1
|
Soares DMM, Galeazzo GA, Sgro GG, de Moraes GV, Kronenberg L, Borukh E, Migotto AE, Gruber DF, Sparks JS, Pieribone VA, Stevani CV, Oliveira AG. Velamins: green-light-emitting calcium-regulated photoproteins isolated from the ctenophore Velamen parallelum. FEBS J 2025. [PMID: 40251846 DOI: 10.1111/febs.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/21/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
Ca2+-regulated photoproteins (CaPhs) consist of single-chain globular proteins to which coelenterazine, a widely distributed marine luminogenic substrate (the luciferin), binds along with molecular oxygen, producing a stable peroxide. Upon Ca2+ addition, CaPhs undergo conformational changes leading to the cyclization of the peroxide and the formation of a high-energy intermediate. Subsequently, its decomposition yields coelenteramide in an excited state and results in the emission of a flash of light. To date, most known CaPh systems emit blue light (λmax 465-495 nm), except for two bolinopsin isospecies that emit green light (λmax 500 nm). Here, we report the cloning and functional characterization of wild-type CaPhs capable of emitting green light: velamins, isolated from the bioluminescent ctenophore Velamen parallelum. Ten unique photoprotein-like sequences were recovered and grouped in three main clusters. Representative sequences were cloned, expressed, purified, and regenerated into the active His-tagged α-, β-, and γ-velamins. Upon injection of a calcium-containing buffer into the velamin, a flash of green light (λmax 500-508 nm) was observed across pH values ranging from 7 to 9. Whilst α-velamin isoforms exhibited the highest light emission activity, β- and γ-velamins were found to be more thermostable at higher temperatures. Velamins are the wild-type CaPhs with the longest-wavelength light emission yet reported, making them an excellent model for investigating spectral modulation mechanisms in photoproteins.
Collapse
Affiliation(s)
- Douglas M M Soares
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | | | - Germán G Sgro
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | | | - Leora Kronenberg
- Department of Chemistry and Biochemistry, Yeshiva University, New York, NY, USA
| | - Emmanuella Borukh
- Department of Chemistry and Biochemistry, Yeshiva University, New York, NY, USA
| | - Alvaro E Migotto
- Center for Marine Biology, University of São Paulo, São Sebastião, Brazil
| | - David F Gruber
- Department of Natural Sciences, Baruch College, City University of New York, NY, USA
| | - John S Sparks
- Division of Vertebrate Zoology, Department of Ichthyology, American Museum of Natural History, New York, NY, USA
| | - Vincent A Pieribone
- The John B. Pierce Laboratory, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Brazil
| | - Anderson G Oliveira
- Department of Chemistry and Biochemistry, Yeshiva University, New York, NY, USA
| |
Collapse
|
2
|
Koutsouveli V, Torres-Oliva M, Bayer T, Fuß J, Grossschmidt N, Marulanda-Gomez AM, Jensen N, Gill D, Schmitz RA, Pita L, Reusch TBH. The Chromosome-level Genome of the Ctenophore Mnemiopsis leidyi A. Agassiz, 1865 Reveals a Unique Immune Gene Repertoire. Genome Biol Evol 2025; 17:evaf006. [PMID: 39834228 PMCID: PMC11797021 DOI: 10.1093/gbe/evaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Ctenophora are basal marine metazoans, the sister group of all other animals. Mnemiopsis leidyi is one of the most successful invasive species worldwide with intense ecological and evolutionary research interest. Here, we generated a chromosome-level genome assembly of M. leidyi with a focus on its immune gene repertoire. The genome was 247.97 Mb, with N50 16.84 Mb, and 84.7% completeness. Its karyotype was 13 chromosomes. In this genome and that of two other ctenophores, Bolinopsis microptera and Hormiphora californensis, we detected a high number of protein domains related to potential immune receptors. Among those, proteins containing Toll/interleukin-1 (TIR2) domain, NACHT domain, Scavenger Receptor Cystein-Rich (SRCR) domain, or C-type Lectin domain (CTLD) were abundant and presented unique domain architectures in M. leidyi. M. leidyi seems to lack bona fide Toll-like Receptors, but it does possess a repertoire of 15 TIR2 domain-containing genes. Besides, we detected a bona fide NOD-like receptor and 38 NACHT domain-containing genes. In order to verify the function of those domain-containing genes, we exposed M. leidyi to the pathogen Vibrio coralliilyticus. Among the differentially expressed genes, we identified potential immune receptors, including four TIR2 domain-containing genes, all of which were upregulated in response to pathogen exposure. To conclude, many common immune receptor domains, highly conserved across metazoans, are already present in Ctenophora. These domains have large expansions and unique architectures in M. leidyi, findings consistent with the basal evolutionary position of this group, but still might have conserved functions in immunity and host-microbe interaction.
Collapse
Affiliation(s)
- Vasiliki Koutsouveli
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Division of Marine Ecology, Marine Symbioses Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | - Till Bayer
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Janina Fuß
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Nora Grossschmidt
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Angela M Marulanda-Gomez
- Division of Marine Ecology, Marine Symbioses Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Nadin Jensen
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Diana Gill
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Ruth A Schmitz
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Lucía Pita
- Marine Biology and Oceanography, Marine Biogeochemistry, Atmosphere and Climate, Institut de Ciències del Mar–Spanish National Research Council (CSIC), Barcelona, Spain
| | - Thorsten B H Reusch
- Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
3
|
Ketchum RN, Smith EG, Toledo LM, Leach WB, Padillo-Anthemides N, Baxevanis AD, Reitzel AM, Ryan JF. Rapid speciation in the holopelagic ctenophore Mnemiopsis following glacial recession. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617593. [PMID: 39574589 PMCID: PMC11580945 DOI: 10.1101/2024.10.10.617593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Understanding how populations diverge is one of the oldest and most compelling questions in evolutionary biology. An in depth understanding of how this process operates in planktonic marine animals, where barriers for gene flow are seemingly absent, is critical to understanding the past, present, and future of ocean life. Mnemiopsis plays an important ecological role in its native habitat along the Atlantic coast of the Americas and is highly destructive in its non-native habitats in European waters. Although historical literature described three species of Mnemiopsis, the lack of stable morphological characters has led to the collapse of this group into a single species, Mnemiopsis leidyi. We generate high-quality reference genomes and use a whole-genome sequencing approach to reveal that there are two species of Mnemiopsis along its native range and show that historical divergence between the two species coincides with historical glacial melting. We define a hybridization zone between species and highlight that environmental sensing genes likely contribute to the invasive success of Mnemiopsis. Overall, this study provides insights into the fundamental question of how holopelagic species arise without clear barriers to gene flow and sheds light on the genomic mechanisms important for invasion success in a highly invasive species.
Collapse
Affiliation(s)
- Remi N Ketchum
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edward G Smith
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - Leandra M Toledo
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
| | - Whitney B Leach
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | - Andreas D Baxevanis
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
| |
Collapse
|
4
|
Bezio N, Collins AG. Redescription of the deep-sea benthic ctenophore genus Tjalfiella from the North Atlantic (Class Tentaculata, Order Platyctenida, Family Tjalfiellidae). Zootaxa 2024; 5486:241-266. [PMID: 39646833 DOI: 10.11646/zootaxa.5486.2.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 12/10/2024]
Abstract
Some of the most fascinating and poorly known animals on this planet are comb jellies of the phylum Ctenophora. About one-quarter of ctenophore richness is encompassed by the benthic species of the order Platyctenida, nearly all known from shallow waters. In this work, we integrate several systematic methods to elucidate an enigmatic genus, Tjalfiella, known previously only from deep waters near the western coastline of Greenland in the North Atlantic. For the first time, we employ microCT on museum specimens-one nearly 100 years old from the type locality of the only known species of the genus, T. tristoma-of extant ctenophores to visualize and compare their anatomy. With these data, we integrate in situ videography and genetic sequence data derived from newly collected deep sea specimens observed via NOAA Ship Okeanos Explorer in 2018 and 2022 at two distant localities in the North Atlantic, near North Carolina, USA, and the Azores, Portugal. The genetic data indicate that the newly collected specimens represent closely related but distinct species of Tjalfiella. However, neither can be named at this time because neither one could be definitively differentiated from T. tristoma, given that microCT and in situ imagery reveal striking morphological similarities and only variation in color and host preference. Despite the lack of new species descriptions, this work characterizes both the morphology and genetics of the benthic ctenophore genus Tjalfiella and specimens representing species within it, advancing our understanding of a rarely observed component of the deep-sea fauna.
Collapse
Affiliation(s)
- Nicholas Bezio
- The University of Maryland; Department of Biological Science; College Park; MD; 20742 USA; National Museum of Natural History; Smithsonian Institution; Department of Invertebrate Zoology; Washington; DC; 20560 USA.
| | - Allen G Collins
- National Museum of Natural History; Smithsonian Institution; Department of Invertebrate Zoology; Washington; DC; 20560 USA; NOAA Fisheries; Office of Science & Technology; National Systematics Laboratory; Washington; DC; 20560 USA.
| |
Collapse
|
5
|
Kasu M, Ristow PG, Burrows AM, Kuplik Z, Gibbons MJ, D'Amato ME. Novel buffer for long-term preservation of DNA in biological material at room temperature. Biotechniques 2024; 76:357-370. [PMID: 38949197 DOI: 10.1080/07366205.2024.2360813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/24/2024] [Indexed: 07/02/2024] Open
Abstract
The collection and preservation of biological material before DNA analysis is critical for inter alia biomedical research, medical diagnostics, forensics and biodiversity conservation. In this study, we evaluate an in-house formulated buffer called the Forensic DNA Laboratory-buffer (FDL-buffer) for preservation of biological material for long term at room temperature. Human saliva stored in the buffer for 8 years, human blood stored for 3 years and delicate animal tissues from the jellyfish Pelagia noctiluca comb jelly Beroe sp., stored for 4 and 6 years respectively consistently produced high-quality DNA. FDL-buffer exhibited compatibility with standard organic, salting out and spin-column extraction methods, making it versatile and applicable to a wide range of applications, including automation.
Collapse
Affiliation(s)
- Mohaimin Kasu
- Department of Biotechnology, Forensic DNA Laboratory, University of the Western Cape, Bellville, Western Cape, 7535, South Africa
| | - Peter G Ristow
- Department of Biotechnology, Forensic DNA Laboratory, University of the Western Cape, Bellville, Western Cape, 7535, South Africa
| | - Adria Michelle Burrows
- Department of Biotechnology, Forensic DNA Laboratory, University of the Western Cape, Bellville, Western Cape, 7535, South Africa
| | - Zafrir Kuplik
- Department of Biodiversity & Conservation Biology, University of the Western Cape, Bellville, Western Cape, 7535, South Africa
- The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - Mark J Gibbons
- Department of Biodiversity & Conservation Biology, University of the Western Cape, Bellville, Western Cape, 7535, South Africa
| | - Maria E D'Amato
- Department of Biotechnology, Forensic DNA Laboratory, University of the Western Cape, Bellville, Western Cape, 7535, South Africa
| |
Collapse
|
6
|
Dan ME, Portner EJ, Bowman JS, Semmens BX, Owens SM, Greenwald SM, Choy CA. Using low volume eDNA methods to sample pelagic marine animal assemblages. PLoS One 2024; 19:e0303263. [PMID: 38748719 PMCID: PMC11095688 DOI: 10.1371/journal.pone.0303263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024] Open
Abstract
Environmental DNA (eDNA) is an increasingly useful method for detecting pelagic animals in the ocean but typically requires large water volumes to sample diverse assemblages. Ship-based pelagic sampling programs that could implement eDNA methods generally have restrictive water budgets. Studies that quantify how eDNA methods perform on low water volumes in the ocean are limited, especially in deep-sea habitats with low animal biomass and poorly described species assemblages. Using 12S rRNA and COI gene primers, we quantified assemblages comprised of micronekton, coastal forage fishes, and zooplankton from low volume eDNA seawater samples (n = 436, 380-1800 mL) collected at depths of 0-2200 m in the southern California Current. We compared diversity in eDNA samples to concurrently collected pelagic trawl samples (n = 27), detecting a higher diversity of vertebrate and invertebrate groups in the eDNA samples. Differences in assemblage composition could be explained by variability in size-selectivity among methods and DNA primer suitability across taxonomic groups. The number of reads and amplicon sequences variants (ASVs) did not vary substantially among shallow (<200 m) and deep samples (>600 m), but the proportion of invertebrate ASVs that could be assigned a species-level identification decreased with sampling depth. Using hierarchical clustering, we resolved horizontal and vertical variability in marine animal assemblages from samples characterized by a relatively low diversity of ecologically important species. Low volume eDNA samples will quantify greater taxonomic diversity as reference libraries, especially for deep-dwelling invertebrate species, continue to expand.
Collapse
Affiliation(s)
- Michelle E. Dan
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Elan J. Portner
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Jeff S. Bowman
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Brice X. Semmens
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Sarah M. Owens
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Stephanie M. Greenwald
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - C. Anela Choy
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
7
|
Haddock SHD, Choy CA. Life in the Midwater: The Ecology of Deep Pelagic Animals. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:383-416. [PMID: 38231738 DOI: 10.1146/annurev-marine-031623-095435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The water column of the deep ocean is dark, cold, low in food, and under crushing pressures, yet it is full of diverse life. Due to its enormous volume, this mesopelagic zone is home to some of the most abundant animals on the planet. Rather than struggling to survive, they thrive-owing to a broad set of adaptations for feeding, behavior, and physiology. Our understanding of these adaptations is constrained by the tools available for exploring the deep sea, but this tool kit is expanding along with technological advances. Each time we apply a new method to the depths, we gain surprising insights about genetics, ecology, behavior, physiology, diversity, and the dynamics of change. These discoveries show structure within the seemingly uniform habitat, limits to the seemingly inexhaustible resources, and vulnerability in the seemingly impervious environment. To understand midwater ecology, we need to reimagine the rules that govern terrestrial ecosystems. By spending more time at depth-with whatever tools are available-we can fill the knowledge gaps and better link ecology to the environment throughout the water column.
Collapse
Affiliation(s)
- Steven H D Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, California, USA;
| | - C Anela Choy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA;
| |
Collapse
|
8
|
Moroz LL. Brief History of Ctenophora. Methods Mol Biol 2024; 2757:1-26. [PMID: 38668961 DOI: 10.1007/978-1-0716-3642-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ctenophores are the descendants of the earliest surviving lineage of ancestral metazoans, predating the branch leading to sponges (Ctenophore-first phylogeny). Emerging genomic, ultrastructural, cellular, and systemic data indicate that virtually every aspect of ctenophore biology as well as ctenophore development are remarkably different from what is described in representatives of other 32 animal phyla. The outcome of this reconstruction is that most system-level components associated with the ctenophore organization result from convergent evolution. In other words, the ctenophore lineage independently evolved as high animal complexities with the astonishing diversity of cell types and structures as bilaterians and cnidarians. Specifically, neurons, synapses, muscles, mesoderm, through gut, sensory, and integrative systems evolved independently in Ctenophora. Rapid parallel evolution of complex traits is associated with a broad spectrum of unique ctenophore-specific molecular innovations, including alternative toolkits for making an animal. However, the systematic studies of ctenophores are in their infancy, and deciphering their remarkable morphological and functional diversity is one of the hot topics in biological research, with many anticipated surprises.
Collapse
Affiliation(s)
- Leonid L Moroz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA.
| |
Collapse
|
9
|
Johnson SB, Winnikoff JR, Schultz DT, Christianson LM, Patry WL, Mills CE, Haddock SHD. Speciation of pelagic zooplankton: Invisible boundaries can drive isolation of oceanic ctenophores. Front Genet 2022; 13:970314. [PMID: 36276958 PMCID: PMC9585324 DOI: 10.3389/fgene.2022.970314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The study of evolution and speciation in non-model systems provides us with an opportunity to expand our understanding of biodiversity in nature. Connectivity studies generally focus on species with obvious boundaries to gene flow, but in open-ocean environments, such boundaries are difficult to identify. Due to the lack of obvious boundaries, speciation and population subdivision in the pelagic environment remain largely unexplained. Comb jellies (Phylum Ctenophora) are mostly planktonic gelatinous invertebrates, many of which are considered to have freely interbreeding distributions worldwide. It is thought that the lobate ctenophore Bolinopsis infundibulum is distributed throughout cooler northern latitudes and B. vitrea warmer. Here, we examined the global population structure for species of Bolinopsis with genetic and morphological data. We found distinct evolutionary patterns within the genus, where B. infundibulum had a broad distribution from northern Pacific to Atlantic waters despite many physical barriers, while other species were geographically segregated despite few barriers. Divergent patterns of speciation within the genus suggest that oceanic currents, sea-level, and geological changes over time can act as either barriers or aids to dispersal in the pelagic environment. Further, we used population genomic data to examine evolution in the open ocean of a distinct lineage of Bolinopsis ctenophores from the North Eastern Pacific. Genetic information and morphological observations validated this as a separate species, Bolinopsis microptera, which was previously described but has recently been called B. infundibulum. We found that populations of B. microptera from California were in cytonuclear discordance, which indicates a secondary contact zone for previously isolated populations. Discordance at this scale is rare, especially in a continuous setting.
Collapse
Affiliation(s)
- Shannon B. Johnson
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
- *Correspondence: Shannon B. Johnson, ; Steven H. D. Haddock,
| | - Jacob R. Winnikoff
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Darrin T. Schultz
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
- Department of Biomolecular Engineering and Bioinformatics, University of California, Santa Cruz, Santa Cruz, CA, United States
| | | | - Wyatt L. Patry
- Animal Care Division, Monterey Bay Aquarium, Monterey, CA, United States
| | - Claudia E. Mills
- Friday Harbor Laboratories and the Department of Biology, University of Washington, Friday Harbor, WA, United States
| | - Steven H. D. Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
- *Correspondence: Shannon B. Johnson, ; Steven H. D. Haddock,
| |
Collapse
|
10
|
Hayakawa E, Guzman C, Horiguchi O, Kawano C, Shiraishi A, Mohri K, Lin MF, Nakamura R, Nakamura R, Kawai E, Komoto S, Jokura K, Shiba K, Shigenobu S, Satake H, Inaba K, Watanabe H. Mass spectrometry of short peptides reveals common features of metazoan peptidergic neurons. Nat Ecol Evol 2022; 6:1438-1448. [PMID: 35941202 PMCID: PMC9525235 DOI: 10.1038/s41559-022-01835-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
The evolutionary origins of neurons remain unknown. Although recent genome data of extant early-branching animals have shown that neural genes existed in the common ancestor of animals, the physiological and genetic properties of neurons in the early evolutionary phase are still unclear. Here, we performed a mass spectrometry-based comprehensive survey of short peptides from early-branching lineages Cnidaria, Porifera and Ctenophora. We identified a number of mature ctenophore neuropeptides that are expressed in neurons associated with sensory, muscular and digestive systems. The ctenophore peptides are stored in vesicles in cell bodies and neurites, suggesting volume transmission similar to that of cnidarian and bilaterian peptidergic systems. A comparison of genetic characteristics revealed that the peptide-expressing cells of Cnidaria and Ctenophora express the vast majority of genes that have pivotal roles in maturation, secretion and degradation of neuropeptides in Bilateria. Functional analysis of neuropeptides and prediction of receptors with machine learning demonstrated peptide regulation of a wide range of target effector cells, including cells of muscular systems. The striking parallels between the peptidergic neuronal properties of Cnidaria and Bilateria and those of Ctenophora, the most basal neuron-bearing animals, suggest a common evolutionary origin of metazoan peptidergic nervous systems.
Collapse
Affiliation(s)
- Eisuke Hayakawa
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Christine Guzman
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Osamu Horiguchi
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Chihiro Kawano
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Kurato Mohri
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Mei-Fang Lin
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ryotaro Nakamura
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ryo Nakamura
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Erina Kawai
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Shinya Komoto
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Imaging Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kei Jokura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Shuji Shigenobu
- Center for the Development of New Model Organisms, National Institute for Basic Biology, Okazaki, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
11
|
Multigenerational laboratory culture of pelagic ctenophores and CRISPR-Cas9 genome editing in the lobate Mnemiopsis leidyi. Nat Protoc 2022; 17:1868-1900. [PMID: 35697825 DOI: 10.1038/s41596-022-00702-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 03/23/2022] [Indexed: 11/08/2022]
Abstract
Despite long-standing experimental interest in ctenophores due to their unique biology, ecological influence and evolutionary status, previous work has largely been constrained by the periodic seasonal availability of wild-caught animals and difficulty in reliably closing the life cycle. To address this problem, we have developed straightforward protocols that can be easily implemented to establish long-term multigenerational cultures for biological experimentation in the laboratory. In this protocol, we describe the continuous culture of the Atlantic lobate ctenophore Mnemiopsis leidyi. A rapid 3-week egg-to-egg generation time makes Mnemiopsis suitable for a wide range of experimental genetic, cellular, embryological, physiological, developmental, ecological and evolutionary studies. We provide recommendations for general husbandry to close the life cycle of Mnemiopsis in the laboratory, including feeding requirements, light-induced spawning, collection of embryos and rearing of juveniles to adults. These protocols have been successfully applied to maintain long-term multigenerational cultures of several species of pelagic ctenophores, and can be utilized by laboratories lacking easy access to the ocean. We also provide protocols for targeted genome editing via microinjection with CRISPR-Cas9 that can be completed within ~2 weeks, including single-guide RNA synthesis, early embryo microinjection, phenotype assessment and sequence validation of genome edits. These protocols provide a foundation for using Mnemiopsis as a model organism for functional genomic analyses in ctenophores.
Collapse
|