Affiliation(s)
- Adam T Braithwaite
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, United Kingdom
| | - Helen M Marriott
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, United Kingdom
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, United Kingdom
| |
Collapse
|
14
|
Wang D, Uhrin P, Mocan A, Waltenberger B, Breuss JM, Tewari D, Mihaly-Bison J, Huminiecki Ł, Starzyński RR, Tzvetkov NT, Horbańczuk J, Atanasov AG. Vascular smooth muscle cell proliferation as a therapeutic target. Part 1: molecular targets and pathways. Biotechnol Adv 2018; 36:1586-1607. [PMID: 29684502 DOI: 10.1016/j.biotechadv.2018.04.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases are a major cause of human death worldwide. Excessive proliferation of vascular smooth muscle cells contributes to the etiology of such diseases, including atherosclerosis, restenosis, and pulmonary hypertension. The control of vascular cell proliferation is complex and encompasses interactions of many regulatory molecules and signaling pathways. Herein, we recapitulated the importance of signaling cascades relevant for the regulation of vascular cell proliferation. Detailed understanding of the mechanism underlying this process is essential for the identification of new lead compounds (e.g., natural products) for vascular therapies.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Pavel Uhrin
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Strada Gheorghe Marinescu 23, 400337 Cluj-Napoca, Romania; Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Johannes M Breuss
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal, 263136 Nainital, Uttarakhand, India
| | - Judit Mihaly-Bison
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Łukasz Huminiecki
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Rafał R Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Nikolay T Tzvetkov
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; NTZ Lab Ltd., Krasno Selo 198, 1618 Sofia, Bulgaria
| | - Jarosław Horbańczuk
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| |
Collapse
|