1
|
Curto M, Batista S, Santos CD, Ribeiro F, Nogueira S, Ribeiro D, Prindle B, Licari D, Riccioni G, Dias D, Pina-Martins F, Jentoft S, Veríssimo A, Alves MJ, Gante HF. Freshwater fish community assessment using eDNA metabarcoding vs. capture-based methods: Differences in efficiency and resolution coupled to habitat and ecology. ENVIRONMENTAL RESEARCH 2025; 274:121238. [PMID: 40020855 DOI: 10.1016/j.envres.2025.121238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/04/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Environmental DNA (eDNA) metabarcoding has revolutionized ecological and environmental research by describing communities without relying on direct observations, making it a powerful, non-invasive, and cost-effective tool in biodiversity monitoring. However, the adoption of eDNA as a standard protocol in long-term monitoring programs, which have traditionally relied on capture-based methods, presents challenges in terms of data comparability. Here, we compared freshwater fish communities assessed through eDNA metabarcoding and electrofishing, across 35 sampling sites in the lower Tagus River basin, Portugal. For the majority of species or species-groups analysed individually (13 out of 17), a significant correspondence was observed between electrofishing and eDNA metabarcoding detections. A weaker correspondence was found between the number of specimens captured by electrofishing with the number of eDNA metabarcoding reads, with seven out of 13 taxa showing significant relationships. Species richness estimates based on the two methods were very similar at the basin level. The methods yielded significantly different species compositions, although these differences were driven by samples collected in the Tagus main channel, which is wider and has higher flow rates than tributaries. Benthic and shoreline fish communities showed similar species composition in the two methods, but this was not the case for pelagic communities, probably due to the higher water turnover of the pelagic zone and electrofishing inefficiency. Our results highlight the high potential of eDNA metabarcoding as a complementary method to electrofishing for freshwater fish monitoring, though further validation is needed to assess biases related to site-specific hydrological conditions and the ecology of the target species.
Collapse
Affiliation(s)
- Manuel Curto
- MARE - Marine and Environmental Sciences Center/ARNET - Aquatic Research Network, Faculty of Sciences, University of Lisbon, Lisbon, Portugal; CIBIO - Research Center in Biodiversity and Genetic Resources, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
| | - Sofia Batista
- MARE - Marine and Environmental Sciences Center/ARNET - Aquatic Research Network, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Carlos D Santos
- MARE - Marine and Environmental Science Centre and ARNET - Aquatic Research Network Associate Laboratory, Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
| | - Filipe Ribeiro
- MARE - Marine and Environmental Sciences Center/ARNET - Aquatic Research Network, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Sofia Nogueira
- MARE - Marine and Environmental Sciences Center/ARNET - Aquatic Research Network, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Diogo Ribeiro
- MARE - Marine and Environmental Sciences Center/ARNET - Aquatic Research Network, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | | | - Daniel Licari
- Department of Biology, Indiana State University, USA
| | - Giulia Riccioni
- Università Cattolica del Sacro Cuore, Facoltà di Scienze Agrarie, Alimentari e Ambientali, DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, BioDNA Centro di ricerca sulla Biodiversità e sul DNA Antico, via Emilia Parmense 84, 29122, Piacenza (PC), Italy
| | - Diogo Dias
- MARE - Marine and Environmental Sciences Center/ARNET - Aquatic Research Network, Faculty of Sciences, University of Lisbon, Lisbon, Portugal; cE3c - Centre for Ecology, Evolution and Environmental Changes/CHANGE - Global Change and Sustainability Institute, Portugal
| | - Francisco Pina-Martins
- cE3c - Centre for Ecology, Evolution and Environmental Changes/CHANGE - Global Change and Sustainability Institute, Portugal; Departamento de Engenharia Química E Biológica, Escola Superior de Tecnologia Do Barreiro, Instituto Politécnico de Setúbal, Rua Américo da Silva Marinho, 2839-001, Lavradio, Portugal
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ana Veríssimo
- CIBIO - Research Center in Biodiversity and Genetic Resources, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Maria Judite Alves
- cE3c - Centre for Ecology, Evolution and Environmental Changes/CHANGE - Global Change and Sustainability Institute, Portugal; Museu Nacional de História Natural e da Ciência, Universidade de Lisboa, Lisboa, Portugal
| | - Hugo F Gante
- cE3c - Centre for Ecology, Evolution and Environmental Changes/CHANGE - Global Change and Sustainability Institute, Portugal; Department of Biology, KU Leuven, Division Ecology, Evolution and Biodiversity Conservation, Charles Deberiotstraat 32, 3000, Leuven, Belgium; Department of Biology, Royal Museum for Central Africa, Section Vertebrates, Leuvensesteenweg 17, 3080, Tervuren, Belgium
| |
Collapse
|
2
|
Dougherty MM, MacDonald A, York G, Post DM. Monitoring a keystone species (Alosa pseudoharengus) with environmental effects: A comparison with direct capture and environmental DNA. PLoS One 2025; 20:e0324385. [PMID: 40408427 PMCID: PMC12101637 DOI: 10.1371/journal.pone.0324385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/24/2025] [Indexed: 05/25/2025] Open
Abstract
Keystone species are important drivers of ecological processes. Their ecological importance makes them prime candidates for biological monitoring, both to preserve and restore their populations when facing decline, and to limit their spread as invasive species. To monitor species well requires cost and labor efficient methods that are capable of detecting the target species at low abundances. Traditional sampling methods, or methods of direct capture, can be labor intensive when trying to monitor large areas or species at low abundances. Another method, environmental DNA (eDNA), has emerged as a more cost and time efficient supplement to traditional monitoring methods. Environmental DNA techniques and strategies continue to be developed, but face limitations for some taxonomic groups within certain habitats. Here, we propose a novel method for monitoring keystone species: environmental effects sampling. Keystone species have large effects on their environment relative to their abundance. Measuring their environmental effects-or quantifiable changes in the biotic or abiotic environment due to organism-environment interactions-has potential as a low-effort and low-cost method for detecting keystone species. In this study, we compare the effectiveness of traditional sampling, eDNA methods, and environmental effects sampling as an alternative low cost and time efficient method for monitoring the presence and abundance of an ecologically important keystone species, the alewife, Alosa pseudoharengus, in freshwater lakes. The alewife is a zooplanktivorous fish managed as a species of conservation concern along coastal New England, USA, and an invasive or non-native species throughout the Laurentian Great Lakes watershed. We sampled lakes throughout Michigan and Connecticut from 2018-2020 and compared the three monitoring methods along four axes: alewife presence/absence, alewife abundance, financial cost, and time efficiency. Our results suggest that monitoring alewife with environmental effects is more accurate, more cost efficient, and more time efficient than purse seining and eDNA. Our environmental effects results also led to the discovery that two historically recognized alewife lakes no longer contained alewife, as confirmed by traditional sampling. However, environmental effects monitoring was only useful for determining alewife presence/absence, and was not reliable for determining alewife relative abundance. Environmental effects monitoring presents novel opportunities for efficiently and effectively monitoring keystone species such as alewife for the purpose of restoration or management.
Collapse
Affiliation(s)
- Matthew M. Dougherty
- Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Biology, Saint Norbert College, De Pere, Wisconsin, United States of America
| | - Andrew MacDonald
- Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Geneva York
- School of Marine Sciences, University of Maine, Orono, Maine, United States of America
| | - David M. Post
- Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
3
|
Jo TS. Parameterizing the particle size distribution of environmental DNA provides insights into its improved availability from the water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:519. [PMID: 40198460 DOI: 10.1007/s10661-025-13998-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Previous studies estimated the particle size distribution (PSD) of environmental DNA (eDNA) to infer its persistence state in the water and to determine the size fraction in which eDNA particles are concentrated. These results, however, depend on the combination of filter pore sizes and may not necessarily provide the proper implications for the eDNA state and availability in the water. To address this issue, the present study proposes parameterizing the PSD using the Weibull distribution model, which has been widely used for various materials. Re-analyses of previous datasets show the Weibull parameters (representing the PSD profiles) significantly depend on species traits, marker types, temperature, and time passages after the removal of the individuals. The results allowed for calculating the proportion of eDNA captured using a given filter pore size and the filter pore size required to collect a given percentage of eDNA particles under various study designs and environmental conditions. The results also posed caveats indicating that the strategy for a sufficient eDNA collection method is not always uniform across experimental and environmental conditions. The findings contribute to a better understanding of the eDNA state and improved eDNA availability, refining eDNA-based biodiversity and ecosystem monitoring.
Collapse
Affiliation(s)
- Toshiaki S Jo
- Research Fellow of Japan Society for the Promotion of Science, 5 - 3- 1 Kojimachi, Chiyoda-Ku, Tokyo, 102 - 0083, Japan.
- Graduate School of Informatics, Kyoto University, 36- 1, Yoshida-honmachi, Sakyo-ku, Kyoto City, Kyoto, 606-8501, Japan.
- Faculty of Advanced Science and Technology, Ryukoku University, 1 - 5, Yokotani, Oe-Cho, Seta, Otsu City, Shiga, 520 - 2194, Japan.
| |
Collapse
|
4
|
Roy F, Baumann P, Ullrich R, Moll J, Bässler C, Hofrichter M, Kellner H. Illuminating ecology and distribution of the rare fungus Phellinidium pouzarii in the Bavarian Forest National Park. Sci Rep 2025; 15:8604. [PMID: 40074832 PMCID: PMC11904187 DOI: 10.1038/s41598-025-91672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Due to their cryptic lifestyle, hidden diversity and a lack of ecological knowledge, conservation of wood-inhabiting fungi continues to be a niche interest. Molecular methods are able to provide deeper insights into the ecology of rare fungal species. We investigated the occurrence of the rare wood-inhabiting fungus Phellinidium pouzarii across the Bavarian Forest National Park in Germany using a fruit body survey, amplicon sequencing and qPCR. Additionally, we sequenced the genome of P. pouzarii and characterized the chemical substances responsible for its distinctive scent. Our approach gave matching results between amplicon sequencing and qPCRs, however, we found no evidence that P. pouzarii is more abundant in the National Park than we can assume based on fruit body inventories, underlining the species' critically endangered status. Genomics revealed P. pouzarii's repertoire of ligninolytic enzymes, pointing towards a white rot lifestyle. Two main components of P. pouzarii's distinct odour we identified (2-phenylethanol, methyl p-anisate) are known to act as insect attractants and/or to possess antimicrobial properties.
Collapse
Affiliation(s)
- Friederike Roy
- Department of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, Markt 23, 02763, Zittau, Germany
| | - Philipp Baumann
- Department of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, Markt 23, 02763, Zittau, Germany
| | - René Ullrich
- Department of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, Markt 23, 02763, Zittau, Germany
| | - Julia Moll
- Department of Soil Ecology, Helmholtz Centre for Environmental Research, Theodor-Lieser- Straße 4, 06120, Halle (Saale), Germany
| | - Claus Bässler
- Department for Biology, Chemistry and Geo Sciences, Institute for Ecology of Fungi, University Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- National Park Bavarian Forest, Freyunger Str. 2, 94481, Grafenau, Germany
| | - Martin Hofrichter
- Department of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, Markt 23, 02763, Zittau, Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, Markt 23, 02763, Zittau, Germany.
| |
Collapse
|
5
|
Ge Q, Piao Y, Li Z, Yang Y, Pan M, Bai Y. Environmental DNA integrity index is sensitive for species biomass estimation in freshwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178734. [PMID: 39914319 DOI: 10.1016/j.scitotenv.2025.178734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/05/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025]
Abstract
Environmental DNA (eDNA) derived from aquatic vertebrates has recently been employed to estimate species presence. However, the accuracy of these estimations is contingent upon the degradation rate of eDNA. In this study, we introduced the eDNA Integrity Index (eDI) to adjust eDNA concentration for the purpose of estimating carp biomass. The adjusted eDNA concentration is designated as the Biomass Index (BI). We investigated the degradation rate of eDNA through a series of simulation experiments, followed by experiments conducted in tanks and ponds. In all experimental setups, eDNA concentration exhibited a gradual decline, while eDI demonstrated rapid fluctuations following the removal of fish species. Notably, the eDI decreased to nearly zero within two days, whereas eDNA remained detectable for over a month. In experiments involving multiple species raised in conjunction, we observed no significant mutual interference among different species concerning eDI. Furthermore, temperature was determined to have a minimal impact on eDI. Although both eDNA concentration and BI were positively correlated with carp biomass across all experiments, BI exhibited a stronger correlation (R2 > 0.95), was more sensitive to variations in biomass, and provided a more accurate estimate of carp biomass. We successfully applied this methodology to estimate the biomass of carp in a fishpond, demonstrating that precise biomass data can reflect the potential distribution of common carp in natural environments. We present a non-invasive, straightforward, rapid, and accurate method for biomass estimation. SYNOPSIS: We developed an environmental DNA integrity-based method which can estimate species biomass sensitively for species distribution and resource investigations.
Collapse
Affiliation(s)
- Qinyu Ge
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yanyan Piao
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhihui Li
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuwei Yang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, China
| | - Min Pan
- School of Medicine, Southeast University, Nanjing 210097, China
| | - Yunfei Bai
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
6
|
Nichols PK, Fraiola KMS, Sherwood AR, Hauk BB, Lopes KH, Davis CA, Fumo JT, Counsell CWW, Williams TM, Spalding HL, Marko PB. Navigating uncertainty in environmental DNA detection of a nuisance marine macroalga. PLoS One 2025; 20:e0318414. [PMID: 39903716 PMCID: PMC11793909 DOI: 10.1371/journal.pone.0318414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Early detection of nuisance species is crucial for managing threatened ecosystems and preventing widespread establishment. Environmental DNA (eDNA) data can increase the sensitivity of biomonitoring programs, often at minimal cost and effort. However, eDNA analyses are prone to errors that can complicate their use in management frameworks. To address this, eDNA studies must consider imperfect detections and estimate error rates. Detecting nuisance species at low abundances with minimal uncertainty is vital for successful containment and eradication. We developed a novel eDNA assay to detect a nuisance marine macroalga across its colonization front using surface seawater samples from Papahānaumokuākea Marine National Monument (PMNM), one of the world's largest marine reserves. Chondria tumulosa is a cryptogenic red alga with invasive traits, forming dense mats that overgrow coral reefs and smother native flora and fauna in PMNM. We verified the eDNA assay using site-occupancy detection modeling from quantitative polymerase chain reaction (qPCR) data, calibrated with visual estimates of benthic cover of C. tumulosa that ranged from < 1% to 95%. Results were subsequently validated with high-throughput sequencing of amplified eDNA and negative control samples. Overall, the probability of detecting C. tumulosa at occupied sites was at least 92% when multiple qPCR replicates were positive. False-positive rates were 3% or less and false-negative errors were 11% or less. The assay proved effective for routine monitoring at shallow sites (less than 10 m), even when C. tumulosa abundance was below 1%. Successful implementation of eDNA tools in conservation decision-making requires balancing uncertainties in both visual and molecular detection methods. Our results and modeling demonstrated the assay's high sensitivity to C. tumulosa, and we outline steps to infer ecological presence-absence from molecular data. This reliable, cost-effective tool enhances the detection of low-abundance species, and supports timely management interventions.
Collapse
Affiliation(s)
- Patrick K. Nichols
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | | | - Alison R. Sherwood
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Brian B. Hauk
- National Oceanic and Atmospheric Administration, Honolulu, HI, United States of America
| | - Keolohilani H. Lopes
- Natural Resources and Environmental Management, College of Tropical Agriculture and Human Resources, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Colt A. Davis
- Cooperative Institute for Marine and Atmospheric Research, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - James T. Fumo
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Chelsie W. W. Counsell
- Cooperative Institute for Marine and Atmospheric Research, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Taylor M. Williams
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Heather L. Spalding
- Department of Biology, College of Charleston, Charleston, SC, United States of America
| | - Peter B. Marko
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| |
Collapse
|
7
|
Yao K, Wang G, Zhang W, Liu Q, Hu J, Ye M, Jiang X. Saline soil improvement promotes the transformation of microbial salt tolerance mechanisms and microbial-plant-animal ecological interactions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123360. [PMID: 39566212 DOI: 10.1016/j.jenvman.2024.123360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The improvement of coastal saline land would alleviate the problem of insufficient arable land and provide new solutions for guaranteeing food security and ecological environment modification. In this study, five typical soil samples were collected from Tongzhou Bay, China. The changes in bacterial, animal and plant community composition before and after improvement were comprehensively investigated by a combination of high-throughput sequencing and macro-barcode sequencing analysis of eDNA. The study aimed (1) to characterize the species composition and diversity of the bacterial communities in saline soils, (2) to elucidate the mechanisms of salt tolerance of the bacterial communities, and (3) to investigate the impacts of the microbial salt tolerance mechanisms on the regional bacteria and fauna. The results showed that over 15 years of improvement, the composition of the bacteria in the saline-alkaline plots evolved significantly, changing from Desulfovibrio (10.60%) and Campylobacter (11.20%), to Acidobacter (12.91%). After the improvement, salt stress on the bacterial phyla gradually decreased. The functional differentiation of the bacterial phyla became more pronounced. As ion concentrations decreased, the main mechanism of salt tolerance of the bacterial bacteria changed from mainly mechanism of inorganic ion accumulation (55.56%), supplemented by flexible halophilic enzymes (31.77%), to mainly mechanism of compatible solute (44.80%). The mechanism of microbial salt tolerance directly affected micro-diversity and indirectly influenced the diversity of environmental species (R = 0.54). The results of this study provide a scientific basis for coastal saline land as a microbiodiversity marker and for the exploration of microbial improvement of saline land.
Collapse
Affiliation(s)
- Keyu Yao
- National Engineering Laboratory of Soil Nutrients Management, Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy Sciences, Nanjing, 211135, China
| | - Guanghao Wang
- Soil Ecology Lab, Jiangsu Provincial Key LaboratoryofCoastal Saline Soil Resources Utilizationand Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic WasteResource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, NanjingAgricultural, University,Nanjing, 210095, China
| | - Wen Zhang
- Soil Ecology Lab, Jiangsu Provincial Key LaboratoryofCoastal Saline Soil Resources Utilizationand Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic WasteResource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, NanjingAgricultural, University,Nanjing, 210095, China
| | - Qiang Liu
- Marine Geological Survey of Jiangsu Province, Nanjing, 210007, China
| | - Jian Hu
- Marine Geological Survey of Jiangsu Province, Nanjing, 210007, China.
| | - Mao Ye
- National Engineering Laboratory of Soil Nutrients Management, Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy Sciences, Nanjing, 211135, China.
| | - Xin Jiang
- National Engineering Laboratory of Soil Nutrients Management, Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy Sciences, Nanjing, 211135, China
| |
Collapse
|
8
|
Borja A, Berg T, Gundersen H, Hagen AG, Hancke K, Korpinen S, Leal MC, Luisetti T, Menchaca I, Murray C, Piet G, Pitois S, Rodríguez-Ezpeleta N, Sample JE, Talbot E, Uyarra MC. Innovative and practical tools for monitoring and assessing biodiversity status and impacts of multiple human pressures in marine systems. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:694. [PMID: 38963575 DOI: 10.1007/s10661-024-12861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Human activities at sea can produce pressures and cumulative effects on ecosystem components that need to be monitored and assessed in a cost-effective manner. Five Horizon European projects have joined forces to collaboratively increase our knowledge and skills to monitor and assess the ocean in an innovative way, assisting managers and policy-makers in taking decisions to maintain sustainable activities at sea. Here, we present and discuss the status of some methods revised during a summer school, aiming at better management of coasts and seas. We include novel methods to monitor the coastal and ocean waters (e.g. environmental DNA, drones, imaging and artificial intelligence, climate modelling and spatial planning) and innovative tools to assess the status (e.g. cumulative impacts assessment, multiple pressures, Nested Environmental status Assessment Tool (NEAT), ecosystem services assessment or a new unifying approach). As a concluding remark, some of the most important challenges ahead are assessing the pros and cons of novel methods, comparing them with benchmark technologies and integrating these into long-standing time series for data continuity. This requires transition periods and careful planning, which can be covered through an intense collaboration of current and future European projects on marine biodiversity and ecosystem health.
Collapse
Affiliation(s)
- Angel Borja
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea S/N, 20110, Pasaia, Spain.
| | - Torsten Berg
- MariLim Aquatic Research GmbH, 24232, Schönkirchen, Germany
| | - Hege Gundersen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | | | - Kasper Hancke
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Samuli Korpinen
- Finnish Environment Institute, Marine Research Centre, Helsinki, Finland
| | - Miguel C Leal
- Science Crunchers, Scitation Lda, TecLabs - Campus da FCUL, 1749-016, Lisbon, Portugal
| | | | - Iratxe Menchaca
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea S/N, 20110, Pasaia, Spain
| | - Ciaran Murray
- NIVA Denmark Water Research, 2300, Copenhagen S, Denmark
| | - GerJan Piet
- Wageningen University and Research, Wageningen Marine Research, P.O. Box 57, 1780 AB, Den Helder, the Netherlands
| | | | - Naiara Rodríguez-Ezpeleta
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea Z/G, 48395, Sukarrieta, Spain
| | - James E Sample
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Elizabeth Talbot
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
| | - María C Uyarra
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea S/N, 20110, Pasaia, Spain
| |
Collapse
|
9
|
Lewis M, Lainé K, Dawnay L, Lamont D, Scott K, Mariani S, Hӓnfling B, Dawnay N. The forensic potential of environmental DNA (eDNA) in freshwater wildlife crime investigations: From research to application. Sci Justice 2024; 64:443-454. [PMID: 39025568 DOI: 10.1016/j.scijus.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024]
Abstract
Environmental DNA (eDNA) is widely used in biodiversity, conservation, and ecological studies but despite its successes, similar approaches have not yet been regularly applied to assist in wildlife crime investigations. The purpose of this paper is to review current eDNA methods and assess their potential forensic application in freshwater environments considering collection, transport and persistence, analysis, and interpretation, while identifying additional research required to present eDNA evidence in court. An extensive review of the literature suggests that commonly used collection methods can be easily adapted for forensic frameworks providing they address the appropriate investigative questions and take into consideration the uniqueness of the target species, its habitat, and the requirements of the end user. The use of eDNA methods to inform conservationists, monitor biodiversity and impacts of climate change, and detect invasive species and pathogens shows confidence within the scientific community, making the acceptance of these methods by the criminal justice system highly possible. To contextualise the potential application of eDNA on forensic investigations, two test cases are explored involving i) species detection and ii) species localisation. Recommendations for future work within the forensic eDNA discipline include development of suitable standardised collection methods, considered collection strategies, forensically validated assays and publication of procedures and empirical research studies to support implementation within the legal system.
Collapse
Affiliation(s)
- Matthew Lewis
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK
| | - Katie Lainé
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK
| | - Louise Dawnay
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK; International Study Centre, Liverpool John Moores University, Mount Pleasant, Liverpool, UK
| | - David Lamont
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK; Forensic Research Institute, Liverpool John Moores University, Byrom Street, Liverpool, UK
| | - Kirstie Scott
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK; Forensic Research Institute, Liverpool John Moores University, Byrom Street, Liverpool, UK
| | - Stefano Mariani
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK; Forensic Research Institute, Liverpool John Moores University, Byrom Street, Liverpool, UK
| | - Bernd Hӓnfling
- Institute for Biodiversity and Freshwater Conservation, University of the Highlands and Islands, Inverness, UK
| | - Nick Dawnay
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK; Forensic Research Institute, Liverpool John Moores University, Byrom Street, Liverpool, UK.
| |
Collapse
|
10
|
Perry WB, Seymour M, Orsini L, Jâms IB, Milner N, Edwards F, Harvey R, de Bruyn M, Bista I, Walsh K, Emmett B, Blackman R, Altermatt F, Lawson Handley L, Mächler E, Deiner K, Bik HM, Carvalho G, Colbourne J, Cosby BJ, Durance I, Creer S. An integrated spatio-temporal view of riverine biodiversity using environmental DNA metabarcoding. Nat Commun 2024; 15:4372. [PMID: 38782932 PMCID: PMC11116482 DOI: 10.1038/s41467-024-48640-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Anthropogenically forced changes in global freshwater biodiversity demand more efficient monitoring approaches. Consequently, environmental DNA (eDNA) analysis is enabling ecosystem-scale biodiversity assessment, yet the appropriate spatio-temporal resolution of robust biodiversity assessment remains ambiguous. Here, using intensive, spatio-temporal eDNA sampling across space (five rivers in Europe and North America, with an upper range of 20-35 km between samples), time (19 timepoints between 2017 and 2018) and environmental conditions (river flow, pH, conductivity, temperature and rainfall), we characterise the resolution at which information on diversity across the animal kingdom can be gathered from rivers using eDNA. In space, beta diversity was mainly dictated by turnover, on a scale of tens of kilometres, highlighting that diversity measures are not confounded by eDNA from upstream. Fish communities showed nested assemblages along some rivers, coinciding with habitat use. Across time, seasonal life history events, including salmon and eel migration, were detected. Finally, effects of environmental conditions were taxon-specific, reflecting habitat filtering of communities rather than effects on DNA molecules. We conclude that riverine eDNA metabarcoding can measure biodiversity at spatio-temporal scales relevant to species and community ecology, demonstrating its utility in delivering insights into river community ecology during a time of environmental change.
Collapse
Affiliation(s)
- William Bernard Perry
- Molecular Ecology and Evolution at Bangor (MEEB), School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
- Water Research Institute, Cardiff University, Cardiff, CF10 3AX, UK.
| | | | - Luisa Orsini
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ifan Bryn Jâms
- Water Research Institute, Cardiff University, Cardiff, CF10 3AX, UK
| | - Nigel Milner
- Molecular Ecology and Evolution at Bangor (MEEB), School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - François Edwards
- APEM Ltd, A17 Embankment Business Park, Heaton Mersey, Manchester, SK4 3GN, UK
| | - Rachel Harvey
- Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, LL57 2UW, UK
| | - Mark de Bruyn
- Australian Research Centre for Human Evolution, School of Environment and Science, Griffith University, Queensland, 4111, Australia
| | - Iliana Bista
- LOEWE Centre for Translational Biodiversity Genomics, 60325, Frankfurt, Germany
- Senckenberg Research Institute, 60325, Frankfurt, Germany
- Naturalis Biodiversity Center, Darwinweg 2, 2333, Leiden, Netherlands
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Kerry Walsh
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK
| | - Bridget Emmett
- Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, LL57 2UW, UK
| | - Rosetta Blackman
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Evolutionary Biology Group (@EvoHull), Department of Biological and Marine Sciences, University of Hull (UoH), Cottingham Road, Hull, HU6 7RX, UK
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Lori Lawson Handley
- Evolutionary Biology Group (@EvoHull), Department of Biological and Marine Sciences, University of Hull (UoH), Cottingham Road, Hull, HU6 7RX, UK
| | - Elvira Mächler
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Kristy Deiner
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, Zurich, Switzerland
| | - Holly M Bik
- Department of Marine Sciences and Institute of Bioinformatics, University of Georgia, Georgia, USA
| | - Gary Carvalho
- Molecular Ecology and Evolution at Bangor (MEEB), School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - John Colbourne
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Bernard Jack Cosby
- Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, LL57 2UW, UK
| | - Isabelle Durance
- Water Research Institute, Cardiff University, Cardiff, CF10 3AX, UK
| | - Simon Creer
- Molecular Ecology and Evolution at Bangor (MEEB), School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| |
Collapse
|
11
|
Bell KL, Campos M, Hoffmann BD, Encinas-Viso F, Hunter GC, Webber BL. Environmental DNA methods for biosecurity and invasion biology in terrestrial ecosystems: Progress, pitfalls, and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171810. [PMID: 38513869 DOI: 10.1016/j.scitotenv.2024.171810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Analysis of environmental DNA (eDNA) enables indirect detection of species without the need to directly observe and sample them. For biosecurity and invasion biology, eDNA-based methods are useful to address biological invasions at all phases, from detecting arrivals to confirming eradication of past invasions. We conducted a systematic review of the literature and found that in biosecurity and invasion biology, eDNA has primarily been used to detect new incursions and monitor spread in marine and freshwater ecosystems, with much slower uptake in terrestrial ecosystems, reflecting a broader trend common to the usage of eDNA tools. In terrestrial ecosystems, eDNA research has mostly focussed on the use of eDNA metabarcoding to characterise biodiversity, rather than targeting biosecurity threats or non-native populations. We discuss how eDNA-based methods are being applied to terrestrial ecosystems for biosecurity and managing non-native populations at each phase of the invasion continuum: transport, introduction, establishment, and spread; across different management options: containment, control, and eradication; and for detecting the impact of non-native organisms. Finally, we address some of the current technical issues and caveats of eDNA-based methods, particularly for terrestrial ecosystems, and how these might be solved. As eDNA-based methods improve, they will play an increasingly important role in the early detection and adaptive management of biological invasions, and the implementation of effective biosecurity controls.
Collapse
Affiliation(s)
- Karen L Bell
- CSIRO Health & Biosecurity, Floreat, Western Australia 6014, Australia; School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| | - Mariana Campos
- CSIRO Health & Biosecurity, Floreat, Western Australia 6014, Australia; Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
| | | | - Francisco Encinas-Viso
- CSIRO Centre of Australian National Biodiversity Research, Black Mountain, Australian Capital Territory 2601, Australia
| | - Gavin C Hunter
- CSIRO Health & Biosecurity, Black Mountain, Australian Capital Territory 2601, Australia
| | - Bruce L Webber
- CSIRO Health & Biosecurity, Floreat, Western Australia 6014, Australia; School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
12
|
Xiong W, MacIsaac HJ, Zhan A. An overlooked source of false positives in eDNA-based biodiversity assessment and management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120949. [PMID: 38657416 DOI: 10.1016/j.jenvman.2024.120949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Biodiversity conservation and management in urban aquatic ecosystems is crucial to human welfare, and environmental DNA (eDNA)-based methods have become popular in biodiversity assessment. Here we report a highly overlooked source of significant false positives for eDNA-based biodiversity assessment in urban aquatic ecosystems supplied with treated wastewater - eDNA pollution originating from treated wastewater represents a noteworthy source of false positives. To investigate whether eDNA pollution is specific to a certain treatment or prevalent across methods employed by wastewater treatment plants, we conducted tests on effluent treated using three different secondary processes, both before and after upgrades to tertiary treatment. We metabarcoded eDNA collected from effluent immediately after full treatment and detected diverse native and non-native, commercial and ornamental fishes (48 taxa) across all treatment processes before and after upgrades. Thus, eDNA pollution occurred irrespective of the treatment processes applied. Release of eDNA pollution into natural aquatic ecosystems could translate into false positives for eDNA-based analysis. We discuss and propose technical solutions to minimize these false positives in environmental nucleic acid-based biodiversity assessments and conservation programs.
Collapse
Affiliation(s)
- Wei Xiong
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Hugh J MacIsaac
- School of Ecology and Environmental Science, Yunnan University, Yunnan, 650091, China; Great Lakes Institute for Environmental Research, University of Windsor, Ontario, N9B 3P4, Canada
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China; Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, 2 Puxin Road, Kunming Economic and Technological Development District, Yunan, 650214, China.
| |
Collapse
|
13
|
Lin CP, Huang CH, Padgett T, Bucay MAC, Chen CW, Shen ZY, Chiu L, Tseng YC, Yu JK, Wang J, Wang MC, Hoh DZ. Environmental DNA-based biodiversity profiling along the Houdong River in north-eastern Taiwan. Biodivers Data J 2024; 12:e116921. [PMID: 38694844 PMCID: PMC11061556 DOI: 10.3897/bdj.12.e116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Background This paper describes two datasets: species occurrences, which were determined by environmental DNA (eDNA) metabarcoding and their associated DNA sequences, originating from a research project which was carried out along the Houdong River (), Jiaoxi Township, Yilan, Taiwan. The Houdong River begins at an elevation of 860 m and flows for approximately 9 km before it empties into the Pacific Ocean. Meandering through mountains, hills, plains and alluvial valleys, this short river system is representative of the fluvial systems in Taiwan. The primary objective of this study was to determine eukaryotic species occurrences in the riverine ecosystem through the use of the eDNA analysis. The second goal was, based on the current dataset, to establish a metabarcoding eDNA data template that will be useful and replicable for all users, particularly the Taiwan community. The species occurrence data are accessible at the Global Biodiversity Information Facility (GBIF) portal and its associated DNA sequences have been deposited in the European Nucleotide Archive (ENA) at EMBL-EBI, respectively. A total of 12 water samples from the study yielded an average of 1.5 million reads. The subsequent species identification from the collected samples resulted in the classification of 432 Operational Taxonomic Units (OTUs) out of a total of 2,734. Furthermore, a total of 1,356 occurrences with taxon matches in GBIF were documented (excluding 4,941 incertae sedis, accessed 05-12-2023). These data will be of substantial importance for future species and habitat monitoring within the short river, such as assessment of biodiversity patterns across different elevations, zonations and time periods and its correlation to water quality, land uses and anthropogenic activities. Further, these datasets will be of importance for regional ecological studies, in particular the freshwater ecosystem and its status in the current global change scenarios. New information The datasets are the first species diversity description of the Houdong River system using either eDNA or traditional monitoring processes.
Collapse
Affiliation(s)
- Chieh-Ping Lin
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, TaiwanGenome and Systems Biology Degree Program, Academia Sinica and National Taiwan UniversityTaipeiTaiwan
- Biodiversity Research Center, Academia Sinica, Taipei, TaiwanBiodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Chung-Hsin Huang
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, TaiwanBiodiversity Program, Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
- International Graduate Degree Program for Biodiversity, Tunghai University, Taichung, TaiwanInternational Graduate Degree Program for Biodiversity, Tunghai UniversityTaichungTaiwan
| | - Trevor Padgett
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, TaiwanBiodiversity Program, Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
- International Graduate Degree Program for Biodiversity, Tunghai University, Taichung, TaiwanInternational Graduate Degree Program for Biodiversity, Tunghai UniversityTaichungTaiwan
| | - Mark Angelo C. Bucay
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, TaiwanBiodiversity Program, Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
- Department of Life Science, National Taiwan Normal University, Taipei, TaiwanDepartment of Life Science, National Taiwan Normal UniversityTaipeiTaiwan
| | - Cheng-Wei Chen
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, TaiwanBiodiversity Program, Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
- Department of Life Science, National Taiwan Normal University, Taipei, TaiwanDepartment of Life Science, National Taiwan Normal UniversityTaipeiTaiwan
| | - Zong-Yu Shen
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, TaiwanBiodiversity Program, Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
- Department of Life Science, National Taiwan Normal University, Taipei, TaiwanDepartment of Life Science, National Taiwan Normal UniversityTaipeiTaiwan
| | - Ling Chiu
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, TaiwanMarine Research Station, Institute of Cellular and Organismic Biology, Academia SinicaYilanTaiwan
- Institute of Oceanography, National Taiwan University, Taipei, TaiwanInstitute of Oceanography, National Taiwan UniversityTaipeiTaiwan
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, TaiwanMarine Research Station, Institute of Cellular and Organismic Biology, Academia SinicaYilanTaiwan
| | - Jr-Kai Yu
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, TaiwanMarine Research Station, Institute of Cellular and Organismic Biology, Academia SinicaYilanTaiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, TaiwanInstitute of Cellular and Organismic Biology, Academia SinicaTaipeiTaiwan
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei, TaiwanBiodiversity Research Center, Academia SinicaTaipeiTaiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, TaiwanBiodiversity Program, Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
| | - Min-Chen Wang
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, TaiwanMarine Research Station, Institute of Cellular and Organismic Biology, Academia SinicaYilanTaiwan
- Zoological Institute, Christian-Albrechts University of Kiel, Kiel, GermanyZoological Institute, Christian-Albrechts University of KielKielGermany
| | - Daphne Z. Hoh
- Taiwan Biodiversity Information Facility, Biodiversity Research Centre, Academia Sinica, Taipei, TaiwanTaiwan Biodiversity Information Facility, Biodiversity Research Centre, Academia SinicaTaipeiTaiwan
| |
Collapse
|
14
|
Scriver M, von Ammon U, Youngbull C, Pochon X, Stanton JAL, Gemmell NJ, Zaiko A. Drop it all: extraction-free detection of targeted marine species through optimized direct droplet digital PCR. PeerJ 2024; 12:e16969. [PMID: 38410796 PMCID: PMC10896080 DOI: 10.7717/peerj.16969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Molecular biomonitoring programs increasingly use environmental DNA (eDNA) for detecting targeted species such as marine non-indigenous species (NIS) or endangered species. However, the current molecular detection workflow is cumbersome and time-demanding, and thereby can hinder management efforts and restrict the "opportunity window" for rapid management responses. Here, we describe a direct droplet digital PCR (direct-ddPCR) approach to detect species-specific free-floating extra-cellular eDNA (free-eDNA) signals, i.e., detection of species-specific eDNA without the need for filtration or DNA extraction, with seawater samples. This first proof-of-concept aquarium study was conducted with three distinct marine species: the Mediterranean fanworm Sabella spallanzanii, the ascidian clubbed tunicate Styela clava, and the brown bryozoan Bugula neritina to evaluate the detectability of free-eDNA in seawater. The detectability of targeted free-eDNA was assessed by directly analysing aquarium marine water samples using an optimized species-specific ddPCR assay. The results demonstrated the consistent detection of S. spallanzanii and B. neritina free-eDNA when these organisms were present in high abundance. Once organisms were removed, the free-eDNA signal exponentially declined, noting that free-eDNA persisted between 24-72 h. Results indicate that organism biomass, specimen characteristics (e.g., stress and viability), and species-specific biological differences may influence free-eDNA detectability. This study represents the first step in assessing the feasibility of direct-ddPCR technology for the detection of marine species. Our results provide information that could aid in the development of new technology, such as a field development of ddPCR systems, which could allow for automated continuous monitoring of targeted marine species, enabling point-of-need detection and rapid management responses.
Collapse
Affiliation(s)
- Michelle Scriver
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Ulla von Ammon
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
| | - Cody Youngbull
- Nucleic Sensing Systems, LCC, Saint Paul, Minnesota, United States
| | - Xavier Pochon
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Jo-Ann L Stanton
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anastasija Zaiko
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- Sequench Ltd, Nelson, New Zealand
| |
Collapse
|
15
|
Marinchel N, Marchesini A, Nardi D, Girardi M, Casabianca S, Vernesi C, Penna A. Mock community experiments can inform on the reliability of eDNA metabarcoding data: a case study on marine phytoplankton. Sci Rep 2023; 13:20164. [PMID: 37978238 PMCID: PMC10656442 DOI: 10.1038/s41598-023-47462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Environmental DNA metabarcoding is increasingly implemented in biodiversity monitoring, including phytoplankton studies. Using 21 mock communities composed of seven unicellular diatom and dinoflagellate algae, assembled with different composition and abundance by controlling the number of cells, we tested the accuracy of an eDNA metabarcoding protocol in reconstructing patterns of alpha and beta diversity. This approach allowed us to directly evaluate both qualitative and quantitative metabarcoding estimates. Our results showed non-negligible rates (17-25%) of false negatives (i.e., failure to detect a taxon in a community where it was included), for three taxa. This led to a statistically significant underestimation of metabarcoding-derived alpha diversity (Wilcoxon p = 0.02), with the detected species richness being lower than expected (based on cell numbers) in 8/21 mock communities. Considering beta diversity, the correlation between metabarcoding-derived and expected community dissimilarities was significant but not strong (R2 = 0.41), indicating suboptimal accuracy of metabarcoding results. Average biovolume and rDNA gene copy number were estimated for the seven taxa, highlighting a potential, though not exhaustive, role of the latter in explaining the recorded biases. Our findings highlight the importance of mock communities for assessing the reliability of phytoplankton eDNA metabarcoding studies and identifying their limitations.
Collapse
Affiliation(s)
- Nadia Marinchel
- Department of Pure and Applied Sciences, University of Urbino, Urbino, Italy.
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy.
| | - Alexis Marchesini
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Porano, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Davide Nardi
- DAFNAE, University of Padova, Legnaro, PD, Italy
| | - Matteo Girardi
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Italy
| | - Silvia Casabianca
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
- Fano Marine Center, Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Rome, Italy
| | - Cristiano Vernesi
- National Biodiversity Future Center, Palermo, Italy
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Italy
| | - Antonella Penna
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy.
- Fano Marine Center, Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy.
- CoNISMa, National Inter-University Consortium for Marine Sciences, Rome, Italy.
| |
Collapse
|
16
|
Hassan S, Sabreena, Ganiee SA, Yaseen A, Zaman M, Shah AJ, Ganai BA. Unraveling the potential of environmental DNA for deciphering recent advances in plant-animal interactions: a systematic review. PLANTA 2023; 258:117. [PMID: 37957258 DOI: 10.1007/s00425-023-04267-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023]
Abstract
MAIN CONCLUSION Environmental DNA-based monitoring provides critical insights for enhancing our understanding of plant-animal interactions in the context of worldwide biodiversity decrease for developing a global framework for effective plant biodiversity conservation. To understand the ecology and evolutionary patterns of plant-animal interactions (PAI) and their pivotal roles in ecosystem functioning advances in molecular ecology tools such as Environmental DNA (eDNA) provide unprecedented research avenues. These methods being non-destructive in comparison to traditional biodiversity monitoring methods, enhance the discernment of ecosystem health, integrity, and complex interactions. This review intends to offer a systematic and critical appraisal of the prospective of eDNA for investigating PAI. The review thoroughly discusses and analyzes the recent reports (2015-2022) employing preferred reporting items for systematic reviews and meta-analyses (PRISMA) to outline the recent progression in eDNA approaches for elucidating PAI. The current review envisages that eDNA has a significant potential to monitor both plants and associated cohort of prospective pollinators (avian species and flowering plants, bees and plants, arthropods and plants, bats and plants, etc.). Furthermore, a brief description of the factors that influence the utility and interpretation of PAI eDNA is also presented. The review establishes that factors such as biotic and abiotic, primer selection and taxonomic resolution, and indeterminate spatio-temporal scales impact the availability and longevity of eDNA. The study also identified the limitations that influence PAI detection and suggested possible solutions for better execution of these molecular approaches. Overcoming these research caveats will augment the assortment of PAI analysis through eDNA that could be vital for ecosystem health and integrity. This review forms a critical guide and offers prominent insights for ecologists, environmental managers and researchers to assess and evaluate plant-animal interaction through environmental DNA.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Sabreena
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Shahid Ahmad Ganiee
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Aarif Yaseen
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Muzafar Zaman
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Abdul Jalil Shah
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
17
|
Jo TS. Utilizing the state of environmental DNA (eDNA) to incorporate time-scale information into eDNA analysis. Proc Biol Sci 2023; 290:20230979. [PMID: 37253423 PMCID: PMC10229230 DOI: 10.1098/rspb.2023.0979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Environmental DNA (eDNA) analysis allows cost-effective and non-destructive biomonitoring with a high detection sensitivity in terrestrial and aquatic environments. However, the eDNA results can sometimes include false-positive inferences of target organisms owing to the detection of aged eDNA that has long since been released from the individual and is more likely to be detected at a site further away from its source. In order to address the issue, this manuscript focuses on the state of eDNA, proposing new methodologies to estimate the age of eDNA: (1) DNA damage rate, (2) eDNA particle size distribution, and (3) viable cell-derived eDNA. In addition, the manuscript also focuses on the shorter persistence of environmental RNA (eRNA) compared with eDNA, highlighting the application of eRNA and environmental nucleic acid ratio for assessing the age of the genetic materials in water. Although substantial further research is essential to support the feasibility of these methodologies, incorporating time-scale information into eDNA analysis would update current eDNA analysis, improve the accuracy and reliability of eDNA-based monitoring, and further refine eDNA analysis as a useful monitoring tool in ecology, fisheries and various environmental sciences.
Collapse
Affiliation(s)
- Toshiaki S. Jo
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
- Ryukoku Center for Biodiversity Science, Ryukoku University, 1-5, Yokotani, Oe-cho, Seta, Otsu City, Shiga 520-2194, Japan
- Faculty of Advanced Science and Technology, Ryukoku University, 1-5, Yokotani, Oe-cho, Seta, Otsu City, Shiga 520-2194, Japan
| |
Collapse
|
18
|
Young MK, Isaak DJ, Nagel D, Horan DL, Carim KJ, Franklin TW, Zeller VA, Roper B, Schwartz MK. Broad-scale eDNA sampling for describing aquatic species distributions in running waters: Pacific lamprey Entosphenus tridentatus in the upper Snake River, USA. JOURNAL OF FISH BIOLOGY 2022; 101:1312-1325. [PMID: 36053967 DOI: 10.1111/jfb.15202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
One of the most fundamental yet challenging tasks for aquatic ecologists is to precisely delineate the range of species, particularly those that are broadly distributed, require specialized sampling methods, and may be simultaneously declining and increasing in different portions of their range. An exemplar is the Pacific lamprey Entosphenus tridentatus, a jawless anadromous fish of conservation concern that is actively managed in many coastal basins in western North America. To efficiently determine its distribution across the accessible 56,168 km of the upper Snake River basin in the north-western United States, we first delimited potential habitat by using predictions from a species distribution model based on conventionally collected historical data and from the distribution of a potential surrogate, Chinook salmon Oncorhynchus tshawytscha, which yielded a potential habitat network of 10,615 km. Within this area, we conducted a two-stage environmental DNA survey involving 394 new samples and 187 archived samples collected by professional biologists and citizen scientists using a single, standardized method from 2015 to 2021. We estimated that Pacific lamprey occupied 1875 km of lotic habitat in this basin, of which 1444 km may have been influenced by recent translocation efforts. Pacific lamprey DNA was consistently present throughout most river main stems, although detections became weaker or less frequent in the largest and warmest downstream channels and near their headwater extent. Pacific lamprey were detected in nearly all stocked tributaries, but there was no evidence of indigenous populations in such habitats. There was evidence of post-stocking movement because detections were 1.8-36.0 km upstream from release sites. By crafting a model-driven spatial sampling template and executing an eDNA-based sampling campaign led by professionals and volunteers, supplemented by previously collected samples, we established a benchmark for understanding the current range of Pacific lamprey across a large portion of its range in the interior Columbia River basin. This approach could be tailored to refine range estimates for other wide-ranging aquatic species of conservation concern.
Collapse
Affiliation(s)
- Michael K Young
- USDA Forest Service, Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish Conservation, Missoula, Montana, USA
| | - Daniel J Isaak
- USDA Forest Service, Rocky Mountain Research Station, Boise Spatial Streams Group, Boise, Idaho, USA
| | - David Nagel
- USDA Forest Service, Rocky Mountain Research Station, Boise Spatial Streams Group, Boise, Idaho, USA
| | - Dona L Horan
- USDA Forest Service, Rocky Mountain Research Station, Boise Spatial Streams Group, Boise, Idaho, USA
| | - Kellie J Carim
- USDA Forest Service, Rocky Mountain Research Station, Aldo Leopold Wilderness Research Institute, Missoula, Montana, USA
| | - Thomas W Franklin
- USDA Forest Service, Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish Conservation, Missoula, Montana, USA
| | - Victoria A Zeller
- USDA Forest Service, Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish Conservation, Missoula, Montana, USA
| | - Brett Roper
- USDA Forest Service, National Stream and Aquatic Ecology Center, Logan, Utah, USA
| | - Michael K Schwartz
- USDA Forest Service, Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish Conservation, Missoula, Montana, USA
| |
Collapse
|
19
|
Yao M, Zhang S, Lu Q, Chen X, Zhang SY, Kong Y, Zhao J. Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward. Mol Ecol 2022; 31:5132-5164. [PMID: 35972241 DOI: 10.1111/mec.16659] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)-based biomonitoring provides robust, efficient, and cost-effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries.
Collapse
Affiliation(s)
- Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Shan Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Qi Lu
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Xiaoyu Chen
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Si-Yu Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Yueqiao Kong
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Jindong Zhao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
20
|
Nordstrom B, Mitchell N, Byrne M, Jarman S. A review of applications of environmental DNA for reptile conservation and management. Ecol Evol 2022; 12:e8995. [PMID: 35784065 PMCID: PMC9168342 DOI: 10.1002/ece3.8995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022] Open
Abstract
Reptile populations are in decline globally, with total reptile abundance halving in the past half century, and approximately a fifth of species currently threatened with extinction. Research on reptile distributions, population trends, and trophic interactions can greatly improve the accuracy of conservation listings and planning for species recovery, but data deficiency is an impediment for many species. Environmental DNA (eDNA) can detect species and measure community diversity at diverse spatio-temporal scales, and is especially useful for detection of elusive, cryptic, or rare species, making it potentially very valuable in herpetology. We aim to summarize the utility of eDNA as a tool for informing reptile conservation and management and discuss the benefits and limitations of this approach. A literature review was conducted to collect all studies that used eDNA and focus on reptile ecology, conservation, or management. Results of the literature search are summarized into key discussion points, and the review also draws on eDNA studies from other taxa to highlight methodological challenges and to identify future research directions. eDNA has had limited application to reptiles, relative to other vertebrate groups, and little use in regions with high species richness. eDNA techniques have been more successfully applied to aquatic reptiles than to terrestrial reptiles, and most (64%) of studies focused on aquatic habitats. Two of the four reptilian orders dominate the existing eDNA studies (56% Testudines, 49% Squamata, 5% Crocodilia, 0% Rhynchocephalia). Our review provides direction for the application of eDNA as an emerging tool in reptile ecology and conservation, especially when it can be paired with traditional monitoring approaches. Technologies associated with eDNA are rapidly advancing, and as techniques become more sensitive and accessible, we expect eDNA will be increasingly valuable for addressing key knowledge gaps for reptiles.
Collapse
Affiliation(s)
- Bethany Nordstrom
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Nicola Mitchell
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Margaret Byrne
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Department of Biodiversity, Conservation and AttractionsBiodiversity and Conservation SciencePerthWestern AustraliaAustralia
| | - Simon Jarman
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- UWA Oceans InstituteThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
21
|
Forsman AM, Savage AE, Hoenig BD, Gaither MR. DNA metabarcoding across disciplines: sequencing our way to greater understanding across scales of biological organization. Integr Comp Biol 2022; 62:191-198. [PMID: 35687001 DOI: 10.1093/icb/icac090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
DNA metabarcoding describes the use of targeted DNA (i.e., amplicon) sequencing to identify community constituents from a complex sample containing genetic material from multiple organisms, such as water, soil, gut contents, microbiomes, or biofilms. This molecular approach for characterizing mixed DNA samples relies on the development of "universal primers" that allow for effective amplification of target sequences across a broad range of taxa. Armed with optimized lab protocols and rigorous bioinformatics tools, DNA metabarcoding can produce a wealth of information about the hidden biodiversity of various sample types by probing for organisms' molecular footprints. DNA metabarcoding has received considerable popular press over the last few years because of gut microbiome studies in humans and beyond. However, there are many other applications that are continually integrating molecular biology with other fields of study to address questions that have previously been unanswerable, for both prokaryotic and eukaryotic targets. For example, we can now sample mostly-digested gut contents from virtually any organism to learn about ontogeny and foraging ecology. Water samples collected from different locations can be filtered to extract eDNA (i.e., environmental DNA), revealing the biodiversity of fishes and other taxa targeted by carefully selected primer sets. This universal primer metabarcoding approach has even been extended to looking at diverse gene families within single species, which is particularly useful for complex immune system genetics. The purpose of this SICB symposium was to bring together researchers using DNA metabarcoding approaches to (a) showcase the diversity of applications of this technique for addressing questions spanning ecology, evolution, and physiology, and (b) to spark connections among investigators from different fields that are utilizing similar approaches to facilitate optimization and standardization of metabarcoding methods and analyses. The resulting manuscripts from this symposium represent a great diversity of metabarcoding applications and taxonomic groups of interest.
Collapse
Affiliation(s)
- Anna M Forsman
- Department of Biology, University of Central Florida, Orlando, FL, USA.,Genomics & Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| | - Anna E Savage
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | - Brandon D Hoenig
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michelle R Gaither
- Department of Biology, University of Central Florida, Orlando, FL, USA.,Genomics & Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
22
|
Vu D, Nilsson RH, Verkley GJM. dnabarcoder: an open-source software package for analyzing and predicting DNA sequence similarity cut-offs for fungal sequence identification. Mol Ecol Resour 2022; 22:2793-2809. [PMID: 35621380 PMCID: PMC9542245 DOI: 10.1111/1755-0998.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022]
Abstract
The accuracy and precision of fungal molecular identification and classification are challenging, particularly in environmental metabarcoding approaches as these often trade accuracy for efficiency given the large data volumes at hand. In most ecological studies, only a single similarity cutoff value is used for sequence identification. This is not sufficient since the most commonly used DNA markers are known to vary widely in terms of inter‐ and intraspecific variability. We address this problem by presenting a new tool, dnabarcoder, to predict local similarity cutoffs and measure the resolving powers of a biomarker for sequence identification for different clades of fungi. It was shown that the predicted similarity cutoffs varied significantly between the clades of a recently released ITS DNA barcode data set from the CBS culture collection of the Westerdijk Fungal Biodiversity Institute. When classifying a large public fungal ITS data set—the UNITE database—against the barcode data set, the local similarity cutoffs assigned fewer sequences than the traditional cutoffs used in metabarcoding studies. However, the obtained accuracy and precision were significantly improved. Our study showed that it might be better to extract the ITS region from the ITS barcodes to optimize taxonomic assignment accuracy. Furthermore, 15.3, 25.6, and 26.3% of the fungal species of the barcode data set were indistinguishable by full‐length ITS, ITS1, and ITS2, respectively. Except for these indistinguishable species, the resolving powers of full‐length ITS, ITS1, and ITS2 sequences were similar at the species level. Nevertheless, the complete ITS region had a better resolving power at higher taxonomic levels.
Collapse
Affiliation(s)
- Duong Vu
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - R Henrik Nilsson
- Department of Biological & Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Box 461, 405 30, Göteborg, Sweden
| | - Gerard J M Verkley
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| |
Collapse
|
23
|
Bessey C, Gao Y, Truong YB, Miller H, Jarman SN, Berry O. Comparison of materials for rapid passive collection of environmental
DNA. Mol Ecol Resour 2022; 22:2559-2572. [PMID: 35570323 PMCID: PMC9544503 DOI: 10.1111/1755-0998.13640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022]
Abstract
Passive collection is an emerging sampling method for environmental DNA (eDNA) in aquatic systems. Passive eDNA collection is inexpensive and efficient, and requires minimal equipment, making it suited to high‐density sampling and remote deployment. Here, we compare the effectiveness of nine membrane materials for passively collecting fish eDNA from a 3‐million‐litre marine mesocosm. We submerged materials (cellulose, cellulose with 1% and 3% chitosan, cellulose overlayed with electrospun nanofibres and 1% chitosan, cotton fibres, hemp fibres, and sponge with either zeolite or active carbon) for intervals between 5 and 1080 min. We show that for most materials, with as little as 5 min of submersion, mitochondrial fish eDNA measured with qPCR, and fish species richness measured with metabarcoding, was comparable to that collected by conventional filtering. Furthermore, PCR template DNA concentrations and species richness were generally not improved significantly by longer submersion. Species richness detected for all materials ranged between 11 and 37 species, with a median of 27, which was comparable to the range for filtered eDNA (19–32). Using scanning electron microscopy, we visualized biological matter adhering to the surface of materials, rather than entrapped, with images also revealing a diversity in size and structure of putative eDNA particles. eDNA can be collected rapidly from seawater with a passive approach and using a variety of materials. This will suit cost‐ and time‐sensitive biological surveys, and where access to equipment is limited.
Collapse
Affiliation(s)
- Cindy Bessey
- Commonwealth Scientific and Industrial Research Organisation, Indian Oceans Marine Research Centre, Oceans and Atmosphere, 64 Fairway Crawley WA Australia
- Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, 64 Fairway Crawley WA Australia
- University of Western Australia UWA Oceans Institute, 35 Stirling Highway Crawley WA Australia
| | - Yuan Gao
- Commonwealth Scientific and Industrial Research Organization, Manufacturing, Research Way Clayton Australia
| | - Yen Bach Truong
- Commonwealth Scientific and Industrial Research Organization, Manufacturing, Research Way Clayton Australia
| | - Haylea Miller
- Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, 64 Fairway Crawley WA Australia
| | - Simon Neil Jarman
- University of Western Australia UWA Oceans Institute, 35 Stirling Highway Crawley WA Australia
- University of Western Australia School of Biological Sciences and the UWA Oceans Institute Crawley WA Australia
| | - Oliver Berry
- Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, 64 Fairway Crawley WA Australia
| |
Collapse
|
24
|
Ellis MR, Clark ZSR, Treml EA, Brown MS, Matthews TG, Pocklington JB, Stafford-Bell RE, Bott NJ, Nai YH, Miller AD, Sherman CDH. Detecting marine pests using environmental DNA and biophysical models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151666. [PMID: 34793806 DOI: 10.1016/j.scitotenv.2021.151666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The spread of marine pests is occurring at record rates due to globalisation and increasing trade. Environmental DNA (eDNA) is an emerging tool for pest surveillance, allowing for the detection of genetic material shed by organisms into the environment. However, factors influencing the spatial and temporal detection limits of eDNA in marine environments are poorly understood. In this study we use eDNA assays to assess the invasive ranges of two marine pests in south-eastern Australia, the kelp Undaria pinnatifida and the seastar Asterias amurensis. We explored the temporal and spatial detection limits of eDNA under different oceanographic conditions by combining estimates of eDNA decay with biophysical modelling. Positive eDNA detections at several new locations indicate the invasive range of both pest species is likely to be wider than currently assumed. Environmental DNA decay rates were similar for both species, with a decay rate constant of 0.035 h-1 for U. pinnatifida, and a decay rate constant of 0.041 h-1 for A. amurensis, resulting in a 57-73% decrease in eDNA concentrations in the first 24 h and decaying beyond the limits of detection after 3-4 days. Biophysical models informed by eDNA decay profiles indicate passive transport of eDNA up to a maximum of 10 to 20 km from its source, with a ~90-95% reduction in eDNA concentration within 1-3 km from the source, depending on local oceanography. These models suggest eDNA signals are likely to be highly localised, even in complex marine environments. This was confirmed with spatially replicated eDNA sampling around an established U. pinnatifida population indicating detection limits of ~750 m from the source. This study highlights the value of eDNA methods for marine pest surveillance and provides a much-needed description of the spatio-temporal detection limits of eDNA under different oceanographic conditions.
Collapse
Affiliation(s)
- Morgan R Ellis
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Zach S R Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Eric A Treml
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Morgan S Brown
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Ty G Matthews
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Jacqueline B Pocklington
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Environment and Science Division, Parks Victoria, Melbourne, Victoria 3000, Australia
| | - Richard E Stafford-Bell
- Department of Jobs, Precincts and Regions, 475 Mickleham Road, Attwood, Vic. 3049, Australia
| | - Nathan J Bott
- School of Science, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
| | - Yi Heng Nai
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, 3220, Australia
| | - Adam D Miller
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Craig D H Sherman
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
25
|
Evaluating eDNA for Use within Marine Environmental Impact Assessments. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this review, the use of environmental DNA (eDNA) within Environmental Impact Assessment (EIA) is evaluated. EIA documents provide information required by regulators to evaluate the potential impact of a development project. Currently eDNA is being incorporated into biodiversity assessments as a complementary method for detecting rare, endangered or invasive species. However, questions have been raised regarding the maturity of the field and the suitability of eDNA information as evidence for EIA. Several key issues are identified for eDNA information within a generic EIA framework for marine environments. First, it is challenging to define the sampling unit and optimal sampling strategy for eDNA with respect to the project area and potential impact receptor. Second, eDNA assay validation protocols are preliminary at this time. Third, there are statistical issues around the probability of obtaining both false positives (identification of taxa that are not present) and false negatives (non-detection of taxa that are present) in results. At a minimum, an EIA must quantify the uncertainty in presence/absence estimates by combining series of Bernoulli trials with ad hoc occupancy models. Finally, the fate and transport of DNA fragments is largely unknown in environmental systems. Shedding dynamics, biogeochemical and physical processes that influence DNA fragments must be better understood to be able to link an eDNA signal with the receptor’s state. The biggest challenge is that eDNA is a proxy for the receptor and not a direct measure of presence. Nonetheless, as more actors enter the field, technological solutions are likely to emerge for these issues. Environmental DNA already shows great promise for baseline descriptions of the presence of species surrounding a project and can aid in the identification of potential receptors for EIA monitoring using other methods.
Collapse
|
26
|
Carvalho CS, de Oliveira ME, Rodriguez-Castro KG, Saranholi BH, Galetti PM. Efficiency of eDNA and iDNA in assessing vertebrate diversity and its abundance. Mol Ecol Resour 2021; 22:1262-1273. [PMID: 34724330 DOI: 10.1111/1755-0998.13543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 10/20/2022]
Abstract
Environmental DNA (eDNA) and invertebrate-derived DNA (iDNA) have been increasingly recognized as powerful tools for biodiversity assessment and conservation management. However, eDNA/iDNA efficiency for vertebrate diversity assessment remains uncertain, and comparisons to conventional methods are still rare. Through a meta-analysis of previously published vertebrate diversity surveys, we compared the efficiency of eDNA/iDNA against conventional methods across several types of samplers, vertebrate groups, and locations (tropical vs. temperate zones). We also assess eDNA/iDNA efficiency to estimate relative abundance or biomass over different molecular methods (qPCR and metabarcoding) and type of experiment (in the laboratory or in the field). We showed that for water sampler, fish as a target species, and studies achieved in temperate zones, eDNA presents lower risk of not detecting a species or a site with a target species than conventional methods. These results show that eDNA is an efficient tool to assess fish diversity. Moreover, eDNA data presents positive correlation with fish abundance or biomass. However, such correlation was higher in laboratory experiments than in the field. For the other samplers, vertebrate groups, and in tropical zones we were not able to draw general conclusion, highlighting the urgency of conducting more comparative studies.
Collapse
Affiliation(s)
- Carolina S Carvalho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.,Instituto Tecnológico Vale, Belém, PA, Brazil
| | | | - Karen Giselle Rodriguez-Castro
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.,Facultad de Ciencias Básicas e Ingeniería, Universidad de los Llanos, Villavicencio, Colombia
| | - Bruno H Saranholi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.,Department of Life Sciences, Imperial College London, London, UK
| | - Pedro M Galetti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
27
|
Fukaya K, Kondo NI, Matsuzaki SS, Kadoya T. Multispecies site occupancy modelling and study design for spatially replicated environmental DNA metabarcoding. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Keiichi Fukaya
- National Institute for Environmental Studies Tsukuba Japan
| | | | | | - Taku Kadoya
- National Institute for Environmental Studies Tsukuba Japan
| |
Collapse
|
28
|
Optimising sampling and analysis protocols in environmental DNA studies. Sci Rep 2021; 11:11637. [PMID: 34079031 PMCID: PMC8172848 DOI: 10.1038/s41598-021-91166-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/18/2021] [Indexed: 11/09/2022] Open
Abstract
Ecological surveys risk incurring false negative and false positive detections of the target species. With indirect survey methods, such as environmental DNA, such error can occur at two stages: sample collection and laboratory analysis. Here we analyse a large qPCR based eDNA data set using two occupancy models, one of which accounts for false positive error by Griffin et al. (J R Stat Soc Ser C Appl Stat 69: 377-392, 2020), and a second that assumes no false positive error by Stratton et al. (Methods Ecol Evol 11: 1113-1120, 2020). Additionally, we apply the Griffin et al. (2020) model to simulated data to determine optimal levels of replication at both sampling stages. The Stratton et al. (2020) model, which assumes no false positive results, consistently overestimated both overall and individual site occupancy compared to both the Griffin et al. (2020) model and to previous estimates of pond occupancy for the target species. The inclusion of replication at both stages of eDNA analysis (sample collection and in the laboratory) reduces both bias and credible interval width in estimates of both occupancy and detectability. Even the collection of > 1 sample from a site can improve parameter estimates more than having a high number of replicates only within the laboratory analysis.
Collapse
|