1
|
Takagi H, Nakamura Y, Schmidt C, Kucera M, Saito H, Moriya K. Two waves of photosymbiosis acquisition in extant planktonic foraminifera explained by ecological incumbency. THE ISME JOURNAL 2025; 19:wrae244. [PMID: 39658194 PMCID: PMC11736160 DOI: 10.1093/ismejo/wrae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/01/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Photosymbiosis, a mode of mixotrophy by algal endosymbiosis, provides key advantages to pelagic life in oligotrophic oceans. Despite its ecological importance, mechanisms underlying its emergence and association with the evolutionary success of photosymbiotic lineages remain unclear. We used planktonic foraminifera, a group of pelagic test-forming protists with an excellent fossil record, to reveal the history of symbiont acquisition among their three main extant clades. We used single-cell 18S rRNA gene amplicon sequencing to reveal symbiont identity and mapped the symbiosis on a phylogeny time-calibrated by fossil data. We show that the highly specific symbiotic interaction with dinoflagellates emerged in the wake of a major extinction of symbiont-bearing taxa at the end of the Eocene. In contrast, less specific and low-light-adapted symbioses with pelagophytes emerged 20 million years later, in multiple independent lineages in the Late Neogene, at a time when the vertical structure of pelagic ecosystems was transformed by global cooling. We infer that in foraminifera, photosymbiosis can evolve easily and that its establishment leads to diversification and ecological dominance to such an extent, that the proliferation of new symbioses is prevented by the incumbent lineages.
Collapse
Affiliation(s)
- Haruka Takagi
- Department of Marine Ecosystem Science, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
- Department of Earth Sciences, Faculty of Science, Chiba University, Chiba 263-8522, Japan
| | - Yasuhide Nakamura
- Environmental Change Division, Estuary Research Center, Shimane University, Matsue 690-8504, Japan
- Department of Botany, National Museum of Nature and Science, Tsukuba 305-0005, Japan
| | - Christiane Schmidt
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen 28359, Germany
- Department Geoinformation, Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Potsdam 14473, Germany
| | - Michal Kucera
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen 28359, Germany
| | - Hiroaki Saito
- Center for International Research Collaboration, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Kazuyoshi Moriya
- Department of Earth Sciences, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo 169-8050, Japan
| |
Collapse
|
2
|
Holzmann M, Nguyen NL, Angeles IB, Pawlowski J. BFR2: a curated ribosomal reference dataset for benthic foraminifera. Sci Data 2024; 11:1292. [PMID: 39604449 PMCID: PMC11603256 DOI: 10.1038/s41597-024-04137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Benthic foraminifera are one of the major groups of marine protists that also occur in freshwater and terrestrial habitats. They are widely used to monitor current and past environmental conditions. Over the last three decades, thousands of DNA sequences have been obtained from benthic foraminiferal isolates. The results of this long-term effort are compiled here in the form of the first curated benthic foraminiferal ribosomal reference dataset (BFR2). The present dataset contains over 5000 sequences of a fragment of the 18S rDNA gene, which is recognized as the DNA barcode of foraminifera. The sequences represent 279 species and 204 genera belonging to 91 families. Thirteen percent of these sequences have not been assigned to any morphologically described group and may represent species new to science. Furthermore, forty-five percent of the sequences have not been previously published. The BFR2 dataset aims to collect all DNA barcodes of benthic foraminifera and to provide a much-needed reference dataset for the rapidly developing field of molecular foraminiferal studies.
Collapse
Affiliation(s)
- Maria Holzmann
- Department of Genetics and Evolution, University of Geneva, 1211, Geneva 4, Switzerland.
| | - Ngoc-Loi Nguyen
- Department of Paleoceanography, Institute of Oceanology Polish Academy of Sciences, 81-712, Sopot, Poland
| | | | - Jan Pawlowski
- Department of Genetics and Evolution, University of Geneva, 1211, Geneva 4, Switzerland
- Department of Paleoceanography, Institute of Oceanology Polish Academy of Sciences, 81-712, Sopot, Poland
| |
Collapse
|
3
|
Morard R, Darling KF, Weiner AKM, Hassenrück C, Vanni C, Cordier T, Henry N, Greco M, Vollmar NM, Milivojevic T, Rahman SN, Siccha M, Meilland J, Jonkers L, Quillévéré F, Escarguel G, Douady CJ, de Garidel-Thoron T, de Vargas C, Kucera M. The global genetic diversity of planktonic foraminifera reveals the structure of cryptic speciation in plankton. Biol Rev Camb Philos Soc 2024; 99:1218-1241. [PMID: 38351434 DOI: 10.1111/brv.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 07/06/2024]
Abstract
The nature and extent of diversity in the plankton has fascinated scientists for over a century. Initially, the discovery of many new species in the remarkably uniform and unstructured pelagic environment appeared to challenge the concept of ecological niches. Later, it became obvious that only a fraction of plankton diversity had been formally described, because plankton assemblages are dominated by understudied eukaryotic lineages with small size that lack clearly distinguishable morphological features. The high diversity of the plankton has been confirmed by comprehensive metabarcoding surveys, but interpretation of the underlying molecular taxonomies is hindered by insufficient integration of genetic diversity with morphological taxonomy and ecological observations. Here we use planktonic foraminifera as a study model and reveal the full extent of their genetic diversity and investigate geographical and ecological patterns in their distribution. To this end, we assembled a global data set of ~7600 ribosomal DNA sequences obtained from morphologically characterised individual foraminifera, established a robust molecular taxonomic framework for the observed diversity, and used it to query a global metabarcoding data set covering ~1700 samples with ~2.48 billion reads. This allowed us to extract and assign 1 million reads, enabling characterisation of the structure of the genetic diversity of the group across ~1100 oceanic stations worldwide. Our sampling revealed the existence of, at most, 94 distinct molecular operational taxonomic units (MOTUs) at a level of divergence indicative of biological species. The genetic diversity only doubles the number of formally described species identified by morphological features. Furthermore, we observed that the allocation of genetic diversity to morphospecies is uneven. Only 16 morphospecies disguise evolutionarily significant genetic diversity, and the proportion of morphospecies that show genetic diversity increases poleward. Finally, we observe that MOTUs have a narrower geographic distribution than morphospecies and that in some cases the MOTUs belonging to the same morphospecies (cryptic species) have different environmental preferences. Overall, our analysis reveals that even in the light of global genetic sampling, planktonic foraminifera diversity is modest and finite. However, the extent and structure of the cryptic diversity reveals that genetic diversification is decoupled from morphological diversification, hinting at different mechanisms acting at different levels of divergence.
Collapse
Affiliation(s)
- Raphaël Morard
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Kate F Darling
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JW, UK
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Agnes K M Weiner
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, Bergen, 5007, Norway
| | - Christiane Hassenrück
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestrasse 15, Warnemünde, 18119, Germany
| | - Chiara Vanni
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Tristan Cordier
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, Bergen, 5007, Norway
| | - Nicolas Henry
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, Roscoff, 29680, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, Paris, 75016, France
| | - Mattia Greco
- Institut de Ciències del Mar, Passeig Marítim de la Barceloneta, Barcelona, 37-49, Spain
| | - Nele M Vollmar
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, Bergen, 5007, Norway
| | - Tamara Milivojevic
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Shirin Nurshan Rahman
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Michael Siccha
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Julie Meilland
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Lukas Jonkers
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Frédéric Quillévéré
- Univ Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS, UMR CNRS 5276 LGL-TPE, Villeurbanne, F-69622, France
| | - Gilles Escarguel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, F-69622, France
| | - Christophe J Douady
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, F-69622, France
- Institut Universitaire de France, Paris, France
| | | | - Colomban de Vargas
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, Roscoff, 29680, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR7144, Place Georges Teissier, Roscoff, 29680, France
| | - Michal Kucera
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| |
Collapse
|
4
|
Blackman R, Couton M, Keck F, Kirschner D, Carraro L, Cereghetti E, Perrelet K, Bossart R, Brantschen J, Zhang Y, Altermatt F. Environmental DNA: The next chapter. Mol Ecol 2024; 33:e17355. [PMID: 38624076 DOI: 10.1111/mec.17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Molecular tools are an indispensable part of ecology and biodiversity sciences and implemented across all biomes. About a decade ago, the use and implementation of environmental DNA (eDNA) to detect biodiversity signals extracted from environmental samples opened new avenues of research. Initial eDNA research focused on understanding population dynamics of target species. Its scope thereafter broadened, uncovering previously unrecorded biodiversity via metabarcoding in both well-studied and understudied ecosystems across all taxonomic groups. The application of eDNA rapidly became an established part of biodiversity research, and a research field by its own. Here, we revisit key expectations made in a land-mark special issue on eDNA in Molecular Ecology in 2012 to frame the development in six key areas: (1) sample collection, (2) primer development, (3) biomonitoring, (4) quantification, (5) behaviour of DNA in the environment and (6) reference database development. We pinpoint the success of eDNA, yet also discuss shortfalls and expectations not met, highlighting areas of research priority and identify the unexpected developments. In parallel, our retrospective couples a screening of the peer-reviewed literature with a survey of eDNA users including academics, end-users and commercial providers, in which we address the priority areas to focus research efforts to advance the field of eDNA. With the rapid and ever-increasing pace of new technical advances, the future of eDNA looks bright, yet successful applications and best practices must become more interdisciplinary to reach its full potential. Our retrospect gives the tools and expectations towards concretely moving the field forward.
Collapse
Affiliation(s)
- Rosetta Blackman
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Marjorie Couton
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - François Keck
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Dominik Kirschner
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, Ecosystems and Landscape Evolution, ETH Zürich, Zürich, Switzerland
- Department of Landscape Dynamics & Ecology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Luca Carraro
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Eva Cereghetti
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Kilian Perrelet
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- Department of Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Urban Water Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Raphael Bossart
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jeanine Brantschen
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Yan Zhang
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| |
Collapse
|
5
|
Barrenechea Angeles I, Nguyen NL, Greco M, Tan KS, Pawlowski J. Assigning the unassigned: A signature-based classification of rDNA metabarcodes reveals new deep-sea diversity. PLoS One 2024; 19:e0298440. [PMID: 38422100 PMCID: PMC10903905 DOI: 10.1371/journal.pone.0298440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Environmental DNA metabarcoding reveals a vast genetic diversity of marine eukaryotes. Yet, most of the metabarcoding data remain unassigned due to the paucity of reference databases. This is particularly true for the deep-sea meiofauna and eukaryotic microbiota, whose hidden diversity is largely unexplored. Here, we tackle this issue by using unique DNA signatures to classify unknown metabarcodes assigned to deep-sea foraminifera. We analyzed metabarcoding data obtained from 311 deep-sea sediment samples collected in the Clarion-Clipperton Fracture Zone, an area of potential polymetallic nodule exploitation in the Eastern Pacific Ocean. Using the signatures designed in the 37F hypervariable region of the 18S rRNA gene, we were able to classify 802 unassigned metabarcodes into 61 novel lineages, which have been placed in 27 phylogenetic clades. The comparison of new lineages with other foraminiferal datasets shows that most novel lineages are widely distributed in the deep sea. Five lineages are also present in the shallow-water datasets; however, phylogenetic analysis of these lineages separates deep-sea and shallow-water metabarcodes except in one case. While the signature-based classification does not solve the problem of gaps in reference databases, this taxonomy-free approach provides insight into the distribution and ecology of deep-sea species represented by unassigned metabarcodes, which could be useful in future applications of metabarcoding for environmental monitoring.
Collapse
Affiliation(s)
- Inès Barrenechea Angeles
- Department of Earth Sciences, University of Geneva, Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Department of Geosciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ngoc-Loi Nguyen
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Mattia Greco
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- Institute of Marine Sciences, Spanish National Research Council, Barcelona, Spain
| | - Koh Siang Tan
- Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Jan Pawlowski
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- ID-Gene Ecodiagnostics Ltd., Plan-les-Ouates, Switzerland
| |
Collapse
|
6
|
Greco M, Morard R, Darling K, Kucera M. Macroevolutionary patterns in intragenomic rDNA variability among planktonic foraminifera. PeerJ 2023; 11:e15255. [PMID: 37123000 PMCID: PMC10143585 DOI: 10.7717/peerj.15255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Ribosomal intragenomic variability in prokaryotes and eukaryotes is a genomic feature commonly studied for its inflationary impact on molecular diversity assessments. However, the evolutionary mechanisms and distribution of this phenomenon within a microbial group are rarely explored. Here, we investigate the intragenomic variability in 33 species of planktonic foraminifera, calcifying marine protists, by inspecting 2,403 partial SSU sequences obtained from single-cell clone libraries. Our analyses show that polymorphisms are common among planktonic foraminifera species, but the number of polymorphic sites significantly differs among clades. With our molecular simulations, we could assess that most of these mutations are located in paired regions that do not affect the secondary structure of the SSU fragment. Finally, by mapping the number of polymorphic sites on the phylogeny of the clades, we were able to discuss the evolution and potential sources of intragenomic variability in planktonic foraminifera, linking this trait to the distinctive nuclear and genomic dynamics of this microbial group.
Collapse
Affiliation(s)
- Mattia Greco
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Institut de Ciències del Mar (ICM), Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Raphaël Morard
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Kate Darling
- School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
- Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
| | - Michal Kucera
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
7
|
Renewal of planktonic foraminifera diversity after the Cretaceous Paleogene mass extinction by benthic colonizers. Nat Commun 2022; 13:7135. [PMID: 36414628 PMCID: PMC9681854 DOI: 10.1038/s41467-022-34794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
The biotic crisis following the end-Cretaceous asteroid impact resulted in a dramatic renewal of pelagic biodiversity. Considering the severe and immediate effect of the asteroid impact on the pelagic environment, it is remarkable that some of the most affected pelagic groups, like the planktonic foraminifera, survived at all. Here we queried a surface ocean metabarcoding dataset to show that calcareous benthic foraminifera of the clade Globothalamea are able to disperse actively in the plankton, and we show using molecular clock phylogeny that the modern planktonic clades originated from different benthic ancestors that colonized the plankton after the end-Cretaceous crisis. We conclude that the diversity of planktonic foraminifera has been the result of a constant leakage of benthic foraminifera diversity into the plankton, continuously refueling the planktonic niche, and challenge the classical interpretation of the fossil record that suggests that Mesozoic planktonic foraminifera gave rise to the modern communities.
Collapse
|
8
|
Macher JN, Bloska DM, Holzmann M, Girard EB, Pawlowski J, Renema W. Mitochondrial cytochrome c oxidase subunit I (COI) metabarcoding of Foraminifera communities using taxon-specific primers. PeerJ 2022; 10:e13952. [PMID: 36093332 PMCID: PMC9454970 DOI: 10.7717/peerj.13952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/05/2022] [Indexed: 01/19/2023] Open
Abstract
Foraminifera are a species-rich phylum of rhizarian protists that are highly abundant in most marine environments. Molecular methods such as metabarcoding have revealed a high, yet undescribed diversity of Foraminifera. However, so far only one molecular marker, the 18S ribosomal RNA, was available for metabarcoding studies on Foraminifera. Primers that allow amplification of foraminiferal mitochondrial cytochrome oxidase I (COI) and identification of Foraminifera species were recently published. Here we test the performance of these primers for the amplification of whole foraminiferal communities, and compare their performance to that of the highly degenerate LerayXT primers, which amplify the same COI region in a wide range of eukaryotes. We applied metabarcoding to 48 samples taken along three transects spanning a North Sea beach in the Netherlands from dunes to the low tide level, and analysed both sediment samples and meiofauna samples, which contained taxa between 42 µm and 1 mm in body size obtained by decantation from sand samples. We used single-cell metabarcoding (Girard et al., 2022) to generate a COI reference library containing 32 species of Foraminifera, and used this to taxonomically annotate our community metabarcoding data. Our analyses show that the highly degenerate LerayXT primers do not amplify Foraminifera, while the Foraminifera primers are highly Foraminifera- specific, with about 90% of reads assigned to Foraminifera and amplifying taxa from all major groups, i.e., monothalamids, Globothalamea, and Tubothalamea. We identified 176 Foraminifera ASVs and found a change in Foraminifera community composition along the beach transects from high tide to low tide level, and a dominance of single-chambered monothalamid Foraminifera. Our results highlight that COI metabarcoding can be a powerful tool for assessing Foraminiferal communities.
Collapse
Affiliation(s)
- Jan-Niklas Macher
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
| | | | - Maria Holzmann
- Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Elsa B. Girard
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
- Department of Ecosystem & Landscape Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Jan Pawlowski
- Laboratory of Paleoceanography, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Willem Renema
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
- Department of Ecosystem & Landscape Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Woehle C, Roy AS, Glock N, Michels J, Wein T, Weissenbach J, Romero D, Hiebenthal C, Gorb SN, Schönfeld J, Dagan T. Denitrification in foraminifera has an ancient origin and is complemented by associated bacteria. Proc Natl Acad Sci U S A 2022; 119:e2200198119. [PMID: 35704763 PMCID: PMC9231491 DOI: 10.1073/pnas.2200198119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022] Open
Abstract
Benthic foraminifera are unicellular eukaryotes that inhabit sediments of aquatic environments. Several foraminifera of the order Rotaliida are known to store and use nitrate for denitrification, a unique energy metabolism among eukaryotes. The rotaliid Globobulimina spp. has been shown to encode an incomplete denitrification pathway of bacterial origin. However, the prevalence of denitrification genes in foraminifera remains unknown, and the missing denitrification pathway components are elusive. Analyzing transcriptomes and metagenomes of 10 foraminiferal species from the Peruvian oxygen minimum zone, we show that denitrification genes are highly conserved in foraminifera. We infer the last common ancestor of denitrifying foraminifera, which enables us to predict the ability to denitrify for additional foraminiferal species. Additionally, an examination of the foraminiferal microbiota reveals evidence for a stable interaction with Desulfobacteraceae, which harbor genes that complement the foraminiferal denitrification pathway. Our results provide evidence that foraminiferal denitrification is complemented by the foraminifera-associated microbiome. The interaction of foraminifera with their resident bacteria is at the basis of foraminiferal adaptation to anaerobic environments that manifested in ecological success in oxygen depleted habitats.
Collapse
Affiliation(s)
- Christian Woehle
- Institute of General Microbiology, Kiel University, Kiel 24118, Germany
| | | | - Nicolaas Glock
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany
| | - Jan Michels
- Zoological Institute, Kiel University, Kiel 24118, Germany
| | - Tanita Wein
- Institute of General Microbiology, Kiel University, Kiel 24118, Germany
| | - Julia Weissenbach
- Institute of General Microbiology, Kiel University, Kiel 24118, Germany
| | - Dennis Romero
- Dirección General de Investigaciones Oceanográficas y Cambio Climático, Instituto del Mar del Perú, Callao 01, Peru 17
| | - Claas Hiebenthal
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany
| | | | - Joachim Schönfeld
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel 24118, Germany
| |
Collapse
|
10
|
Macher JN, Wideman JG, Girard EB, Langerak A, Duijm E, Jompa J, Sadekov A, Vos R, Wissels R, Renema W. First report of mitochondrial COI in foraminifera and implications for DNA barcoding. Sci Rep 2021; 11:22165. [PMID: 34772985 PMCID: PMC8589990 DOI: 10.1038/s41598-021-01589-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023] Open
Abstract
Foraminifera are a species-rich phylum of rhizarian protists that are highly abundant in many marine environments and play a major role in global carbon cycling. Species recognition in Foraminifera is mainly based on morphological characters and nuclear 18S ribosomal RNA barcoding. The 18S rRNA contains variable sequence regions that allow for the identification of most foraminiferal species. Still, some species show limited variability, while others contain high levels of intragenomic polymorphisms, thereby complicating species identification. The use of additional, easily obtainable molecular markers other than 18S rRNA will enable more detailed investigation of evolutionary history, population genetics and speciation in Foraminifera. Here we present the first mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences ("barcodes") of Foraminifera. We applied shotgun sequencing to single foraminiferal specimens, assembled COI, and developed primers that allow amplification of COI in a wide range of foraminiferal species. We obtained COI sequences of 49 specimens from 17 species from the orders Rotaliida and Miliolida. Phylogenetic analysis showed that the COI tree is largely congruent with previously published 18S rRNA phylogenies. Furthermore, species delimitation with ASAP and ABGD algorithms showed that foraminiferal species can be identified based on COI barcodes.
Collapse
Affiliation(s)
- Jan-Niklas Macher
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands.
| | - Jeremy G Wideman
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Elsa B Girard
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
- Department of Ecosystem and Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Anouk Langerak
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
| | - Elza Duijm
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
| | | | - Aleksey Sadekov
- ARC Centre of Excellence for Coral Reef Studies, Ocean Graduate School, The University of Western Australia, Crawley, Australia
| | - Rutger Vos
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Richard Wissels
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
| | - Willem Renema
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
- Department of Ecosystem and Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Milivojević T, Rahman SN, Raposo D, Siccha M, Kucera M, Morard R. High variability in SSU rDNA gene copy number among planktonic foraminifera revealed by single-cell qPCR. ISME COMMUNICATIONS 2021; 1:63. [PMID: 36750661 PMCID: PMC9723665 DOI: 10.1038/s43705-021-00067-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 01/09/2023]
Abstract
Metabarcoding has become the workhorse of community ecology. Sequencing a taxonomically informative DNA fragment from environmental samples gives fast access to community composition across taxonomic groups, but it relies on the assumption that the number of sequences for each taxon correlates with its abundance in the sampled community. However, gene copy number varies among and within taxa, and the extent of this variability must therefore be considered when interpreting community composition data derived from environmental sequencing. Here we measured with single-cell qPCR the SSU rDNA gene copy number of 139 specimens of five species of planktonic foraminifera. We found that the average gene copy number varied between of ~4000 to ~50,000 gene copies between species, and individuals of the same species can carry between ~300 to more than 350,000 gene copies. This variability cannot be explained by differences in cell size and considering all plausible sources of bias, we conclude that this variability likely reflects dynamic genomic processes acting during the life cycle. We used the observed variability to model its impact on metabarcoding and found that the application of a correcting factor at species level may correct the derived relative abundances, provided sufficiently large populations have been sampled.
Collapse
Affiliation(s)
- Tamara Milivojević
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Shirin Nurshan Rahman
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359, Bremen, Germany
| | - Débora Raposo
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359, Bremen, Germany
| | - Michael Siccha
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359, Bremen, Germany
| | - Michal Kucera
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359, Bremen, Germany
| | - Raphaël Morard
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359, Bremen, Germany.
| |
Collapse
|
12
|
Antell GT, Fenton IS, Valdes PJ, Saupe EE. Thermal niches of planktonic foraminifera are static throughout glacial-interglacial climate change. Proc Natl Acad Sci U S A 2021; 118:e2017105118. [PMID: 33903233 PMCID: PMC8106293 DOI: 10.1073/pnas.2017105118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Abiotic niche lability reduces extinction risk by allowing species to adapt to changing environmental conditions in situ. In contrast, species with static niches must keep pace with the velocity of climate change as they track suitable habitat. The rate and frequency of niche lability have been studied on human timescales (months to decades) and geological timescales (millions of years), but lability on intermediate timescales (millennia) remains largely uninvestigated. Here, we quantified abiotic niche lability at 8-ka resolution across the last 700 ka of glacial-interglacial climate fluctuations, using the exceptionally well-known fossil record of planktonic foraminifera coupled with Atmosphere-Ocean Global Climate Model reconstructions of paleoclimate. We tracked foraminiferal niches through time along the univariate axis of mean annual temperature, measured both at the sea surface and at species' depth habitats. Species' temperature preferences were uncoupled from the global temperature regime, undermining a hypothesis of local adaptation to changing environmental conditions. Furthermore, intraspecific niches were equally similar through time, regardless of climate change magnitude on short timescales (8 ka) and across contrasts of glacial and interglacial extremes. Evolutionary trait models fitted to time series of occupied temperature values supported widespread niche stasis above randomly wandering or directional change. Ecotype explained little variation in species-level differences in niche lability after accounting for evolutionary relatedness. Together, these results suggest that warming and ocean acidification over the next hundreds to thousands of years could redistribute and reduce populations of foraminifera and other calcifying plankton, which are primary components of marine food webs and biogeochemical cycles.
Collapse
Affiliation(s)
- Gawain T Antell
- Department of Earth Sciences, University of Oxford, OX1 3AN Oxford, United Kingdom,
| | - Isabel S Fenton
- Department of Earth Sciences, University of Oxford, OX1 3AN Oxford, United Kingdom
| | - Paul J Valdes
- School of Geographical Sciences, University of Bristol, BS8 1SS Bristol, United Kingdom
| | - Erin E Saupe
- Department of Earth Sciences, University of Oxford, OX1 3AN Oxford, United Kingdom,
| |
Collapse
|
13
|
Schiwitza S, Nitsche F. A Needle in the Haystack – Mapping Sequences to Morphology Exemplified by the Loricate Choanoflagellate Enibas thessalia sp. nov. (Acanthoecida, Acanthoecidae). Protist 2021; 172:125782. [DOI: 10.1016/j.protis.2020.125782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 01/28/2023]
|
14
|
Barrenechea Angeles I, Lejzerowicz F, Cordier T, Scheplitz J, Kucera M, Ariztegui D, Pawlowski J, Morard R. Planktonic foraminifera eDNA signature deposited on the seafloor remains preserved after burial in marine sediments. Sci Rep 2020; 10:20351. [PMID: 33230106 PMCID: PMC7684305 DOI: 10.1038/s41598-020-77179-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/02/2020] [Indexed: 01/08/2023] Open
Abstract
Environmental DNA (eDNA) metabarcoding of marine sediments has revealed large amounts of sequences assigned to planktonic taxa. How this planktonic eDNA is delivered on the seafloor and preserved in the sediment is not well understood. We address these questions by comparing metabarcoding and microfossil foraminifera assemblages in sediment cores taken off Newfoundland across a strong ecological gradient. We detected planktonic foraminifera eDNA down to 30 cm and observed that the planktonic/benthic amplicon ratio changed with depth. The relative proportion of planktonic foraminiferal amplicons remained low from the surface down to 10 cm, likely due to the presence of DNA from living benthic foraminifera. Below 10 cm, the relative proportion of planktonic foraminifera amplicons rocketed, likely reflecting the higher proportion of planktonic eDNA in the DNA burial flux. In addition, the microfossil and metabarcoding assemblages showed a congruent pattern indicating that planktonic foraminifera eDNA is deposited without substantial lateral advection and preserves regional biogeographical patterns, indicating deposition by a similar mechanism as the foraminiferal shells. Our study shows that the planktonic eDNA preserved in marine sediments has the potential to record climatic and biotic changes in the pelagic community with the same spatial and temporal resolution as microfossils.
Collapse
Affiliation(s)
- Inès Barrenechea Angeles
- Department of Genetics and Evolution, University of Geneva, Boulevard d'Yvoy 4, 1205, Geneva, Switzerland.,Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205, Geneva, Switzerland
| | - Franck Lejzerowicz
- Jacobs School of Engineering, University of California San Diego, La Jolla, USA
| | - Tristan Cordier
- Department of Genetics and Evolution, University of Geneva, Boulevard d'Yvoy 4, 1205, Geneva, Switzerland
| | - Janin Scheplitz
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359, Bremen, Germany
| | - Michal Kucera
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359, Bremen, Germany
| | - Daniel Ariztegui
- Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205, Geneva, Switzerland
| | - Jan Pawlowski
- Department of Genetics and Evolution, University of Geneva, Boulevard d'Yvoy 4, 1205, Geneva, Switzerland.,Institute of Oceanology, Polish Academy of Sciences, 81-712, Sopot, Poland
| | - Raphaël Morard
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359, Bremen, Germany.
| |
Collapse
|
15
|
Trubovitz S, Lazarus D, Renaudie J, Noble PJ. Marine plankton show threshold extinction response to Neogene climate change. Nat Commun 2020; 11:5069. [PMID: 33093493 PMCID: PMC7582175 DOI: 10.1038/s41467-020-18879-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/17/2020] [Indexed: 11/14/2022] Open
Abstract
Ongoing climate change is predicted to trigger major shifts in the geographic distribution of marine plankton species. However, it remains unclear whether species will successfully track optimal habitats to new regions, or face extinction. Here we show that one significant zooplankton group, the radiolaria, underwent a severe decline in high latitude species richness presaged by ecologic reorganization during the late Neogene, a time of amplified polar cooling. We find that the majority (71%) of affected species did not relocate to the warmer low latitudes, but went extinct. This indicates that some plankton species cannot track optimal temperatures on a global scale as assumed by ecologic models; instead, assemblages undergo restructuring and extinction once local environmental thresholds are exceeded. This pattern forewarns profound diversity loss of high latitude radiolaria in the near future, which may have cascading effects on the ocean food web and carbon cycle. High-latitude records show large diversity losses of marine plankton, such as radiolarians, with historical climate change. Here, Trubovitz et al. present a low-latitude record spanning the last 10 million years, finding that many high-latitude radiolarians did not shift equatorward but instead went extinct.
Collapse
Affiliation(s)
- Sarah Trubovitz
- Department of Geological Sciences & Engineering, University of Nevada-Reno, Reno, NV, USA.
| | - David Lazarus
- Museum für Naturkunde, Leibniz-Institut für Evolutions-und Biodiversitätsforschung, Berlin, Germany.
| | - Johan Renaudie
- Museum für Naturkunde, Leibniz-Institut für Evolutions-und Biodiversitätsforschung, Berlin, Germany
| | - Paula J Noble
- Department of Geological Sciences & Engineering, University of Nevada-Reno, Reno, NV, USA
| |
Collapse
|
16
|
Pawłowska J, Wollenburg JE, Zajączkowski M, Pawlowski J. Planktonic foraminifera genomic variations reflect paleoceanographic changes in the Arctic: evidence from sedimentary ancient DNA. Sci Rep 2020; 10:15102. [PMID: 32934321 PMCID: PMC7492196 DOI: 10.1038/s41598-020-72146-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/08/2020] [Indexed: 11/09/2022] Open
Abstract
Deciphering the evolution of marine plankton is typically based on the study of microfossil groups. Cryptic speciation is common in these groups, and large intragenomic variations occur in ribosomal RNA genes of many morphospecies. In this study, we correlated the distribution of ribosomal amplicon sequence variants (ASVs) with paleoceanographic changes by analyzing the high-throughput sequence data assigned to Neogloboquadrina pachyderma in a 140,000-year-old sediment core from the Arctic Ocean. The sedimentary ancient DNA demonstrated the occurrence of various N. pachyderma ASVs whose occurrence and dominance varied through time. Most remarkable was the striking appearance of ASV18, which was nearly absent in older sediments but became dominant during the last glacial maximum and continues to persist today. Although the molecular ecology of planktonic foraminifera is still poorly known, the analysis of their intragenomic variations through time has the potential to provide new insight into the evolution of marine biodiversity and may lead to the development of new and important paleoceanographic proxies.
Collapse
Affiliation(s)
- Joanna Pawłowska
- Institute of Oceanology Polish Academy of Sciences, Sopot, Poland.
| | | | | | - Jan Pawlowski
- Institute of Oceanology Polish Academy of Sciences, Sopot, Poland.,University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Broman E, Bonaglia S, Norkko A, Creer S, Nascimento FJA. High throughput shotgun sequencing of eRNA reveals taxonomic and derived functional shifts across a benthic productivity gradient. Mol Ecol 2020; 30:3023-3039. [PMID: 32706485 DOI: 10.1111/mec.15561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/29/2020] [Accepted: 07/18/2020] [Indexed: 01/04/2023]
Abstract
Benthic macrofauna is regularly used in monitoring programmes, however the vast majority of benthic eukaryotic biodiversity lies mostly in microscopic organisms, such as meiofauna (invertebrates < 1 mm) and protists, that rapidly responds to environmental change. These communities have traditionally been hard to sample and handle in the laboratory, but DNA sequencing has made such work less time consuming. While DNA sequencing captures both alive and dead organisms, environmental RNA (eRNA) better targets living organisms or organisms of recent origin in the environment. Here, we assessed the biodiversity of three known bioindicator microeukaryote groups (nematodes, foraminifera, and ciliates) in sediment samples collected at seven coastal sites along an organic carbon (OC) gradient. We aimed to investigate if eRNA shotgun sequencing can be used to simultaneously detect differences in (i) biodiversity of multiple microeukaryotic communities; and (ii) functional feeding traits of nematodes. Results showed that biodiversity was lower for nematodes and foraminifera in high OC (6.2%-6.9%), when compared to low OC sediments (1.2%-2.8%). Dissimilarity in community composition increased for all three groups between Low OC and High OC, as well as the classified feeding type of nematode genera (with more nonselective deposit feeders in high OC sediment). High relative abundant genera included nematode Sabatieria and foraminifera Elphidium in high OC, and Cryptocaryon-like ciliates in low OC sediments. Considering that future sequencing technologies are likely to decrease in cost, the use of eRNA shotgun sequencing to assess biodiversity of benthic microeukaryotes could be a powerful tool in recurring monitoring programmes.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.,Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Stefano Bonaglia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.,Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark.,Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Alf Norkko
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden.,Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, UK
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.,Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|
18
|
Pérez-Cobas AE, Gomez-Valero L, Buchrieser C. Metagenomic approaches in microbial ecology: an update on whole-genome and marker gene sequencing analyses. Microb Genom 2020; 6:mgen000409. [PMID: 32706331 PMCID: PMC7641418 DOI: 10.1099/mgen.0.000409] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/30/2020] [Indexed: 12/23/2022] Open
Abstract
Metagenomics and marker gene approaches, coupled with high-throughput sequencing technologies, have revolutionized the field of microbial ecology. Metagenomics is a culture-independent method that allows the identification and characterization of organisms from all kinds of samples. Whole-genome shotgun sequencing analyses the total DNA of a chosen sample to determine the presence of micro-organisms from all domains of life and their genomic content. Importantly, the whole-genome shotgun sequencing approach reveals the genomic diversity present, but can also give insights into the functional potential of the micro-organisms identified. The marker gene approach is based on the sequencing of a specific gene region. It allows one to describe the microbial composition based on the taxonomic groups present in the sample. It is frequently used to analyse the biodiversity of microbial ecosystems. Despite its importance, the analysis of metagenomic sequencing and marker gene data is quite a challenge. Here we review the primary workflows and software used for both approaches and discuss the current challenges in the field.
Collapse
Affiliation(s)
- Ana Elena Pérez-Cobas
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France and CNRS UMR 3525, 675724, Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France and CNRS UMR 3525, 675724, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France and CNRS UMR 3525, 675724, Paris, France
| |
Collapse
|
19
|
Morard R, Füllberg A, Brummer GJA, Greco M, Jonkers L, Wizemann A, Weiner AKM, Darling K, Siccha M, Ledevin R, Kitazato H, de Garidel-Thoron T, de Vargas C, Kucera M. Genetic and morphological divergence in the warm-water planktonic foraminifera genus Globigerinoides. PLoS One 2019; 14:e0225246. [PMID: 31805130 PMCID: PMC6894840 DOI: 10.1371/journal.pone.0225246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/31/2019] [Indexed: 11/19/2022] Open
Abstract
The planktonic foraminifera genus Globigerinoides provides a prime example of a species-rich genus in which genetic and morphological divergence are uncorrelated. To shed light on the evolutionary processes that lead to the present-day diversity of Globigerinoides, we investigated the genetic, ecological and morphological divergence of its constituent species. We assembled a global collection of single-cell barcode sequences and show that the genus consists of eight distinct genetic types organized in five extant morphospecies. Based on morphological evidence, we reassign the species Globoturborotalita tenella to Globigerinoides and amend Globigerinoides ruber by formally proposing two new subspecies, G. ruber albus n.subsp. and G. ruber ruber in order to express their subspecies level distinction and to replace the informal G. ruber "white" and G. ruber "pink", respectively. The genetic types within G. ruber and Globigerinoides elongatus show a combination of endemism and coexistence, with little evidence for ecological differentiation. CT-scanning and ontogeny analysis reveal that the diagnostic differences in adult morphologies could be explained by alterations of the ontogenetic trajectories towards final (reproductive) size. This indicates that heterochrony may have caused the observed decoupling between genetic and morphological diversification within the genus. We find little evidence for environmental forcing of either the genetic or the morphological diversification, which allude to biotic interactions such as symbiosis, as the driver of speciation in Globigerinoides.
Collapse
Affiliation(s)
- Raphaël Morard
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, Germany
| | - Angelina Füllberg
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, Germany
| | - Geert-Jan A. Brummer
- NIOZ Royal Netherlands Institute for Sea Research, Department of Ocean Systems, and Utrecht University, Den Burg, and Utrecht University, The Netherlands
- Vrije Universiteit Amsterdam, Department of Earth Sciences, Faculty of Science, Amsterdam, The Netherlands
| | - Mattia Greco
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, Germany
| | - Lukas Jonkers
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, Germany
| | - André Wizemann
- Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Agnes K. M. Weiner
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, Germany
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Kate Darling
- School of GeoSciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- School of Geography and Sustainable Development, University of St Andrews, St Andrews, Scotland, United Kingdom
| | - Michael Siccha
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, Germany
| | - Ronan Ledevin
- UMR5199 PACEA, Université de Bordeaux, Allée Geoffroy Saint Hilaire, Pessac, France
| | - Hiroshi Kitazato
- Japan Agency for Marine Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | | | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, ECOMAP, Roscoff, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Michal Kucera
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, Germany
| |
Collapse
|
20
|
Diat.barcode, an open-access curated barcode library for diatoms. Sci Rep 2019; 9:15116. [PMID: 31641158 PMCID: PMC6805954 DOI: 10.1038/s41598-019-51500-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/25/2019] [Indexed: 11/08/2022] Open
Abstract
Diatoms (Bacillariophyta) are ubiquitous microalgae which produce a siliceous exoskeleton and which make a major contribution to the productivity of oceans and freshwaters. They display a huge diversity, which makes them excellent ecological indicators of aquatic ecosystems. Usually, diatoms are identified using characteristics of their exoskeleton morphology. DNA-barcoding is an alternative to this and the use of High-Throughput-Sequencing enables the rapid analysis of many environmental samples at a lower cost than analyses under microscope. However, to identify environmental sequences correctly, an expertly curated reference library is needed. Several curated libraries for protists exists; none, however are dedicated to diatoms. Diat.barcode is an open-access library dedicated to diatoms which has been maintained since 2012. Data come from two sources (1) the NCBI nucleotide database and (2) unpublished sequencing data of culture collections. Since 2017, several experts have collaborated to curate this library for rbcL, a chloroplast marker suitable for species-level identification of diatoms. For the latest version of the database (version 7), 605 of the 3482 taxonomical names originally assigned by the authors of the rbcL sequences were modified after curation. The database is accessible at https://www6.inra.fr/carrtel-collection_eng/Barcoding-database.
Collapse
|
21
|
Chronopoulou PM, Salonen I, Bird C, Reichart GJ, Koho KA. Metabarcoding Insights Into the Trophic Behavior and Identity of Intertidal Benthic Foraminifera. Front Microbiol 2019; 10:1169. [PMID: 31191490 PMCID: PMC6547873 DOI: 10.3389/fmicb.2019.01169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/07/2019] [Indexed: 12/29/2022] Open
Abstract
Foraminifera are ubiquitous marine protists with an important role in the benthic carbon cycle. However, morphological observations often fail to resolve their exact taxonomic placement and there is a lack of field studies on their particular trophic preferences. Here, we propose the application of metabarcoding as a tool for the elucidation of the in situ feeding behavior of benthic foraminifera, while also allowing the correct taxonomic assignment of the feeder, using the V9 region of the 18S (small subunit; SSU) rRNA gene. Living foraminiferal specimens were collected from two intertidal mudflats of the Wadden Sea and DNA was extracted from foraminiferal individuals and from the surrounding sediments. Molecular analysis allowed us to confirm that our foraminiferal specimens belong to three genetic types: Ammonia sp. T6, Elphidium sp. S5 and Haynesina sp. S16. Foraminiferal intracellular eukaryote communities reflected to an extent those of the surrounding sediments but at different relative abundances. Unlike sediment eukaryote communities, which were largely determined by the sampling site, foraminiferal intracellular eukaryote communities were driven by foraminiferal species, followed by sediment depth. Our data suggests that Ammonia sp. T6 can predate on metazoan classes, whereas Elphidium sp. S5 and Haynesina sp. S16 are more likely to ingest diatoms. These observations, alongside the use of metabarcoding in similar ecological studies, significantly contribute to our overall understanding of the ecological roles of these protists in intertidal benthic environments and their position and function in the benthic food webs.
Collapse
Affiliation(s)
- Panagiota-Myrsini Chronopoulou
- Aquatic Biogeochemistry Research Unit, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Iines Salonen
- Aquatic Biogeochemistry Research Unit, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Clare Bird
- Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
| | - Gert-Jan Reichart
- Department of Ocean Systems, NIOZ-Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, Netherlands
| | - Karoliina A Koho
- Aquatic Biogeochemistry Research Unit, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Morard R, Vollmar NM, Greco M, Kucera M. Unassigned diversity of planktonic foraminifera from environmental sequencing revealed as known but neglected species. PLoS One 2019; 14:e0213936. [PMID: 30897140 PMCID: PMC6428320 DOI: 10.1371/journal.pone.0213936] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/04/2019] [Indexed: 11/18/2022] Open
Abstract
Most research on extant planktonic foraminifera has been directed towards larger species (>0.150 mm) which can be easily manipulated, counted and yield enough calcite for geochemical analyses. This has drawn attention towards the macroperforate clade and created an impression of their numerical and ecological dominance. Drawing such conclusions from the study of such “giants” is a dangerous path. There were times in the evolutionary history of planktonic foraminifera when all species were smaller than 0.1 mm and indeed numerous small taxa, mainly from the microperforate clade, have been formally described from the modern plankton. The significance of these small, obscure and neglected species is poorly characterized and their relationship to the newly discovered hyperabundant but uncharacterized lineages of planktonic foraminifera in metabarcoding datasets is unknown. To determine, who is hiding in the metabarcoding datasets, we carried out an extensive sequencing of 18S rDNA targeted at small and obscure species. The sequences of the newly characterized small and obscure taxa match many of the previously uncharacterized lineages found in metabarcoding data. This indicates that most of the modern diversity in planktonic foraminifera has been taxonomically captured, but the role of the small and neglected taxa has been severely underestimated.
Collapse
Affiliation(s)
- Raphaël Morard
- MARUM—Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- * E-mail:
| | - Nele M. Vollmar
- MARUM—Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Mattia Greco
- MARUM—Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Michal Kucera
- MARUM—Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
23
|
Caron DA, Hu SK. Are We Overestimating Protistan Diversity in Nature? Trends Microbiol 2018; 27:197-205. [PMID: 30455081 DOI: 10.1016/j.tim.2018.10.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/04/2018] [Accepted: 10/25/2018] [Indexed: 12/30/2022]
Abstract
Documenting the immense diversity of single-celled, eukaryotic organisms (protists) has been a formidable challenge for ecologists. These species were originally defined by morphological criteria, but shortcomings of the morphospecies concept, and a bewildering array of sizes and cellular attributes, has made constructing a taxonomy that is useful for ecologists nearly impossible. Consequently, physiological and genetic information has been integrated to address these shortcomings, and to develop the framework of a unifying taxonomy. DNA sequence information, in particular, has revolutionized studies of protistan diversity. However, the exponential increase in sequence-based protistan species richness published from field surveys in recent years raises the question of whether we have moved beyond characterizing species-level diversity and begun to reveal intraspecies diversity. The answer to that question appears to be 'yes', at least for some protistan lineages. The need to document such microdiversity may be justified, but it is important for protistologists to recognize and acknowledge that possibility, and its consequences.
Collapse
Affiliation(s)
- David A Caron
- Department of Biological Sciences, 3616 Trousdale Parkway, University of Southern California, Los Angeles, CA 90089-0371, USA.
| | - Sarah K Hu
- Department of Biological Sciences, 3616 Trousdale Parkway, University of Southern California, Los Angeles, CA 90089-0371, USA
| |
Collapse
|
24
|
Mordret S, Piredda R, Vaulot D, Montresor M, Kooistra WHCF, Sarno D. dinoref: A curated dinoflagellate (Dinophyceae) reference database for the 18S rRNA gene. Mol Ecol Resour 2018; 18:974-987. [PMID: 29603631 DOI: 10.1111/1755-0998.12781] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/15/2018] [Accepted: 02/24/2018] [Indexed: 01/28/2023]
Abstract
Dinoflagellates are a heterogeneous group of protists present in all aquatic ecosystems where they occupy various ecological niches. They play a major role as primary producers, but many species are mixotrophic or heterotrophic. Environmental metabarcoding based on high-throughput sequencing is increasingly applied to assess diversity and abundance of planktonic organisms, and reference databases are definitely needed to taxonomically assign the huge number of sequences. We provide an updated 18S rRNA reference database of dinoflagellates: dinoref. Sequences were downloaded from genbank and filtered based on stringent quality criteria. All sequences were taxonomically curated, classified taking into account classical morphotaxonomic studies and molecular phylogenies, and linked to a series of metadata. dinoref includes 1,671 sequences representing 149 genera and 422 species. The taxonomic assignation of 468 sequences was revised. The largest number of sequences belongs to Gonyaulacales and Suessiales that include toxic and symbiotic species. dinoref provides an opportunity to test the level of taxonomic resolution of different 18S barcode markers based on a large number of sequences and species. As an example, when only the V4 region is considered, 374 of the 422 species included in dinoref can still be unambiguously identified. Clustering the V4 sequences at 98% similarity, a threshold that is commonly applied in metabarcoding studies, resulted in a considerable underestimation of species diversity.
Collapse
Affiliation(s)
- Solenn Mordret
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Roberta Piredda
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Daniel Vaulot
- Sorbonne Université, CNRS, UMR Adaptation et Diversité en Milieu Marin, Station Biologique, Roscoff, France
| | - Marina Montresor
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - Diana Sarno
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
25
|
Surface ocean metabarcoding confirms limited diversity in planktonic foraminifera but reveals unknown hyper-abundant lineages. Sci Rep 2018; 8:2539. [PMID: 29416071 PMCID: PMC5803224 DOI: 10.1038/s41598-018-20833-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/24/2018] [Indexed: 12/20/2022] Open
Abstract
Since the advent of DNA metabarcoding surveys, the planktonic realm is considered a treasure trove of diversity, inhabited by a small number of abundant taxa, and a hugely diverse and taxonomically uncharacterized consortium of rare species. Here we assess if the apparent underestimation of plankton diversity applies universally. We target planktonic foraminifera, a group of protists whose known morphological diversity is limited, taxonomically resolved and linked to ribosomal DNA barcodes. We generated a pyrosequencing dataset of ~100,000 partial 18S rRNA foraminiferal sequences from 32 size fractioned photic-zone plankton samples collected at 8 stations in the Indian and Atlantic Oceans during the Tara Oceans expedition (2009–2012). We identified 69 genetic types belonging to 41 morphotaxa in our metabarcoding dataset. The diversity saturated at local and regional scale as well as in the three size fractions and the two depths sampled indicating that the diversity of foraminifera is modest and finite. The large majority of the newly discovered lineages occur in the small size fraction, neglected by classical taxonomy. These unknown lineages dominate the bulk [>0.8 µm] size fraction, implying that a considerable part of the planktonic foraminifera community biomass has its origin in unknown lineages.
Collapse
|
26
|
Hannisdal B, Haaga KA, Reitan T, Diego D, Liow LH. Common species link global ecosystems to climate change: dynamical evidence in the planktonic fossil record. Proc Biol Sci 2018; 284:rspb.2017.0722. [PMID: 28701561 PMCID: PMC5524498 DOI: 10.1098/rspb.2017.0722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/05/2017] [Indexed: 12/02/2022] Open
Abstract
Common species shape the world around us, and changes in their commonness signify large-scale shifts in ecosystem structure and function. However, our understanding of long-term ecosystem response to environmental forcing in the deep past is centred on species richness, neglecting the disproportional impact of common species. Here, we use common and widespread species of planktonic foraminifera in deep-sea sediments to track changes in observed global occupancy (proportion of sampled sites at which a species is present and observed) through the turbulent climatic history of the last 65 Myr. Our approach is sensitive to relative changes in global abundance of the species set and robust to factors that bias richness estimators. Using three independent methods for detecting causality, we show that the observed global occupancy of planktonic foraminifera has been dynamically coupled to past oceanographic changes captured in deep-ocean temperature reconstructions. The causal inference does not imply a direct mechanism, but is consistent with an indirect, time-delayed causal linkage. Given the strong quantitative evidence that a dynamical coupling exists, we hypothesize that mixotrophy (symbiont hosting) may be an ecological factor linking the global abundance of planktonic foraminifera to long-term climate changes via the relative extent of oligotrophic oceans.
Collapse
Affiliation(s)
- Bjarte Hannisdal
- Centre for Geobiology, Department of Earth Science, University of Bergen, PO Box 7803, 5020 Bergen, Norway .,Bjerknes Centre for Climate Research, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| | - Kristian Agasøster Haaga
- Centre for Geobiology, Department of Earth Science, University of Bergen, PO Box 7803, 5020 Bergen, Norway.,Bjerknes Centre for Climate Research, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| | - Trond Reitan
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
| | - David Diego
- Centre for Geobiology, Department of Earth Science, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| | - Lee Hsiang Liow
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway.,Natural History Museum, University of Oslo, PO Box 1172 Blindern, 0318 Oslo, Norway
| |
Collapse
|
27
|
Siccha M, Kucera M. ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples. Sci Data 2017; 4:170109. [PMID: 28829434 PMCID: PMC5566098 DOI: 10.1038/sdata.2017.109] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/20/2017] [Indexed: 01/07/2023] Open
Abstract
Census counts of marine microfossils in surface sediments represent an invaluable resource for paleoceanography and for the investigation of macroecological processes. A prerequisite for such applications is the provision of data syntheses for individual microfossil groups. Specific to such syntheses is the necessity of taxonomical harmonisation across the constituent datasets, coupled with dereplication of previous compilations. Both of these aspects require expert knowledge, but with increasing number of records involved in such syntheses, the application of expert knowledge via manual curation is not feasible. Here we present a synthesis of planktonic foraminifera census counts in surface sediment samples, which is taxonomically harmonised, dereplicated and treated for numerical and other inconsistencies. The data treatment is implemented as an objective and largely automated pipeline, allowing us to reduce the initial 6,984 records to 4,205 counts from unique sites and informative technical or true replicates. We provide the final product and document the procedure, which can be easily adopted for other microfossil data syntheses.
Collapse
Affiliation(s)
- Michael Siccha
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, Bremen 28359, Germany
| | - Michal Kucera
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, Bremen 28359, Germany
| |
Collapse
|
28
|
Arrigoni R, Vacherie B, Benzoni F, Stefani F, Karsenti E, Jaillon O, Not F, Nunes F, Payri C, Wincker P, Barbe V. A new sequence data set of SSU rRNA gene for Scleractinia and its phylogenetic and ecological applications. Mol Ecol Resour 2017; 17:1054-1071. [DOI: 10.1111/1755-0998.12640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 11/01/2016] [Accepted: 11/15/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Roberto Arrigoni
- Red Sea Research Center; Division of Biological and Environmental Science and Engineering; King Abdullah University of Science and Technology; Thuwal 23955-6900 Saudi Arabia
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 Milan 20126 Italy
| | | | - Francesca Benzoni
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 Milan 20126 Italy
- Institut de Recherche pour le Développement; UMR227 Coreus2; 101 Promenade Roger Laroque BP A5 Noumea Cedex 98848 New Caledonia
| | - Fabrizio Stefani
- Water Research Institute-National Research Council (IRSA-CNR); Via del Mulino 19 Brugherio I-20861 Italy
| | - Eric Karsenti
- Ecole Normale Supérieure; Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197; Paris F-75005 France
- Directors’ Research; European Molecular Biology Laboratory; Meyerhofstr. 1 Heidelberg 69117 Germany
| | - Olivier Jaillon
- CEA/DSV/IG/Genoscope; Evry Cedex France
- Université d'Evry; UMR 8030; Evry CP5706 France
| | - Fabrice Not
- UPMC-CNRS; UMR 7144; Station Biologique de Roscoff; Place Georges Teissier Roscoff 29680 France
| | - Flavia Nunes
- Ifremer Centre Bretagne; DYNECO; Laboratoire d’Écologie Benthique Côtière (LEBCO); 29280 Plouzané France
| | - Claude Payri
- Institut de Recherche pour le Développement; UMR227 Coreus2; 101 Promenade Roger Laroque BP A5 Noumea Cedex 98848 New Caledonia
| | - Patrick Wincker
- CEA/DSV/IG/Genoscope; Evry Cedex France
- Université d'Evry; UMR 8030; Evry CP5706 France
| | | |
Collapse
|
29
|
Ujiié Y, Ishitani Y. Evolution of a Planktonic Foraminifer during Environmental Changes in the Tropical Oceans. PLoS One 2016; 11:e0148847. [PMID: 26886349 PMCID: PMC4757448 DOI: 10.1371/journal.pone.0148847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022] Open
Abstract
Ecological adaptation to environmental changes is a strong driver of evolution, enabling speciation of pelagic plankton in the open ocean without the presence of effective physical barriers to gene flow. The tropical ocean environment, which plays an important role in shaping marine biodiversity, has drastically and frequently changed since the Pliocene. Nevertheless, the evolutionary history of tropical pelagic plankton has been poorly understood, as phylogeographic investigations are still in the developing state and paleontological approaches are insufficient to obtain a sequential record from the deep-sea sediments. The planktonic foraminifer Pulleniatina obliquiloculata is widely distributed in the tropical area throughout the world’s oceans, and its phylogeography is well established. It is thus one of the best candidates to examine how past environmental changes may have shifted the spatial distribution and affected the diversification of tropical pelagic plankton. Such an examination requires the divergence history of the planktonic foraminifers, yet the gene marker (partial small subunit (SSU) rDNA) previously used for phylogeographic studies was not powerful enough to achieve a high accuracy in estimating the divergence times. The present study focuses on improving the precision of divergence time estimates for the splits between sibling species (genetic types) of planktonic foraminifers by increasing the number of genes as well as the number of nucleotide bases used for molecular clock estimates. We have amplified the entire coding regions of two ribosomal RNA genes (SSU rDNA and large subunit (LSU) rDNA) of three genetic types of P. obliquiloculata and two closely related species for the first time and applied them to the Bayesian relaxed clock method. The comparison of the credible intervals of the four datasets consisting either of sequences of the partial SSU rDNA, the complete SSU rDNA, LSU rDNA, or a combination of both genes (SSU+LSU) clearly demonstrated that the two-gene dataset improved the accuracy of divergence time estimates. The P. obliquiloculata lineage diverged twice, first at the end of the Pliocene (3.1 Ma) and again in the middle Pleistocene (1.4 Ma). Both timings coincided with the environmental changes, which indirectly involved geographic separation of populations. The habitat of P. obliquiloculata was expanded toward the higher latitudinal zones during the stable warm periods and subsequently placed on the steep environmental gradients following the global cooling. Different environmental conditions in the stable warm tropics and unstable higher latitudes may have triggered ecological divergence among the populations, leading to adaptive differentiation and eventually speciation. A comprehensive analysis of divergence time estimates combined with phylogeography enabled us to reveal the evolutionary history of the pelagic plankton and to find the potential paleoenvironmental events, which could have changed their biogeography and ecology.
Collapse
Affiliation(s)
- Yurika Ujiié
- Department of Biology, Shinshu University, Matsumoto, Nagano, Japan
- * E-mail:
| | - Yoshiyuki Ishitani
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|