1
|
Liu X, Yu H, Yan G, Xu B, Sun M, Feng M. Causal relationships between coffee intake, apolipoprotein B and gastric, colorectal, and esophageal cancers: univariable and multivariable Mendelian randomization. Eur J Nutr 2024; 63:469-483. [PMID: 38040849 DOI: 10.1007/s00394-023-03281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE Coffee intake and apolipoprotein B levels have been linked to gastric, colorectal, and esophageal cancers in numerous recent studies. However, whether these associations are all causal remains unestablished. This study aimed to assess the potential causal associations of apolipoprotein B and coffee intake with the risk of gastric, colorectal, and esophageal cancers using Mendelian randomization analysis. METHODS In this study, we utilized a two-sample Mendelian randomization analysis to access the causal effects of coffee intake and apolipoprotein B on gastric, colorectal, and esophageal cancers. The summary statistics of coffee intake (n = 428,860) and apolipoprotein B (n = 439,214) were obtained from the UK Biobank. In addition, the summary statistics of gastric cancer, colorectal cancer, and esophageal cancer were obtained from the FinnGen biobank (n = 218,792). Inverse variance weighted, MR-Egger, weighted median, and weighted mode were applied to examine the causal relationship between coffee intake, apolipoprotein B and gastric, colorectal, and esophageal cancers. MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis were performed to evaluate possible heterogeneity and pleiotropy. Steiger filtering and bidirectional mendelian randomization analysis were performed to evaluate the possible reverse causality. RESULTS The result of the inverse variance weighted method indicated that apolipoprotein B levels were significantly associated with a higher risk of gastric cancer (OR = 1.392, 95% CI 1.027-1.889, P = 0.0333) and colorectal cancer (OR = 1.188, 95% CI 1.001-1.411, P = 0.0491). Furthermore, multivariable Mendelian randomization analysis also revealed a positive association between apolipoprotein B levels and colorectal cancer risk, but the effect of apolipoprotein B on gastric cancer risk disappeared after adjustment of coffee intake, body mass index or lipid-related traits. However, we did not discover any conclusive evidence linking coffee intake to gastric, colorectal, or esophageal cancers. CONCLUSIONS This study suggested a causal association between genetically increased apolipoprotein B levels and higher risk of colorectal cancer. No causal relationship was observed between coffee intake and gastric, colorectal, or esophageal cancers.
Collapse
Affiliation(s)
- Xingwu Liu
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, China
| | - Han Yu
- School of Health Management, China Medical University, Shenyang, China
| | - Guanyu Yan
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, China
| | - Boyang Xu
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, China
| | - Mingjun Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, China
| | - Mingliang Feng
- Department of Endoscopy, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Ulloque-Badaracco JR, Al-Kassab-Córdova A, Hernandez-Bustamante EA, Alarcon-Braga EA, Huayta-Cortez M, Carballo-Tello XL, Seminario-Amez RA, Herrera-Añazco P, Benites-Zapata VA. Association of apolipoproteins and lipoprotein(a) with metabolic syndrome: a systematic review and meta-analysis. Lipids Health Dis 2023; 22:98. [PMID: 37420190 DOI: 10.1186/s12944-023-01860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND & AIMS Apolipoproteins and lipoprotein(a) are associated with various cardiometabolic diseases, including insulin resistance, diabetes mellitus, hypertension, dyslipidemia, among others. This systematic review and meta-analysis was conducted to evaluate the association of these markers with metabolic syndrome (MetS). METHODS We ran a systematic search through PubMed, Scopus, Embase, Ovid/Medline, and Web of Science on March 15, 2023. No language or date restrictions were applied. The only synthesised effect measure reported was the odds ratio (OR) with its corresponding 95% confidence interval (95% CI). We utilised the random-effects model for the quantitative synthesis. RESULTS We analysed 50 studies (n = 150 519) with different definitions for MetS. Increased ApoB values were associated with MetS (OR = 2.8; 95% CI: 2.44-3.22; p < 0.01, I2 = 99%). Decreased ApoA1 values were associated with MetS (OR = 0.42; 95% CI: 0.38-0.47; p < 0.01, I2 = 99%). Increased values of the ApoB/ApoA1 ratio were associated with MetS (OR = 4.97; 95% CI: 3.83-6.44; p < 0.01, I2 = 97%). Decreased values of Lp(a) were associated with MetS (OR = 0.89; 95% CI: 0.82-0.96; p < 0.01; I2 = 92%). CONCLUSIONS Increased values of ApoB and ApoB/ApoA1 ratio are associated with MetS, while decreased values of ApoA1 and Lp(a) are associated with MetS. These findings suggest that these lipid markers may serve as potential indicators for identifying subjects at risk of developing MetS. However, further research is required to elucidate the underlying mechanisms of these associations.
Collapse
Affiliation(s)
| | - Ali Al-Kassab-Córdova
- Centro de Excelencia en Investigaciones Económicas y Sociales en Salud, Universidad San Ignacio de Loyola, Lima, Peru
| | - Enrique A Hernandez-Bustamante
- Grupo Peruano de Investigación Epidemiológica, Unidad Para La Generación Y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
- Sociedad Científica de Estudiantes de Medicina de La Universidad Nacional de Trujillo, Trujillo, Peru
| | | | - Miguel Huayta-Cortez
- Facultad de Ciencias de La Salud, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | | | - Rosa A Seminario-Amez
- Facultad de Ciencias de La Salud, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Percy Herrera-Añazco
- Universidad Privada del Norte, Trujillo, Peru
- Red Peruana de Salud Colectiva, Lima, Peru
| | - Vicente A Benites-Zapata
- Vicerrectorado de Investigación, Unidad de Investigación Para La Generación Y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru.
| |
Collapse
|
3
|
Barbalho SM, Laurindo LF, Tofano RJ, Flato UAP, Mendes CG, de Alvares Goulart R, Briguezi AMGM, Bechara MD. Dysmetabolic Iron Overload Syndrome: Going beyond the Traditional Risk Factors Associated with Metabolic Syndrome. ENDOCRINES 2023; 4:18-37. [DOI: 10.3390/endocrines4010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Dysmetabolic iron overload syndrome (DIOS) corresponds to the increase in iron stores associated with components of metabolic syndrome (MtS) and in the absence of an identifiable cause of iron excess. The objective of this work was to review the main aspects of DIOS. PUBMED and EMBASE were consulted, and PRISMA guidelines were followed. DIOS is usually asymptomatic and can be diagnosed by investigating MtS and steatosis. About 50% of the patients present altered hepatic biochemical tests (increased levels of γ-glutamyl transpeptidase itself or associated with increased levels of alanine aminotransferase). The liver may present parenchymal and mesenchymal iron overload, but the excess of iron is commonly mild. Steatosis or steatohepatitis is observed in half of the patients. Fibrosis is observed in about 15% of patients. Hyperferritinemia may damage the myocardium, liver, and several other tissues, increasing morbidity and mortality. Furthermore, DIOS is closely related to oxidative stress, which is closely associated with several pathological conditions such as inflammatory diseases, hypertension, diabetes, heart failure, and cancer. DIOS is becoming a relevant finding in the general population and can be associated with high morbidity/mortality. For these reasons, investigation of this condition could be an additional requirement for the early prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília, São Paulo 17500-000, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Department of Cardiology, Associação Beneficente Hospital Universitário (ABHU), Rua Dr. Próspero Cecílio Coimbra, 80, Marília, São Paulo 17525-160, Brazil
| | - Uri Adrian Prync Flato
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília, São Paulo 17500-000, Brazil
| | - Claudemir G. Mendes
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Ana Maria Gonçalves Milla Briguezi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| |
Collapse
|
4
|
Association between apolipoprotein B/A1 and the risk of metabolic dysfunction associated fatty liver disease according to different lipid profiles in a Chinese population: A cross-sectional study. Clin Chim Acta 2022; 534:138-145. [PMID: 35905837 DOI: 10.1016/j.cca.2022.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIM Metabolic dysfunction associated fatty liver disease (MAFLD) is the most common liver disease and dyslipidemia is commonly considered a prominent risk factor for MAFLD. This study was to investigate the association between the apolipoprotein B/A1 (apo B/A1) ratio and the risk of MAFLD based on new diagnostic criteria. METHODS We conducted a cross-sectional study on 3341 participants. Restricted cubic spline (RCS) analyses, logistic regression, Synergistic effects analyses and stratified analyses were used to evaluate the association between the apo B/A1 ratio and the risk of MAFLD. RESULTS The apo B/A1 ratio was nonlinearly related to the increased risk of MAFLD and the OR and 95% CI for the apo B/A1 95th percentile was 1.700 (1.004-2.879) compared with the 50th percentile. Each 1 SD increase in apo B/A1 ratio would increase the 1.313-fold risk of the risk of MAFLD in all participants and 1.46-fold risk in normolipidemic participants. Synergistic effects indicated elevated Apo B/A1 ratio and dyslipidemia collectively contributed to an increased risk of MAFLD [OR (95 %CI): 2.496(1.869-3.334)]. CONCLUSIONS The apo B/A 1 ratio was a risk factor of the presence of MAFLD. Dyslipidemia and elevated the Apo B/A1 ratio can synergistically contributed to the risk of MAFLD.
Collapse
|
5
|
Lin L, Wang L, Du R, Hu C, Lu J, Wang T, Li M, Zhao Z, Xu Y, Xu M, Bi Y, Wang W, Ning G, Chen Y. Arterial Stiffness, Biomarkers of Liver Fat, and the Development of Metabolic Dysfunction in Metabolically Healthy Population: A Prospective Study. Front Cardiovasc Med 2022; 9:928782. [PMID: 35811692 PMCID: PMC9261979 DOI: 10.3389/fcvm.2022.928782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Metabolic dysfunction is known to be associated with arterial stiffness. However, the risks of metabolic syndrome and diabetes due to arterial stiffness and the potential mechanism remain unclear. We aimed to investigate the association of arterial stiffness with the risk of metabolic syndrome and diabetes, and determine whether this association is mediated by liver fat. Methods A prospective study was conducted with 4,139 Chinese adults who were metabolically healthy at baseline. Arterial stiffness was measured by brachial-ankle pulse wave velocity (baPWV). Obesity was defined as body mass index ≥25 kg/m2. The primary outcomes were incident metabolic syndrome and diabetes. Results During a median follow-up of 4.4 years, 1,022 (24.7%) and 354 (9.5%) participants developed metabolic syndrome and diabetes, respectively. Compared with those in the lowest quartile of baPWV, participants in the highest quartile had 85 and 91% higher risks of metabolic syndrome and diabetes [risk ratio (RR) 1.85, 95% confidence interval (CI) 1.41, 2.42 for metabolic syndrome; RR 1.91, 95% CI 1.16, 3.15 for diabetes]. Mediation analyses indicated that fatty liver significantly mediated the association of arterial stiffness with metabolic syndrome and diabetes risk. Specifically, 18.4% of metabolic syndrome and 12.6% of diabetes risk due to arterial stiffness were mediated through fatty liver. Conclusions Arterial stiffness was associated with higher risks of metabolic syndrome and diabetes in individuals with obesity. This association may be partially mediated by fatty liver.
Collapse
Affiliation(s)
- Lin Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Long Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Du
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunyan Hu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Biomarkers in metabolic syndrome. Adv Clin Chem 2022; 111:101-156. [DOI: 10.1016/bs.acc.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Pluimakers VG, van Santen SS, Fiocco M, Bakker MCE, van der Lelij AJ, van den Heuvel-Eibrink MM, Neggers SJCMM. Can biomarkers be used to improve diagnosis and prediction of metabolic syndrome in childhood cancer survivors? A systematic review. Obes Rev 2021; 22:e13312. [PMID: 34258851 PMCID: PMC8596408 DOI: 10.1111/obr.13312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/11/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022]
Abstract
Childhood cancer survivors (CCS) are at increased risk to develop metabolic syndrome (MetS), diabetes, and cardiovascular disease. Common criteria underestimate adiposity and possibly underdiagnose MetS, particularly after abdominal radiotherapy. A systematic literature review and meta-analysis on the diagnostic and predictive value of nine newer MetS related biomarkers (adiponectin, leptin, uric acid, hsCRP, TNF-alpha, IL-1, IL-6, apolipoprotein B (apoB), and lipoprotein(a) [lp(a)]) in survivors and adult non-cancer survivors was performed by searching PubMed and Embase. Evidence was summarized with GRADE after risk of bias evaluation (QUADAS-2/QUIPS). Eligible studies on promising biomarkers were pooled. We identified 175 general population and five CCS studies. In the general population, valuable predictive biomarkers are uric acid, adiponectin, hsCRP and apoB (high level of evidence), and leptin (moderate level of evidence). Valuable diagnostic biomarkers are hsCRP, adiponectin, uric acid, and leptin (low, low, moderate, and high level of evidence, respectively). Meta-analysis showed OR for hyperuricemia of 2.94 (age-/sex-adjusted), OR per unit uric acid increase of 1.086 (unadjusted), and AUC for hsCRP of 0.71 (unadjusted). Uric acid, adiponectin, hsCRP, leptin, and apoB can be alternative biomarkers in the screening setting for MetS in survivors, to enhance early identification of those at high risk of subsequent complications.
Collapse
Affiliation(s)
| | - Selveta S van Santen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Medicine, Endocrinology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Marta Fiocco
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Medical Statistics, Department of Biomedical Data Science, Leiden UMC, Leiden, Netherlands.,Mathematical Institute, Leiden University, Leiden, Netherlands
| | - Marie-Christine E Bakker
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Medicine, University Medical Center Utrecht, Netherlands
| | - Aart J van der Lelij
- Department of Medicine, Endocrinology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Sebastian J C M M Neggers
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Medicine, Endocrinology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
8
|
Lau ES, Paniagua SM, Zarbafian S, Hoffman U, Long MT, Hwang S, Courchesne P, Yao C, Ma J, Larson MG, Levy D, Shah RV, Ho JE. Cardiovascular Biomarkers of Obesity and Overlap With Cardiometabolic Dysfunction. J Am Heart Assoc 2021; 10:e020215. [PMID: 34219465 PMCID: PMC8483498 DOI: 10.1161/jaha.120.020215] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/22/2021] [Indexed: 01/10/2023]
Abstract
Background Obesity may be associated with a range of cardiometabolic manifestations. We hypothesized that proteomic profiling may provide insights into the biological pathways that contribute to various obesity-associated cardiometabolic traits. We sought to identify proteomic signatures of obesity and examine overlap with related cardiometabolic traits, including abdominal adiposity, insulin resistance, and adipose depots. Methods and Results We measured 71 circulating cardiovascular disease protein biomarkers in 6981 participants (54% women; mean age, 49 years). We examined the associations of obesity, computed tomography measures of adiposity, cardiometabolic traits, and incident metabolic syndrome with biomarkers using multivariable regression models. Of the 71 biomarkers examined, 45 were significantly associated with obesity, of which 32 were positively associated and 13 were negatively associated with obesity (false discovery rate q<0.05 for all). There was significant overlap of biomarker profiles of obesity and cardiometabolic traits, but 23 biomarkers, including melanoma cell adhesion molecule (MCAM), growth differentiation factor-15 (GDF15), and lipoprotein(a) (LPA) were unique to metabolic traits only. Using hierarchical clustering, we found that the protein biomarkers clustered along 3 main trait axes: adipose, metabolic, and lipid traits. In longitudinal analyses, 6 biomarkers were significantly associated with incident metabolic syndrome: apolipoprotein B (apoB), insulin-like growth factor-binding protein 2 (IGFBP2), plasma kallikrein (KLKB1), complement C2 (C2), fibrinogen (FBN), and N-terminal pro-B-type natriuretic peptide (NT-proBNP); false discovery rate q<0.05 for all. Conclusions We found that the proteomic architecture of obesity overlaps considerably with associated cardiometabolic traits, implying shared pathways. Despite overlap, hierarchical clustering of proteomic profiles identified 3 distinct clusters of cardiometabolic traits: adipose, metabolic, and lipid. Further exploration of these novel protein targets and associated pathways may provide insight into the mechanisms responsible for the progression from obesity to cardiometabolic disease.
Collapse
Affiliation(s)
- Emily S. Lau
- Cardiology DivisionDepartment of MedicineMassachusetts General HospitalBostonMA
| | - Samantha M. Paniagua
- Cardiology DivisionDepartment of MedicineMassachusetts General HospitalBostonMA
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Shahrooz Zarbafian
- Cardiology DivisionDepartment of MedicineMassachusetts General HospitalBostonMA
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Udo Hoffman
- Department of RadiologyMassachusetts General HospitalBostonMA
| | - Michelle T. Long
- Section of GastroenterologyBoston Medical CenterBoston University School of MedicineBostonMA
| | - Shih‐Jen Hwang
- Department of BiostatisticsBoston University School of Public HealthBostonMA
- The Framingham Heart StudyFraminghamMA
| | | | - Chen Yao
- The Framingham Heart StudyFraminghamMA
- The Population Sciences BranchDivision of Intramural ResearchNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Jiantao Ma
- The Framingham Heart StudyFraminghamMA
- The Population Sciences BranchDivision of Intramural ResearchNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Martin G. Larson
- Department of BiostatisticsBoston University School of Public HealthBostonMA
- The Framingham Heart StudyFraminghamMA
| | - Daniel Levy
- The Framingham Heart StudyFraminghamMA
- The Population Sciences BranchDivision of Intramural ResearchNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Ravi V. Shah
- Cardiology DivisionDepartment of MedicineMassachusetts General HospitalBostonMA
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Jennifer E. Ho
- Cardiology DivisionDepartment of MedicineMassachusetts General HospitalBostonMA
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| |
Collapse
|
9
|
Xuan L, Wang T, Dai H, Wang B, Xiang J, Wang S, Lin H, Li M, Zhao Z, Lu J, Chen Y, Xu Y, Wang W, Xu M, Bi Y, Ning G. Serum lipoprotein (a) associates with a higher risk of reduced renal function: a prospective investigation. J Lipid Res 2020; 61:1320-1327. [PMID: 32703886 PMCID: PMC7529054 DOI: 10.1194/jlr.ra120000771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lipoprotein (a) [Lp(a)] is a well-known risk factor for cardiovascular disease, but analysis on Lp(a) and renal dysfunction is scarce. We aimed to investigate prospectively the association of serum Lp(a) with the risk of reduced renal function, and further investigated whether diabetic or hypertensive status modified such association. Six thousand two hundred and fifty-seven Chinese adults aged ≤40 years and free of reduced renal function at baseline were included in the study. Reduced renal function was defined as estimated glomerular filtration rate <60 ml/min/1.73 m2 During a mean follow-up of 4.4 years, 158 participants developed reduced renal function. Each one-unit increase in log10-Lp(a) (milligrams per deciliter) was associated with a 1.99-fold (95% CI 1.15-3.43) increased risk of incident reduced renal function; the multivariable-adjusted odds ratio (OR) for the highest tertile of Lp(a) was 1.61 (95% CI 1.03-2.52) compared with the lowest tertile (P for trend = 0.03). The stratified analysis showed the association of serum Lp(a) and incident reduced renal function was more prominent in participants with prevalent diabetes [OR 4.04, 95% CI (1.42-11.54)] or hypertension [OR 2.18, 95% CI (1.22-3.89)]. A stronger association was observed in the group with diabetes and high Lp(a) (>25 mg/dl), indicating a combined effect of diabetes and high Lp(a) on the reduced renal function risk. An elevated Lp(a) level was independently associated with risk of incident reduced renal function, especially in diabetic or hypertensive patients.
Collapse
Affiliation(s)
- Liping Xuan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huajie Dai
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiali Xiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Hu C, Zhang Y, Wang S, Lin L, Peng K, Du R, Qi H, Zhang J, Wang T, Zhao Z, Li M, Xu Y, Xu M, Li D, Bi Y, Wang W, Chen Y, Lu J. Association of bedtime with the risk of non-alcoholic fatty liver disease among middle-aged and elderly Chinese adults with pre-diabetes and diabetes. Diabetes Metab Res Rev 2020; 36:e3322. [PMID: 32268002 DOI: 10.1002/dmrr.3322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/27/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Emerging evidence indicated that sleep characteristics may play important roles in the development of metabolic disorders. However, little is known as to the association between bedtime and the risk of non-alcoholic fatty liver disease (NAFLD) in individuals with pre-diabetes and diabetes. METHODS In a prospective cohort of 10 375 adults aged ≥40 years, 1960 of 3484 eligible pre-diabetic and diabetic individuals were identified for the current study. NAFLD was diagnosed using liver ultrasonography at baseline and at follow-up. Information on bedtime was obtained at baseline using a standard questionnaire. RESULTS We documented 433 incident cases of NAFLD among this study population. In multivariable-adjusted logistic regression model, later bedtime was associated with increased risk of NAFLD (29% increased risk per hour of later bedtime). Compared to individuals with bedtime ≤20:00, the odds ratios (95% confidence intervals) of NAFLD for bedtime of 20:00-22:00 and ≥22:00 were 1.56 (1.04-2.34) and 2.05 (1.31-3.20), respectively. In the subgroup analysis, significant associations were observed among those who were overweight or physically inactive, or those with metabolic syndrome or elevated 10-year risks for atherosclerotic cardiovascular disease. When estimating the joint effect of bedtime and other sleep characteristics, higher risk of incident NAFLD was observed in groups of late bed/early rise, late bed/napping (yes), late bed/bad sleeper, or late bed/shorter sleep durations. CONCLUSIONS Later bedtime was significantly associated with an increased risk of incident NAFLD in adults with pre-diabetes and diabetes, underscoring the importance of sleep behaviour management in the prevention of NAFLD.
Collapse
Affiliation(s)
- Chunyan Hu
- Shanghai National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Yi Zhang
- Shanghai National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Shuangyuan Wang
- Shanghai National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Lin Lin
- Shanghai National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Kui Peng
- Shanghai National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Rui Du
- Shanghai National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Hongyan Qi
- Shanghai National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Jie Zhang
- Shanghai National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Tiange Wang
- Shanghai National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Zhiyun Zhao
- Shanghai National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Mian Li
- Shanghai National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Yu Xu
- Shanghai National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Min Xu
- Shanghai National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yufang Bi
- Shanghai National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Weiqing Wang
- Shanghai National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Yuhong Chen
- Shanghai National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Jieli Lu
- Shanghai National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| |
Collapse
|
11
|
Zhu W, Wang S, Dai H, Xuan L, Deng C, Wang T, Zhao Z, Li M, Lu J, Xu Y, Chen Y, Wang W, Bi Y, Xu M, Ning G. Serum total bile acids associate with risk of incident type 2 diabetes and longitudinal changes in glucose-related metabolic traits. J Diabetes 2020; 12:616-625. [PMID: 32220107 DOI: 10.1111/1753-0407.13040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bile acids have been found to be related to changes in gut microbiota and multiple metabolic disorders, including type 2 diabetes (T2D). We aimed to prospectively investigate associations of serum total bile acids (TBAs) with risk of incident T2D and longitudinal changes in glycemic traits. METHODS A community-based study was conducted at baseline in 2010, including 4968 nondiabetic participants aged ≥40 years followed up for an average of 4.3 years. Incident T2D was defined by using the 1999 WHO criteria based on 75-g oral glucose tolerance tests. Multivariate Cox proportional hazards regression was used to examine the association of serum TBAs with incident T2D. Fasting plasma glucose (FPG), 2-hour postload plasma glucose (2-h PPG), and fasting serum insulin (FSI) were measured at baseline and follow-up. RESULTS During 21 653.7 person-years of follow-up, 605 cases of incident diabetes were identified (incidence rate 2.8%). Comparing to quartile 1 of serum TBAs, quartile 2, 3, and 4 were significantly associated with a 14.2%, 15.0%, and 31.4% higher risk of incident T2D (P = .029). Each one unit of log-TBAs was associated with an increase of 0.034 mmol/L in FPG, 0.111 mmol/L in 2-h PPG, 0.023 in log-FSI, and 0.012 in log-HOMA-IR (homeostasis model assessment of insulin resistance) (all P ≤ .024). The association was attenuated after further adjustment for HOMA-IR. Mediation analysis showed that insulin resistance indicated by HOMA-IR might mediate 28.5% of indirect effect on the association of TBAs with T2D (P = .0004). CONCLUSIONS Baseline serum TBAs were significantly associated with incident T2D and longitudinal changes in glycemic traits. Insulin resistance might partially mediate the association of TBAs and T2D.
Collapse
Affiliation(s)
- Wen Zhu
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huajie Dai
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Xuan
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chanjuan Deng
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieli Lu
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- State Key Laboratory of Medical Genomics, Shanghai National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|