1
|
Hu Y, Gong C, Yang Z, Han H, Tian T, Yang X, Xie W, Wang S, Wu Q, Zhou X, Turlings TCJ, Guo Z, Zhang Y. Functional Divergence of Plant-Derived Thaumatin-Like Protein Genes in Two Closely Related Whitefly Species. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2502193. [PMID: 40019366 PMCID: PMC12021119 DOI: 10.1002/advs.202502193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/21/2025] [Indexed: 03/01/2025]
Abstract
The recent discovery that various insects have acquired functional genes through horizontal gene transfer (HGT) has prompted numerous studies into this puzzling and fascinating phenomenon. So far, horizontally transferred genes are found to be functionally conserved and largely retained their ancestral functions. It evidently has not yet been considered that horizontally transferred genes may evolve and can contribute to divergence between species. Here, it is first showed that the genomes of the two widespread and agriculturally important whiteflies Trialeurodes vaporariorum and Bemisia tabaci both contain a plant-derived thaumatin-like protein (TLP) gene, but with highly distinct functions in these closely related pests. In T. vaporariorum, TLP has maintained a function similar to that of the plant donor, acting as an antimicrobial protein to resist fungal infection; but in sharp contrast, in B. tabaci, TLP has evolved into an effector that suppresses plant defense responses. These findings reveal an as-yet undescribed scenario of cross-species functional differentiation of horizontally transferred genes and suggest that the HGT-mediated evolutionary novelty can contribute to ecotypic divergence and even speciation.
Collapse
Affiliation(s)
- Yuan Hu
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Cheng Gong
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Zezhong Yang
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
- Institute of Plant ProtectionTianjin Academy of Agricultural SciencesTianjin300381China
| | - Haolin Han
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Tian Tian
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Xin Yang
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Wen Xie
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Shaoli Wang
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Qingjun Wu
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Xuguo Zhou
- Department of EntomologySchool of Integrative BiologyCollege of Liberal Arts & SciencesUniversity of Illinois Urbana‐ChampaignUrbanaIL61801‐3795USA
| | - Ted C. J. Turlings
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationSchool of Life SciencesCollege of AgricultureHenan UniversityZhengzhou475004China
- Laboratory of Fundamental and Applied Research in Chemical EcologyInstitute of BiologyUniversity of NeuchâtelNeuchâtelCH‐2000Switzerland
| | - Zhaojiang Guo
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Youjun Zhang
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| |
Collapse
|
2
|
Colinet D, Haon M, Drula E, Boyer M, Grisel S, Belliardo C, Koutsovoulos GD, Berrin JG, Danchin EGJ. Functional Carbohydrate-Active Enzymes Acquired by Horizontal Gene Transfer from Plants in the Whitefly Bemisia tabaci. Genome Biol Evol 2025; 17:evaf012. [PMID: 39862048 PMCID: PMC11800479 DOI: 10.1093/gbe/evaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Carbohydrate-active enzymes involved in the degradation of plant cell walls and/or the assimilation of plant carbohydrates for energy uptake are widely distributed in microorganisms. In contrast, they are less frequent in animals, although there are exceptions, including examples of carbohydrate-active enzymes acquired by horizontal gene transfer from bacteria or fungi in several of phytophagous arthropods and plant-parasitic nematodes. Although the whitefly Bemisia tabaci is a major agricultural pest, knowledge of horizontal gene transfer-acquired carbohydrate-active enzymes in this phloem-feeding insect of the Hemiptera order (subfamily Aleyrodinae) is still lacking. We performed a comprehensive and accurate detection of horizontal gene transfer candidates in B. tabaci and identified 136 horizontal gene transfer events, 14 of which corresponding to carbohydrate-active enzymes. The B. tabaci horizontal gene transfer-acquired carbohydrate-active enzymes were not only of bacterial or fungal origin, but some were also acquired from plants. Biochemical analysis revealed that members of the glycoside hydrolase families 17 and 152 acquired from plants are functional beta-glucanases with different substrate specificities, suggesting distinct roles. These two carbohydrate-active enzymes are the first characterized glycoside hydrolase families 17 and 152 glucanases in an animal. We identified a lower number of horizontal gene transfer events in the related Aleyrodinae Trialeurodes vaporariorum, with only three horizontal gene transfer-acquired carbohydrate-active enzymes, including a glycoside hydrolase family 152 glucanase, with phylogenetic analysis suggesting a unique horizontal gene transfer event in the ancestor of the Aleyrodinae. Another glycoside hydrolase family 152 carbohydrate-active enzyme, most likely independently acquired from plants, was also identified in two plant cell-feeding insects of the Thysanoptera order, highlighting the importance of plant-acquired carbohydrate-active enzymes in the biology of piercing-sucking insects.
Collapse
Affiliation(s)
- Dominique Colinet
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, Sophia Antipolis, France
| | - Mireille Haon
- INRAE, Aix Marseille Université, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
- INRAE, Aix Marseille Université, 3PE Platform, Marseille, France
| | - Elodie Drula
- INRAE, Aix Marseille Université, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, Marseille, France
| | - Mathilde Boyer
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, Sophia Antipolis, France
| | - Sacha Grisel
- INRAE, Aix Marseille Université, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
- INRAE, Aix Marseille Université, 3PE Platform, Marseille, France
| | - Carole Belliardo
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, Sophia Antipolis, France
| | | | - Jean-Guy Berrin
- INRAE, Aix Marseille Université, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
- INRAE, Aix Marseille Université, 3PE Platform, Marseille, France
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, Sophia Antipolis, France
| |
Collapse
|
3
|
Ning J, Liang P, Wu X, Wang W, Wu Q, Wang S, Yang X, Zhang Y, Xie W. Silencing of catalase reduces unfavorable low-temperature tolerance capacity in whiteflies. PEST MANAGEMENT SCIENCE 2024; 80:3116-3125. [PMID: 38334193 DOI: 10.1002/ps.8016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Temperature is a primary factor that determines the eco-geographical distribution and population development of invasive insects. Temperature stress leads to various negative effects, including excess reactive oxygen species (ROS), and catalase (CAT) is a key enzyme against ROS in the antioxidant pathway. The whitefly Bemisia tabaci MED is a typical invasive pest that causes damage worldwide. Our previous studies have shown that CAT promotes whitefly adaptation to high temperature by eliminating ROS. However, the mechanism underlying the low-temperature adaptation of whiteflies is still unknown. RESULTS In this study, we investigated the role of CAT in the low-temperature tolerance of B. tabaci MED by analyzing its survival rate, reproduction, and ROS levels at 25 °C (as a control, suitable temperature), 20 °C (moderately decreased temperature), and 4 °C (severely decreased temperature). Silencing of BtCAT1, BtCAT2, or BtCAT3 reduced the viability of whiteflies under a short-term severely decreased temperature (4 °C), which manifested as decreases in survival and fecundity accompanied by significant increases in ROS levels. Moreover, even at a moderately decreased temperature (20 °C), silencing of BtCAT1 led to high ROS levels and low survival rates in adults. CONCLUSION Silencing of BtCATs significantly increased the sensitivity of B. tabaci MED to low temperatures. BtCAT1 is likely more essential than other BtCATs for low-temperature tolerance in whiteflies. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Ning
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peng Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojie Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- National Research Institute of Breeding in Hainan, Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
4
|
Gong C, Guo Z, Hu Y, Yang Z, Xia J, Yang X, Xie W, Wang S, Wu Q, Ye W, Zhou X, Turlings TCJ, Zhang Y. A Horizontally Transferred Plant Fatty Acid Desaturase Gene Steers Whitefly Reproduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306653. [PMID: 38145364 PMCID: PMC10933598 DOI: 10.1002/advs.202306653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Indexed: 12/26/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential nutrients for all living organisms. PUFA synthesis is mediated by Δ12 desaturases in plants and microorganisms, whereas animals usually obtain PUFAs through their diet. The whitefly Bemisia tabaci is an extremely polyphagous agricultural pest that feeds on phloem sap of many plants that do not always provide them with sufficient PUFAs. Here, a plant-derived Δ12 desaturase gene family BtFAD2 is characterized in B. tabaci and it shows that the BtFAD2-9 gene enables the pest to synthesize PUFAs, thereby significantly enhancing its fecundity. The role of BtFAD2-9 in reproduction is further confirmed by transferring the gene to Drosophila melanogaster, which also increases the fruit fly's reproduction. These findings reveal an extraordinary evolutionary scenario whereby a phytophagous insect acquired a family of plant genes that enables it to synthesize essential nutrients, thereby lessening its nutritional dependency and allowing it to feed and reproduce on many host plants.
Collapse
Affiliation(s)
- Cheng Gong
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Zhaojiang Guo
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Yuan Hu
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Zezhong Yang
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
- Institute of Plant ProtectionTianjin Academy of Agricultural SciencesTianjin300381China
| | - Jixing Xia
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Xin Yang
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Wen Xie
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Shaoli Wang
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Qingjun Wu
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Wenfeng Ye
- Laboratory of Fundamental and Applied Research in Chemical EcologyInstitute of BiologyUniversity of NeuchâtelNeuchâtelCH‐2000Switzerland
| | - Xuguo Zhou
- Department of EntomologyUniversity of KentuckyLexingtonKY40546‐0091USA
| | - Ted C. J. Turlings
- Laboratory of Fundamental and Applied Research in Chemical EcologyInstitute of BiologyUniversity of NeuchâtelNeuchâtelCH‐2000Switzerland
| | - Youjun Zhang
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| |
Collapse
|
5
|
Yang Z, Guo Z, Gong C, Xia J, Hu Y, Zhong J, Yang X, Xie W, Wang S, Wu Q, Ye W, Liu B, Zhou X, Turlings TCJ, Zhang Y. Two horizontally acquired bacterial genes steer the exceptionally efficient and flexible nitrogenous waste cycling in whiteflies. SCIENCE ADVANCES 2024; 10:eadi3105. [PMID: 38306427 PMCID: PMC10836729 DOI: 10.1126/sciadv.adi3105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Nitrogen is an essential element for all life on earth. Nitrogen metabolism, including excretion, is essential for growth, development, and survival of plants and animals alike. Several nitrogen metabolic processes have been described, but the underlying molecular mechanisms are unclear. Here, we reveal a unique process of nitrogen metabolism in the whitefly Bemisia tabaci, a global pest. We show that it has acquired two bacterial uricolytic enzyme genes, B. tabaci urea carboxylase (BtUCA) and B. tabaci allophanate hydrolase (BtAtzF), through horizontal gene transfer. These genes operate in conjunction to not only coordinate an efficient way of metabolizing nitrogenous waste but also control B. tabaci's exceptionally flexible nitrogen recycling capacity. Its efficient nitrogen processing explains how this important pest can feed on a vast spectrum of plants. This finding provides insight into how the hijacking of microbial genes has allowed whiteflies to develop a highly economic and stable nitrogen metabolism network and offers clues for pest management strategies.
Collapse
Affiliation(s)
- Zezhong Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Zhaojiang Guo
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Gong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jixing Xia
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuan Hu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Zhong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenfeng Ye
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Baiming Liu
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Lei S, Yu SJ, Pan Q, Ding LL, Li SC, Cheng LY, Wang SQ, Lou BH, He J, Lei CY, Cong L, Liu HQ, Wang XF, Ran C. Chromosome-level genome assembly of the Asian citrus psyllid, Diaphorina citri. INSECT SCIENCE 2024; 31:13-27. [PMID: 37231527 DOI: 10.1111/1744-7917.13214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Diaphorina citri is a global citrus pest. As a vector insect, it can transmit the causative agents of citrus huanglongbing, causing irreversible losses to the citrus industry. The acquisition of genomic information can provide a molecular genetic basis for effective control of D. citri. Here, the DNBSEQ™ , Oxford Nanopore Technologies, and Hi-C technologies are applied to generate a high-quality chromosome-level genome of D. citri. The genome size of D. citri was 523.78 Mb with a scaffold N50 of 47.05 Mb distributed on 13 chromosomes. A total of 250.64 Mb (47.85%) repeat sequences and 24 048 protein-coding genes were predicted. Genome resequencing of female and male individuals indicated that the sex chromosome system of D. citri is XO. Phylogenetic analysis demonstrated that D. citri and Pachypsylla venusta, which separated from their most recent common ancestor about 336.62 million years ago, were the most closely related. Additionally, we identified genes potentially involved in detoxification metabolism, pathogen transmission, and honeydew secretion for further investigation. The high-quality genome provides an important reference for developing effective management strategies of D. citri.
Collapse
Affiliation(s)
- Shuang Lei
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing, China
| | - Shi-Jiang Yu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing, China
| | - Qi Pan
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing, China
| | - Li-Li Ding
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing, China
| | - Si-Chen Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing, China
| | - Lu-Yan Cheng
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing, China
| | - Shu-Qi Wang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing, China
| | - Bing-Hai Lou
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, Guangxi, China
| | - Jun He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing, China
| | - Cui-Yun Lei
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, Guangxi, China
| | - Lin Cong
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing, China
| | - Hao-Qiang Liu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing, China
| | - Xue-Feng Wang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing, China
| | - Chun Ran
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing, China
| |
Collapse
|
7
|
Li X, Liang P, Wu M, Wang S, Wu Q, Xie W, Zhang Y. Several whitefly genome assemblies and an integrated whitefly gene search platform. INSECT SCIENCE 2024; 31:299-306. [PMID: 37144441 DOI: 10.1111/1744-7917.13206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 05/06/2023]
Affiliation(s)
- Xingnuo Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peng Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingyue Wu
- Sanya Academy of Troprical Agricultural Sciense, Sanya, Hainan, China
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- National Research Institute of Breeding in Hainan, Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- National Research Institute of Breeding in Hainan, Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- National Research Institute of Breeding in Hainan, Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- National Research Institute of Breeding in Hainan, Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| |
Collapse
|
8
|
Morin S, Atkinson PW, Walling LL. Whitefly-Plant Interactions: An Integrated Molecular Perspective. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:503-525. [PMID: 37816261 DOI: 10.1146/annurev-ento-120120-093940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The rapid advances in available transcriptomic and genomic data and our understanding of the physiology and biochemistry of whitefly-plant interactions have allowed us to gain new and significant insights into the biology of whiteflies and their successful adaptation to host plants. In this review, we provide a comprehensive overview of the mechanisms that whiteflies have evolved to overcome the challenges of feeding on phloem sap. We also highlight the evolution and functions of gene families involved in host perception, evaluation, and manipulation; primary metabolism; and metabolite detoxification. We discuss the emerging themes in plant immunity to whiteflies, focusing on whitefly effectors and their sites of action in plant defense-signaling pathways. We conclude with a discussion of advances in the genetic manipulation of whiteflies and the potential that they hold for exploring the interactions between whiteflies and their host plants, as well as the development of novel strategies for the genetic control of whiteflies.
Collapse
Affiliation(s)
- Shai Morin
- Department of Entomology, Hebrew University of Jerusalem, Rehovot, Israel;
| | - Peter W Atkinson
- Department of Entomology, University of California, Riverside, California, USA;
| | - Linda L Walling
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA;
| |
Collapse
|
9
|
Campbell LI, Nwezeobi J, van Brunschot SL, Kaweesi T, Seal SE, Swamy RAR, Namuddu A, Maslen GL, Mugerwa H, Armean IM, Haggerty L, Martin FJ, Malka O, Santos-Garcia D, Juravel K, Morin S, Stephens ME, Muhindira PV, Kersey PJ, Maruthi MN, Omongo CA, Navas-Castillo J, Fiallo-Olivé E, Mohammed IU, Wang HL, Onyeka J, Alicai T, Colvin J. Comparative evolutionary analyses of eight whitefly Bemisia tabaci sensu lato genomes: cryptic species, agricultural pests and plant-virus vectors. BMC Genomics 2023; 24:408. [PMID: 37468834 DOI: 10.1186/s12864-023-09474-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND The group of > 40 cryptic whitefly species called Bemisia tabaci sensu lato are amongst the world's worst agricultural pests and plant-virus vectors. Outbreaks of B. tabaci s.l. and the associated plant-virus diseases continue to contribute to global food insecurity and social instability, particularly in sub-Saharan Africa and Asia. Published B. tabaci s.l. genomes have limited use for studying African cassava B. tabaci SSA1 species, due to the high genetic divergences between them. Genomic annotations presented here were performed using the 'Ensembl gene annotation system', to ensure that comparative analyses and conclusions reflect biological differences, as opposed to arising from different methodologies underpinning transcript model identification. RESULTS We present here six new B. tabaci s.l. genomes from Africa and Asia, and two re-annotated previously published genomes, to provide evolutionary insights into these globally distributed pests. Genome sizes ranged between 616-658 Mb and exhibited some of the highest coverage of transposable elements reported within Arthropoda. Many fewer total protein coding genes (PCG) were recovered compared to the previously published B. tabaci s.l. genomes and structural annotations generated via the uniform methodology strongly supported a repertoire of between 12.8-13.2 × 103 PCG. An integrative systematics approach incorporating phylogenomic analysis of nuclear and mitochondrial markers supported a monophyletic Aleyrodidae and the basal positioning of B. tabaci Uganda-1 to the sub-Saharan group of species. Reciprocal cross-mating data and the co-cladogenesis pattern of the primary obligate endosymbiont 'Candidatus Portiera aleyrodidarum' from 11 Bemisia genomes further supported the phylogenetic reconstruction to show that African cassava B. tabaci populations consist of just three biological species. We include comparative analyses of gene families related to detoxification, sugar metabolism, vector competency and evaluate the presence and function of horizontally transferred genes, essential for understanding the evolution and unique biology of constituent B. tabaci. s.l species. CONCLUSIONS These genomic resources have provided new and critical insights into the genetics underlying B. tabaci s.l. biology. They also provide a rich foundation for post-genomic research, including the selection of candidate gene-targets for innovative whitefly and virus-control strategies.
Collapse
Affiliation(s)
- Lahcen I Campbell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Joachim Nwezeobi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, UK.
| | - Sharon L van Brunschot
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- CSIRO Health and Biosecurity, Dutton Park, QLD, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tadeo Kaweesi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Rwebitaba Zonal Agricultural Research and Development Institute, Fort Portal, Uganda
| | - Susan E Seal
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | - Rekha A R Swamy
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | - Annet Namuddu
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- National Crops Resources Research Institute, Kampala, Uganda
| | - Gareth L Maslen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Imperial College London, South Kensington, London, UK
| | - Habibu Mugerwa
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Department of Entomology, University of Georgia, Griffin, GA, USA
| | - Irina M Armean
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Osnat Malka
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos-Garcia
- CNRS, Laboratory of Biometry and Evolutionary Biology UMR 5558, University of Lyon, Villeurbanne, France
- Center for Biology and Management of Populations, INRAe UMR1062, Montferrier-sur-Lez, France
| | - Ksenia Juravel
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Paul Visendi Muhindira
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Paul J Kersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Royal Botanic Gardens, Kew, London, UK
| | - M N Maruthi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | | | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical Y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Málaga, Algarrobo-Costa, Spain
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical Y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Málaga, Algarrobo-Costa, Spain
| | | | - Hua-Ling Wang
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Joseph Onyeka
- National Root Crops Research Institute (NRCRI), Umudike, Nigeria
| | - Titus Alicai
- National Crops Resources Research Institute, Kampala, Uganda
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| |
Collapse
|
10
|
Huang T, Liu Y, He K, Francis F, Wang B, Wang G. Chromosome-level genome assembly of the spotted alfalfa aphid Therioaphis trifolii. Sci Data 2023; 10:274. [PMID: 37173339 PMCID: PMC10181989 DOI: 10.1038/s41597-023-02179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The spotted alfalfa aphid (SAA, Therioaphis trifolii) (Hemiptera: Aphididae) is a destructive pest of cultivated alfalfa (Medicago sativa L.) that leads to large financial losses in the livestock industry around the world. Here, we present a chromosome-scale genome assembly of T. trifolii, the first genome assembly for the aphid subfamily Calaphidinae. Using PacBio long-read sequencing, Illumina sequencing, and Hi-C scaffolding techniques, a 541.26 Mb genome was generated, with 90.01% of the assembly anchored into eight scaffolds, and the contig and scaffold N50 are 2.54 Mb and 44.77 Mb, respectively. BUSCO assessment showed a completeness score of 96.6%. A total of 13,684 protein-coding genes were predicted. The high-quality genome assembly of T. trifolii not only provides a genomic resource for the more complete analysis of aphid evolution, but also provides insights into the ecological adaptation and insecticide resistance of T. trifolii.
Collapse
Affiliation(s)
- Tianyu Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
11
|
Sun Z, Chen Y, Chen Y, Lu Z, Gui F. Tracking Adaptive Pathways of Invasive Insects: Novel Insight from Genomics. Int J Mol Sci 2023; 24:8004. [PMID: 37175710 PMCID: PMC10179030 DOI: 10.3390/ijms24098004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the huge human and economic costs of invasive insects, which are the main group of invasive species, their environmental impacts through various mechanisms remain inadequately explained in databases and much of the invasion biology literature. High-throughput sequencing technology, especially whole-genome sequencing, has been used as a powerful method to study the mechanisms through which insects achieve invasion. In this study, we reviewed whole-genome sequencing-based advances in revealing several important invasion mechanisms of invasive insects, including (1) the rapid genetic variation and evolution of invasive populations, (2) invasion history and dispersal paths, (3) rapid adaptation to different host plant ranges, (4) strong environmental adaptation, (5) the development of insecticide resistance, and (6) the synergistic damage caused by invasive insects and endosymbiotic bacteria. We also discussed prevention and control technologies based on whole-genome sequencing and their prospects.
Collapse
Affiliation(s)
| | | | | | | | - Furong Gui
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
12
|
Wang YQ, Li GY, Li L, Song QS, Stanley D, Wei SJ, Zhu JY. Genome-wide and expression-profiling analyses of the cytochrome P450 genes in Tenebrionidea. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21954. [PMID: 36065122 DOI: 10.1002/arch.21954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Cytochrome P450 monooxygenases (CYPs) are present in almost all areas of the tree of life. As one of the largest and most diverse superfamilies of multifunctional enzymes, they play important roles in the metabolism of xenobiotics and biosynthesis of endogenous compounds, shaping the success of insects. In this study, the CYPome (an omics term for all the CYP genes in a genome) diversification was examined in the four Tenebrionidea species through genome-wide analysis. A total of 483 CYP genes were identified, of which 103, 157, 122, and 101 were respectively deciphered from the genomes of Tebebrio molitor, Asbolus verucosus, Hycleus cichorii and Hycleus phaleratus. These CYPs were classified into four major clans (mitochondrial, CYP2, CYP3, and CYP4), and clans CYP3 and CYP4 are most diverse. Phylogenetic analysis showed that most CYPs of these Tenebrionidea beetles from each clan had a very close 1:1 orthology to each other, suggesting that they originate closely and have evolutionally conserved function. Expression analysis at different developmental stages and in various tissues showed the life stage-, gut-, salivary gland-, fat body-, Malpighian tubule-, antennae-, ovary- and testis-specific expression patterns of T. molitor CYP genes, implying their various potential roles in development, detoxification, immune response, digestion, olfaction, and reproduction. Our studies provide a platform to understand the evolution of Tenebrionidea CYP gene superfamily, and a basis for further functional investigation of the T. molitor CYPs involved in various biological processes.
Collapse
Affiliation(s)
- Yu-Qin Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Guang-Ya Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lu Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
13
|
Bailey E, Field L, Rawlings C, King R, Mohareb F, Pak KH, Hughes D, Williamson M, Ganko E, Buer B, Nauen R. A near-chromosome level genome assembly of the European hoverfly, Sphaerophoria rueppellii (Diptera: Syrphidae), provides comparative insights into insecticide resistance-related gene family evolution. BMC Genomics 2022; 23:198. [PMID: 35279098 PMCID: PMC8917705 DOI: 10.1186/s12864-022-08436-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Sphaerophoria rueppellii, a European species of hoverfly, is a highly effective beneficial predator of hemipteran crop pests including aphids, thrips and coleopteran/lepidopteran larvae in integrated pest management (IPM) programmes. It is also a key pollinator of a wide variety of important agricultural crops. No genomic information is currently available for S. rueppellii. Without genomic information for such beneficial predator species, we are unable to perform comparative analyses of insecticide target-sites and genes encoding metabolic enzymes potentially responsible for insecticide resistance, between crop pests and their predators. These metabolic mechanisms include several gene families - cytochrome P450 monooxygenases (P450s), ATP binding cassette transporters (ABCs), glutathione-S-transferases (GSTs), UDP-glycosyltransferases (UGTs) and carboxyl/choline esterases (CCEs). METHODS AND FINDINGS In this study, a high-quality near-chromosome level de novo genome assembly (as well as a mitochondrial genome assembly) for S. rueppellii has been generated using a hybrid approach with PacBio long-read and Illumina short-read data, followed by super scaffolding using Hi-C data. The final assembly achieved a scaffold N50 of 87Mb, a total genome size of 537.6Mb and a level of completeness of 96% using a set of 1,658 core insect genes present as full-length genes. The assembly was annotated with 14,249 protein-coding genes. Comparative analysis revealed gene expansions of CYP6Zx P450s, epsilon-class GSTs, dietary CCEs and multiple UGT families (UGT37/302/308/430/431). Conversely, ABCs, delta-class GSTs and non-CYP6Zx P450s showed limited expansion. Differences were seen in the distributions of resistance-associated gene families across subfamilies between S. rueppellii and some hemipteran crop pests. Additionally, S. rueppellii had larger numbers of detoxification genes than other pollinator species. CONCLUSION AND SIGNIFICANCE This assembly is the first published genome for a predatory member of the Syrphidae family and will serve as a useful resource for further research into selectivity and potential tolerance of insecticides by beneficial predators. Furthermore, the expansion of some gene families often linked to insecticide resistance and selectivity may be an indicator of the capacity of this predator to detoxify IPM selective insecticides. These findings could be exploited by targeted insecticide screens and functional studies to increase effectiveness of IPM strategies, which aim to increase crop yields by sustainably and effectively controlling pests without impacting beneficial predator populations.
Collapse
Affiliation(s)
- Emma Bailey
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK.
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK.
- The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, UK.
| | - Linda Field
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Christopher Rawlings
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Rob King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Fady Mohareb
- The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, UK
| | - Keywan-Hassani Pak
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - David Hughes
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Martin Williamson
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Eric Ganko
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, Durham, NC, USA
| | - Benjamin Buer
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| |
Collapse
|
14
|
Bailey E, Field L, Rawlings C, King R, Mohareb F, Pak KH, Hughes D, Williamson M, Ganko E, Buer B, Nauen R. A scaffold-level genome assembly of a minute pirate bug, Orius laevigatus (Hemiptera: Anthocoridae), and a comparative analysis of insecticide resistance-related gene families with hemipteran crop pests. BMC Genomics 2022; 23:45. [PMID: 35012450 PMCID: PMC8751118 DOI: 10.1186/s12864-021-08249-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Orius laevigatus, a minute pirate bug, is a highly effective beneficial predator of crop pests including aphids, spider mites and thrips in integrated pest management (IPM) programmes. No genomic information is currently available for O. laevigatus, as is the case for the majority of beneficial predators which feed on crop pests. In contrast, genomic information for crop pests is far more readily available. The lack of publicly available genomes for beneficial predators to date has limited our ability to perform comparative analyses of genes encoding potential insecticide resistance mechanisms between crop pests and their predators. These mechanisms include several gene/protein families including cytochrome P450s (P450s), ATP binding cassette transporters (ABCs), glutathione S-transferases (GSTs), UDP-glucosyltransferases (UGTs) and carboxyl/cholinesterases (CCEs). METHODS AND FINDINGS In this study, a high-quality scaffold level de novo genome assembly for O. laevigatus has been generated using a hybrid approach with PacBio long-read and Illumina short-read data. The final assembly achieved a scaffold N50 of 125,649 bp and a total genome size of 150.98 Mb. The genome assembly achieved a level of completeness of 93.6% using a set of 1658 core insect genes present as full-length genes. Genome annotation identified 15,102 protein-coding genes - 87% of which were assigned a putative function. Comparative analyses revealed gene expansions of sigma class GSTs and CYP3 P450s. Conversely the UGT gene family showed limited expansion. Differences were seen in the distributions of resistance-associated gene families at the subfamily level between O. laevigatus and some of its targeted crop pests. A target site mutation in ryanodine receptors (I4790M, PxRyR) which has strong links to diamide resistance in crop pests and had previously only been identified in lepidopteran species was found to also be present in hemipteran species, including O. laevigatus. CONCLUSION AND SIGNIFICANCE This assembly is the first published genome for the Anthocoridae family and will serve as a useful resource for further research into target-site selectivity issues and potential resistance mechanisms in beneficial predators. Furthermore, the expansion of gene families often linked to insecticide resistance may be an indicator of the capacity of this predator to detoxify selective insecticides. These findings could be exploited by targeted pesticide screens and functional studies to increase effectiveness of IPM strategies, which aim to increase crop yields by sustainably, environmentally-friendly and effectively control pests without impacting beneficial predator populations.
Collapse
Affiliation(s)
- Emma Bailey
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK.
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK.
- The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, UK.
| | - Linda Field
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Christopher Rawlings
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Rob King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Fady Mohareb
- The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, UK
| | - Keywan-Hassani Pak
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - David Hughes
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Martin Williamson
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Eric Ganko
- Syngenta Biotechnology Inc, Research Triangle Park, NC, USA
| | - Benjamin Buer
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| |
Collapse
|
15
|
Stern DL, Han C. OUP accepted manuscript. Genome Biol Evol 2022; 14:6602283. [PMID: 35660862 PMCID: PMC9168663 DOI: 10.1093/gbe/evac069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/09/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022] Open
Abstract
Homology of highly divergent genes often cannot be determined from sequence similarity alone. For example, we recently identified in the aphid Hormaphis cornu a family of rapidly evolving bicycle genes, which encode novel proteins implicated as plant gall effectors, and sequence similarity search methods yielded few putative bicycle homologs in other species. Coding sequence-independent features of genes, such as intron-exon boundaries, often evolve more slowly than coding sequences, however, and can provide complementary evidence for homology. We found that a linear logistic regression classifier using only structural features of bicycle genes identified many putative bicycle homologs in other species. Independent evidence from sequence features and intron locations supported homology assignments. To test the potential roles of bicycle genes in other aphids, we sequenced the genome of a second gall-forming aphid, Tetraneura nigriabdominalis and found that many bicycle genes are strongly expressed in the salivary glands of the gall forming foundress. In addition, bicycle genes are strongly overexpressed in the salivary glands of a non-gall forming aphid, Acyrthosiphon pisum, and in the non-gall forming generations of H. cornu. These observations suggest that Bicycle proteins may be used by multiple aphid species to manipulate plants in diverse ways. Incorporation of gene structural features into sequence search algorithms may aid identification of deeply divergent homologs, especially of rapidly evolving genes involved in host-parasite interactions.
Collapse
Affiliation(s)
| | - Clair Han
- Janelia Research Campus of the Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
16
|
Ettinger CL, Byrne FJ, Collin MA, Carter-House D, Walling LL, Atkinson PW, Redak RA, Stajich JE. Improved draft reference genome for the Glassy-winged Sharpshooter (Homalodisca vitripennis), a vector for Pierce's disease. G3-GENES GENOMES GENETICS 2021; 11:6324818. [PMID: 34568917 PMCID: PMC8496328 DOI: 10.1093/g3journal/jkab255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022]
Abstract
Homalodisca vitripennis (Hemiptera: Cicadellidae), known as the glassy-winged sharpshooter, is a xylem feeding leafhopper and an important agricultural pest as a vector of Xylella fastidiosa, which causes Pierce’s disease in grapes and a variety of other scorch diseases. The current H. vitripennis reference genome from the Baylor College of Medicine's i5k pilot project is a 1.4-Gb assembly with 110,000 scaffolds, which still has significant gaps making identification of genes difficult. To improve on this effort, we used a combination of Oxford Nanopore long-read sequencing technology combined with Illumina sequencing reads to generate a better assembly and first-pass annotation of the whole genome sequence of a wild-caught Californian (Tulare County) individual of H. vitripennis. The improved reference genome assembly for H. vitripennis is 1.93-Gb in length (21,254 scaffolds, N50 = 650 Mb, BUSCO completeness = 94.3%), with 33.06% of the genome masked as repetitive. In total, 108,762 gene models were predicted including 98,296 protein-coding genes and 10,466 tRNA genes. As an additional community resource, we identified 27 orthologous candidate genes of interest for future experimental work including phenotypic marker genes like white. Furthermore, as part of the assembly process, we generated four endosymbiont metagenome-assembled genomes, including a high-quality near complete 1.7-Mb Wolbachia sp. genome (1 scaffold, CheckM completeness = 99.4%). The improved genome assembly and annotation for H. vitripennis, curated set of candidate genes, and endosymbiont MAGs will be invaluable resources for future research of H. vitripennis.
Collapse
Affiliation(s)
- Cassandra L Ettinger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| | - Frank J Byrne
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Matthew A Collin
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA.,Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Derreck Carter-House
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| | - Linda L Walling
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA.,Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Peter W Atkinson
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA.,Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Rick A Redak
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA.,Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
17
|
Xia J, Guo Z, Yang Z, Han H, Wang S, Xu H, Yang X, Yang F, Wu Q, Xie W, Zhou X, Dermauw W, Turlings TCJ, Zhang Y. Whitefly hijacks a plant detoxification gene that neutralizes plant toxins. Cell 2021; 184:1693-1705.e17. [PMID: 33770502 DOI: 10.1016/j.cell.2021.02.014] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/29/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
Plants protect themselves with a vast array of toxic secondary metabolites, yet most plants serve as food for insects. The evolutionary processes that allow herbivorous insects to resist plant defenses remain largely unknown. The whitefly Bemisia tabaci is a cosmopolitan, highly polyphagous agricultural pest that vectors several serious plant pathogenic viruses and is an excellent model to probe the molecular mechanisms involved in overcoming plant defenses. Here, we show that, through an exceptional horizontal gene transfer event, the whitefly has acquired the plant-derived phenolic glucoside malonyltransferase gene BtPMaT1. This gene enables whiteflies to neutralize phenolic glucosides. This was confirmed by genetically transforming tomato plants to produce small interfering RNAs that silence BtPMaT1, thus impairing the whiteflies' detoxification ability. These findings reveal an evolutionary scenario whereby herbivores harness the genetic toolkit of their host plants to develop resistance to plant defenses and how this can be exploited for crop protection.
Collapse
Affiliation(s)
- Jixing Xia
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haolin Han
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haifeng Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengshan Yang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Wannes Dermauw
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, 8920 Merelbeke, Belgium; Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
18
|
Zhao J, Lei T, Zhang XJ, Yin TY, Wang XW, Liu SS. A vector whitefly endocytic receptor facilitates the entry of begomoviruses into its midgut cells via binding to virion capsid proteins. PLoS Pathog 2020; 16:e1009053. [PMID: 33270808 PMCID: PMC7714154 DOI: 10.1371/journal.ppat.1009053] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
Many circulative plant viruses transmitted by insect vectors are devastating to agriculture worldwide. The midgut wall of vector insects represents a major barrier and at the same time the key gate a circulative plant virus must cross for productive transmission. However, how these viruses enter insect midgut cells remains poorly understood. Here, we identified an endocytic receptor complex for begomoviruses in the midgut cells of their whitefly vector. Our results show that two whitefly proteins, BtCUBN and BtAMN, compose a receptor complex BtCubam, for which BtCUBN contributes a viral-binding region and BtAMN contributes to membrane anchorage. Begomoviruses appear to be internalized together with BtCubam via its interaction with the 12–19 CUB domains of BtCUBN via clathrin-dependent endocytosis. Functional analysis indicates that interruption of BtCUBN and BtAMN lead to reduction of virus acquisition and transmission by whitefly. In contrast, CUBN-begomovirus interaction was not observed in two non-competent whitefly-begomovirus combinations. These observations suggest a major role of the specific endocytic receptor in facilitating viral entry into vector midgut cells. Many viruses depend on insect vectors for transmission and spread. Following ingestion by insect vectors, many viruses need to circulate in the vector via a sequential path of stylet-midgut-haemolymph-salivary glands and are finally inoculated into plants with saliva secretion. To complete this journey, virions have to cross many physical/physiological barriers, of which the insect midgut wall represents the first and one of the major challenges. While this route of virus circulation has been known for a long time, the physiological and molecular mechanisms underlying the crossing of these barriers by viruses are poorly understood. Working with begomoviruses, a group of plant viruses of economic significance worldwide, and their insect vectors, the whiteflies of the Bemisia tabaci complex, we found that upon virus infection, two vector proteins, cubilin (CUBN) and amnionless (AMN), form a virus receptor complex to uptake the virions and assist them to move through the apical membrane of whitefly midgut cells via clathrin-dependent endocytosis. These novel findings contribute to a better understanding on the molecular mechanisms of insect transmission of circulative viruses.
Collapse
Affiliation(s)
- Jing Zhao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Teng Lei
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xin-Jia Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Tian-Yan Yin
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|