1
|
Eskier D, Yetkin S, Arslan N, Karakülah G, Alotaibi H. Exploring Regulatory Roles of Transposable Elements in EMT and MET through Data-Driven Analysis: Insights from regulaTER. J Mol Biol 2025; 437:168887. [PMID: 39631470 DOI: 10.1016/j.jmb.2024.168887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/09/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Gene expression is regulated at the transcriptional and translational levels and a plethora of epigenetic mechanisms. Regulation of gene expression by transposable elements is well documented. However, a comprehensive analysis of their regulatory roles is challenging due to the lack of dedicated approaches to define their contribution. Here, we present regulaTER, a new R library dedicated to deciphering the regulatory potential of transposable elements in a given phenotype. regulaTER utilizes a variety of genomics data of any origin and combines gene expression level information to predict the regulatory roles of transposable elements. We further validated its capabilities using data generated from an epithelial-mesenchymal and mesenchymal-epithelial transition cellular model. regulaTER stands out as an essential asset for uncovering the impact of transposable elements on the regulation of gene expression, with high flexibility to perform a range of transposable element-focused analyses. Our results also provided insights on the contribution of the MIR and B element subfamilies in regulating EMT and MET through the FoxA transcription factor family. regulaTER is publicly available and can be downloaded from https://github.com/karakulahg/regulaTER.
Collapse
Affiliation(s)
- Doğa Eskier
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir 35340, Turkey
| | - Seray Yetkin
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir 35340, Turkey
| | - Nazmiye Arslan
- İzmir Biomedicine and Genome Center, İzmir 35340, Turkey
| | - Gökhan Karakülah
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir 35340, Turkey; İzmir Biomedicine and Genome Center, İzmir 35340, Turkey.
| | - Hani Alotaibi
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir 35340, Turkey; İzmir Biomedicine and Genome Center, İzmir 35340, Turkey.
| |
Collapse
|
2
|
Zheng F, Wang Z, Dong Q, Li S, Xiong S, Yuan Y, Xu S, Fu B. Prognostic Significance and Immune Landscape of an Efferocytosis-Related Gene Signature in Bladder Cancer. Biochem Genet 2024:10.1007/s10528-024-10924-0. [PMID: 39313721 DOI: 10.1007/s10528-024-10924-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
Bladder cancer poses a significant global health challenge, underscoring the imperative for precise prognostic instruments to advance patient care. Against the backdrop of efferocytosis's increasingly recognized role in cancer, this research endeavors to develop and authenticate a prognostic signature intricately linked to efferocytosis in bladder cancer. LASSO-COX regression analysis crafted an efferocytosis-related genes risk prognostic model, followed by the construction of a column chart. External validation sets confirmed the predictive accuracy of both the model and chart. Clinical, tumor microenvironment, drug sensitivity, and immunotherapy analyses were employed to comprehensively assess efferocytosis-related scores. The expression of TGFB3 key genes was validated via RT-PCR and western blotting. Further validation included Transwell, Wound healing, Colony formation, and EDU assays. We formulated and validated an efferocytosis-related genes risk model in bladder cancer, comprising 13 core genes. The risk model demonstrated autonomous prognostic significance in both univariate and multivariate Cox analyses. Following the multivariate analysis, we devised a nomogram. Moreover, by utilizing individual risk scores derived from this risk model, we successfully stratified patients into two discernible risk cohorts, unveiling noteworthy variances in immune infiltration profiles and responsiveness to immunotherapy. Notably, the model's key gene TGFB3 was validated through comprehensive experimental investigations, including Transwell assays for migration and invasion and Wound healing assays for motility on the T24 and BIU cell lines. This study has furnished innovative perspectives on an efferocytosis-related prognostic signature, elucidating the prognosis and immune milieu intricacies in patients with bladder cancer.
Collapse
Affiliation(s)
- Fuchun Zheng
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Zhipeng Wang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Qianxi Dong
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Sheng Li
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Situ Xiong
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Yuyang Yuan
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Songhui Xu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China.
- Jiangxi Institute of Urology, Nanchang, China.
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China.
- Jiangxi Institute of Urology, Nanchang, China.
| |
Collapse
|
3
|
Sharma M, Dey U, Das AS, Olymon K, Kumar A, Mukhopadhyay R. Anti-tumor potential of high salt in breast Cancer cell lines. Mol Biol Rep 2024; 51:1002. [PMID: 39305332 DOI: 10.1007/s11033-024-09925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/09/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Recent 23Na-MRI reports show higher salt deposition in malignant breast tissue than in surrounding normal tissue. The effect of high salt on cancer progression remains controversial. Here, we investigated the direct effect of high salt on breast cancer progression in vitro. METHODS Here, the impact of high salt on apoptosis, proliferation, cell cycle, adhesion, and migration of MDA-MB-231 and MCF-7 cells was studied using MTT, scratch, and clonogenic assays, as well as RT-PCR and flow cytometry. Gene expression was analyzed using Real-Time PCR and western blotting. The effect of high salt on global transcriptomics changes in MDA MB-231 cells was studied using RNA-sequencing analysis. RESULTS Flow cytometry with Annexin V and CFSE revealed that high salt-induced dose-dependent apoptosis and inhibited proliferation. High salt-induced cell cycle arrest at the G1/S phase of the cell cycle. p-MDM2 is known to suppress p53, which plays a crucial role in regulating apoptosis and cell cycle arrest under cellular stress conditions. High salt treatment led to decreased p-MDM2 and increased p53 expression, suggesting that high salt induces apoptosis through p53 stabilization. decreased p-MDM2 and increased p53 expression. High salt also reduced migration and adhesion of cells in a dose-dependent manner suggesting its inhibitory effect on metastatic properties as evident from wound healing assay. RNA sequencing analysis revealed overexpression of tumor suppressor genes and genes associated with anti-tumor activity (PCDHGA11, EIF3CL, RAVER1, TNFSF15, RANBP3L) and under-expression of genes involved in cancer-promoting activity (MT1X, CLDN14, CSF-2). CONCLUSION Our results unequivocally demonstrate the anti-tumor efficacy of high salt against breast cancer cells, suggesting its potential as a therapeutic strategy in cancer treatment.
Collapse
Affiliation(s)
- Manoj Sharma
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Upalabdha Dey
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Anindhya Sundar Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, USA
| | - Kaushika Olymon
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India.
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India.
| |
Collapse
|
4
|
Zhou X, Nie M, Xin X, Hua T, Zhang J, Shi R, Dong K, Shu W, Yan B, Wang H. RAB17 promotes endometrial cancer progression by inhibiting TFRC-dependent ferroptosis. Cell Death Dis 2024; 15:655. [PMID: 39242574 PMCID: PMC11379720 DOI: 10.1038/s41419-024-07013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Studies have indicated that RAB17 expression levels are associated with tumor malignancy, and RAB17 is more highly expressed in endometrial cancer (EC) tissues than in peritumoral tissues. However, the roles and potential mechanisms of RAB17 in EC remain undefined. The present study confirmed that the expression of RAB17 facilitates EC progression by suppressing cellular ferroptosis-like alterations. Mechanistically, RAB17 attenuated ferroptosis in EC cells by inhibiting transferrin receptor (TFRC) protein expression in a ubiquitin proteasome-dependent manner. Because EC is a blood-deprived tumor with a poor energy supply, the relationship between RAB17 and hypoglycemia was investigated. RAB17 expression was increased in EC cells incubated in low-glucose medium. Moreover, low-glucose medium limited EC cell ferroptosis and promoted EC progression through the RAB17-TFRC axis. The in vitro results were corroborated by in vivo studies and clinical data. Overall, the present study revealed that increased RAB17 promotes the survival of EC cells during glucose deprivation by inhibiting the onset of TFRC-dependent ferroptosis.
Collapse
Affiliation(s)
- Xing Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Miaomiao Nie
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Xiaoyan Xin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Teng Hua
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Kejun Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Wan Shu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Bei Yan
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China.
| |
Collapse
|
5
|
Akhlaghipour I, Moghbeli M. MicroRNA-98 as a novel diagnostic marker and therapeutic target in cancer patients. Discov Oncol 2024; 15:385. [PMID: 39210158 PMCID: PMC11362465 DOI: 10.1007/s12672-024-01270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The progress of cancer treatment methods in the last decade has significantly reduced mortality rate among these patients. Nevertheless, cancer is still recognized as one of the main causes of human deaths. One of the main reasons for the high death rate in cancer patients is the late diagnosis in the advanced tumor stages. Therefore, it is necessary to investigate the molecular biology of tumor progressions in order to introduce early diagnostic markers. MicroRNAs (miRNAs) have an important role in regulating cellular processes associated with tumor progression. Due to the high stability of miRNAs in body fluids, they are widely used as non-invasive markers in the early tumor diagnosis. Since, deregulation of miR-98 has been reported in a wide range of cancers, we investigated the molecular mechanisms of miR-98 during tumor progression. It has been reported that miR-98 mainly inhibits the tumor growth by the modulation of transcription factors and signaling pathways. Therefore, miR-98 can be introduced as a tumor marker and therapeutic target among cancer patients.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Erol ÖD, Şenocak Ş, Aerts-Kaya F. The Role of Rab GTPases in the development of genetic and malignant diseases. Mol Cell Biochem 2024; 479:255-281. [PMID: 37060515 DOI: 10.1007/s11010-023-04727-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Small GTPases have been shown to play an important role in several cellular functions, including cytoskeletal remodeling, cell polarity, intracellular trafficking, cell-cycle, progression and lipid transformation. The Ras-associated binding (Rab) family of GTPases constitutes the largest family of GTPases and consists of almost 70 known members of small GTPases in humans, which are known to play an important role in the regulation of intracellular membrane trafficking, membrane identity, vesicle budding, uncoating, motility and fusion of membranes. Mutations in Rab genes can cause a wide range of inherited genetic diseases, ranging from neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD) to immune dysregulation/deficiency syndromes, like Griscelli Syndrome Type II (GS-II) and hemophagocytic lymphohistiocytosis (HLH), as well as a variety of cancers. Here, we provide an extended overview of human Rabs, discussing their function and diseases related to Rabs and Rab effectors, as well as focusing on effects of (aberrant) Rab expression. We aim to underline their importance in health and the development of genetic and malignant diseases by assessing their role in cellular structure, regulation, function and biology and discuss the possible use of stem cell gene therapy, as well as targeting of Rabs in order to treat malignancies, but also to monitor recurrence of cancer and metastasis through the use of Rabs as biomarkers. Future research should shed further light on the roles of Rabs in the development of multifactorial diseases, such as diabetes and assess Rabs as a possible treatment target.
Collapse
Affiliation(s)
- Özgür Doğuş Erol
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Şimal Şenocak
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey.
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey.
| |
Collapse
|
7
|
Diao YQ, Wang J, Zhu XL, Chen J, Zheng Y, Jiang L, Liu YP, Dai RH, Yan YW. [Expression and significance of jumonji domain-containing protein 2B and hypoxia inducible factor-1α in non-Hodgkin lymphoma tissues in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:1150-1155. [PMID: 37990460 PMCID: PMC10672953 DOI: 10.7499/j.issn.1008-8830.2305025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/24/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVES To investigate the expression and significance of jumonji domain-containing protein 2B (JMJD2B) and hypoxia-inducible factor-1α (HIF-1α) in non-Hodgkin's lymphoma (NHL) tissues in children. METHODS Immunohistochemistry was used to detect the expression of JMJD2B and HIF-1α in lymph node tissue specimens from 46 children with NHL (observation group) and 24 children with reactive hyperplasia (control group). The relationship between JMJD2B and HIF-1α expression with clinicopathological characteristics and prognosis in children with NHL, as well as the correlation between JMJD2B and HIF-1α expression in NHL tissues, were analyzed. RESULTS The positive expression rates of JMJD2B (87% vs 21%) and HIF-1α (83% vs 42%) in the observation group were higher than those in the control group (P<0.05). The expression of JMJD2B and HIF-1α was correlated with serum lactate dehydrogenase levels and the risk of international prognostic index in children with NHL (P<0.05). The expression of JMJD2B was positively correlated with the HIF-1α expression in children with NHL (rs=0.333, P=0.024). CONCLUSIONS JMJD2B and HIF-1α are upregulated in children with NHL, and they may play a synergistic role in the development of pediatric NHL. JMJD2B can serve as a novel indicator for auxiliary diagnosis, evaluation of the severity, treatment guidance, and prognosis assessment in pediatric NHL.
Collapse
Affiliation(s)
- Yu-Qiao Diao
- Department of Pediatrics, Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jian Wang
- Department of Pediatrics, Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xiu-Li Zhu
- Department of Pediatrics, Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jian Chen
- Department of Pediatrics, Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yu Zheng
- Department of Pediatrics, Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Lian Jiang
- Department of Pediatrics, Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | | | - Ruo-Heng Dai
- Department of Pediatrics, Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yi-Wei Yan
- Department of Pediatrics, Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
8
|
Du H, Li S, Lu J, Tang L, Jiang X, He X, Liang J, Liao X, Cui T, Huang Y, Liu H. Single-cell RNA-seq and bulk-seq identify RAB17 as a potential regulator of angiogenesis by human dermal microvascular endothelial cells in diabetic foot ulcers. BURNS & TRAUMA 2023; 11:tkad020. [PMID: 37605780 PMCID: PMC10440157 DOI: 10.1093/burnst/tkad020] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/10/2023] [Accepted: 03/22/2023] [Indexed: 08/23/2023]
Abstract
Background Angiogenesis is crucial in diabetic wound healing and is often impaired in diabetic foot ulcers (DFUs). Human dermal microvascular endothelial cells (HDMECs) are vital components in dermal angiogenesis; however, their functional and transcriptomic characteristics in DFU patients are not well understood. This study aimed to comprehensively analyse HDMECs from DFU patients and healthy controls and find the potential regulator of angiogenesis in DFUs. Methods HDMECs were isolated from skin specimens of DFU patients and healthy controls via magnetic-activated cell sorting. The proliferation, migration and tube-formation abilities of the cells were then compared between the experimental groups. Both bulk RNA sequencing (bulk-seq) and single-cell RNA-seq (scRNA-seq) were used to identify RAB17 as a potential marker of angiogenesis, which was further confirmed via weighted gene co-expression network analysis (WGCNA) and least absolute shrink and selection operator (LASSO) regression. The role of RAB17 in angiogenesis was examined through in vitro and in vivo experiments. Results The isolated HDMECs displayed typical markers of endothelial cells. HDMECs isolated from DFU patients showed considerably impaired tube formation, rather than proliferation or migration, compared to those from healthy controls. Gene set enrichment analysis (GSEA), fGSEA, and gene set variation analysis (GSVA) of bulk-seq and scRNA-seq indicated that angiogenesis was downregulated in DFU-HDMECs. LASSO regression identified two genes, RAB17 and CD200, as characteristic of DFU-HDMECs; additionally, the expression of RAB17 was found to be significantly reduced in DFU-HDMECs compared to that in the HDMECs of healthy controls. Overexpression of RAB17 was found to enhance angiogenesis, the expression of hypoxia inducible factor-1α and vascular endothelial growth factor A, and diabetic wound healing, partially through the mitogen-activated protein kinase/extracellular signal-regulated kinase signalling pathway. Conclusions Our findings suggest that the impaired angiogenic capacity in DFUs may be related to the dysregulated expression of RAB17 in HDMECs. The identification of RAB17 as a potential molecular target provides a potential avenue for the treatment of impaired angiogenesis in DFUs.
Collapse
Affiliation(s)
- Hengyu Du
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou 510630, P.R. China
| | - Shenghong Li
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou 510630, P.R. China
| | - Jinqiang Lu
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou 510630, P.R. China
| | - Lingzhi Tang
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou 510630, P.R. China
| | - Xiao Jiang
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou 510630, P.R. China
| | - Xi He
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou 510630, P.R. China
| | - Jiaji Liang
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou 510630, P.R. China
| | - Xuan Liao
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou 510630, P.R. China
| | - Taixing Cui
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine, 134 Research Park Dr, Columbia, MO 65211, USA
| | - Yuesheng Huang
- Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology School of Medicine, and Department of Wound Repair, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, 518055, China
| | - Hongwei Liu
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou 510630, P.R. China
| |
Collapse
|
9
|
Zeng Z, Zhang Z, Cheng X, Yang H, Gong B, Zhou X, Zhang C, Wang X, Wang G. Downregulation of RAB17 have a poor prognosis in kidney renal clear cell carcinoma and its expression correlates with DNA methylation and immune infiltration. Cell Signal 2023:110743. [PMID: 37269962 DOI: 10.1016/j.cellsig.2023.110743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND RAB17 is one of the RAB family members. It has been reported to be closely associated with a variety of tumors and has different roles in various tumors. However, the effect of RAB17 in KIRC remains unclear. MATERIALS AND METHODS We analyzed the differential expression of RAB17 in kidney renal clear cell carcinoma (KIRC) tissues and normal tissues using the public databases. The prognostic role of RAB17 in KIRC was analyzed using the Cox regression methods, and a prognostic model was constructed based on the results of the Cox analysis. In addition, further analysis of RAB17 in KIRC was performed in relation to genetic alterations, DNA methylation m6A methylation and immune infiltration. Finally, RAB17 mRNA and protein expression levels were analyzed in tissue samples (KIRC tissues and normal tissues) and cell lines (normal renal tubular cell and KIRC cells), and in vitro functional assays were performed. RESULTS RAB17 was low-expressed in KIRC. Downregulation of RAB17 expression is correlated with unfavorable clinicopathological characteristics and a worse prognosis in KIRC. The RAB17 gene alteration in KIRC was primarily characterized by copy number alteration. Six CpG sites of RAB17 DNA methylation levels are higher in KIRC tissues than in normal tissues, and are correlated with RAB17 mRNA expression levels, showing a significant negative correlation. cg01157280 site DNA methylation levels are associated with pathological stage and overall survival, and it may be the only CpG site with independent prognostic significance. Functional mechanism analysis revealed that RAB17 is closely associated with immune infiltration. RAB17 expression was found to be negatively correlated with most immune cell infiltration according to two different methods. Furthermore, most immunomodulators were significantly negatively correlated with RAB17 expression, and significantly positively correlated with RAB17 DNA methylation levels. RAB17 was significantly low expression in KIRC cells and KIRC tissues. In vitro, silencing of RAB17 promoted KIRC cell migration. CONCLUSION RAB17 can be used as a potential prognostic biomarker for patients with KIRC and for assessing immunotherapy response.
Collapse
Affiliation(s)
- Zhenhao Zeng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China; Jiangxi Institute of Urology, Nanchang 330000, China
| | - Zhicheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China; Jiangxi Institute of Urology, Nanchang 330000, China
| | - Xiaofeng Cheng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China; Jiangxi Institute of Urology, Nanchang 330000, China
| | - Heng Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China; Jiangxi Institute of Urology, Nanchang 330000, China
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China; Jiangxi Institute of Urology, Nanchang 330000, China
| | - Xiaochen Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China; Jiangxi Institute of Urology, Nanchang 330000, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China; Jiangxi Institute of Urology, Nanchang 330000, China
| | - Xinyi Wang
- The First Affiliated Hospital of Nanchang University, Nanchang 330000, China.
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China; Jiangxi Institute of Urology, Nanchang 330000, China.
| |
Collapse
|
10
|
Zhang H, Xie L, Zhang N, Qi X, Lu T, Xing J, Akhtar MF, Li L, Liu G. Donkey Oil-Based Ketogenic Diet Prevents Tumor Progression by Regulating Intratumor Inflammation, Metastasis and Angiogenesis in CT26 Tumor-Bearing Mice. Genes (Basel) 2023; 14:genes14051024. [PMID: 37239383 DOI: 10.3390/genes14051024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Colon cancer is one of the typical malignant tumors, and its prevalence has increased yearly. The ketogenic diet (KD) is a low-carbohydrate and high-fat dietary regimen that inhibits tumor growth. Donkey oil (DO) is a product with a high nutrient content and a high bioavailability of unsaturated fatty acids. Current research investigated the impact of the DO-based KD (DOKD) on CT26 colon cancer in vivo. Our findings revealed that DOKD administration significantly lowered CT26+ tumor cell growth in mice, and the blood β-hydroxybutyrate levels in the DOKD group was significantly higher than those in the natural diet group. Western blot results showed that DOKD significantly down-regulated Src, hypoxia inducible factor-1α (HIF-1α), extracellular signal-related kinases 1 and 2 (Erk1/2), snail, neural cadherin (N-cadherin), vimentin, matrix metallopeptidase 9 (MMP9), signal transducer and activator of transcription 3 (STAT3), and vascular endothelial growth factor A (VEGFA), and it significantly up-regulated the expressions of Sirt3, S100a9, interleukin (IL)-17, nuclear factor-kappaB (NF-κB) p65, Toll-like receptor 4 (TLR4), MyD88, and tumor necrosis factor-α. Meanwhile, in vitro validation results showed that LW6 (a HIF-1α inhibitor) significantly down-regulated the expressions of HIF-1α, N-cadherin, vimentin, MMP9, and VEGFA, which supported those of the in vivo findings. Furthermore, we found that DOKD inhibited CT26+ tumor cell growth by regulating inflammation, metastasis, and angiogenesis by activating the IL-17/TLR4/NF-κB p65 pathway and inhibiting the activation of the Src/HIF-1α/Erk1/2/Snail/N-cadherin/Vimentin/MMP9 and Erk1/2/HIF-1α/STAT3/VEGFA pathways. Our findings suggest that DOKD may suppress colon cancer progression and help prevent colon cancer cachexia.
Collapse
Affiliation(s)
- Huachen Zhang
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng University, Liaocheng 252000, China
| | - Lan Xie
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng University, Liaocheng 252000, China
| | - Ning Zhang
- Biopharmaceutical Research Institute, Liaocheng University, Liaocheng 252000, China
| | - Xingzhen Qi
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng University, Liaocheng 252000, China
| | - Ting Lu
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng University, Liaocheng 252000, China
| | - Jingya Xing
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Muhammad Faheem Akhtar
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng University, Liaocheng 252000, China
| | - Lanjie Li
- Office of International Programs, Liaocheng University, Liaocheng 252000, China
| | - Guiqin Liu
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
11
|
MicroRNA-370 as a negative regulator of signaling pathways in tumor cells. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
12
|
Tumor Suppressor Role of INPP4B in Chemoresistant Retinoblastoma. JOURNAL OF ONCOLOGY 2023; 2023:2270097. [PMID: 36993823 PMCID: PMC10042642 DOI: 10.1155/2023/2270097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023]
Abstract
The chemotherapy of retinoblastoma (RB), a malignant ocular childhood disease, is often limited by the development of resistance against commonly used drugs. We identified inositol polyphosphate 4-phosphatase type II (INPP4B) as a differentially regulated gene in etoposide-resistant RB cell lines, potentially involved in the development of RB resistances. INPP4B is controversially discussed as a tumor suppressor and an oncogenic driver in various cancers, but its role in retinoblastoma in general and chemoresistant RB in particular is yet unknown. In the study presented, we investigated the expression of INPP4B in RB cell lines and patients and analyzed the effect of INPP4B overexpression on etoposide resistant RB cell growth in vitro and in vivo. INPP4B mRNA levels were significantly downregulated in RB cells lines compared to the healthy human retina, with even lower expression levels in etoposide-resistant compared to the sensitive cell lines. Besides, a significant increase in INPP4B expression was observed in chemotherapy-treated RB tumor patient samples compared to untreated tumors. INPP4B overexpression in etoposide-resistant RB cells resulted in a significant reduction in cell viability with reduced growth, proliferation, anchorage-independent growth, and in ovo tumor formation. Caspase-3/7-mediated apoptosis was concomitantly increased, suggesting a tumor suppressive role of INPP4B in chemoresistant RB cells. No changes in AKT signaling were discernible, but p-SGK3 levels increased following INPP4B overexpression, indicating a potential regulation of SGK3 signaling in etoposide-resistant RB cells. RNAseq analysis of INPP4B overexpressing, etoposide-resistant RB cell lines revealed differentially regulated genes involved in cancer progression, mirroring observed in vitro and in vivo effects of INPP4B overexpression and strengthening INPP4B’s importance for cell growth control and tumorigenicity.
Collapse
|
13
|
Clinicopathological Significance of STAT3 and p-STAT3 among 91 Patients with Adenocarcinoma of the Esophagogastric Junction. DISEASE MARKERS 2022; 2022:9311684. [PMID: 36225196 PMCID: PMC9550499 DOI: 10.1155/2022/9311684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/25/2022] [Accepted: 08/27/2022] [Indexed: 11/26/2022]
Abstract
Adenocarcinoma of the esophagogastric junction (AEG) has increased rapidly worldwide during the last few decades. The purpose of this study is to investigate the clinical and prognostic characteristics of signal transduction and activator of transcription factor 3(STAT3) and phosphorylated STAT3 (p-STAT3) expression in AEG patients. We retrospectively analyzed the immunohistochemical results of 61 AEG patients and followed up for 5 years, while Western blot was performed on tissues from another 30 AEG patients. The results showed that STAT3 and p-STAT3 were overexpressed in AEG tissues (P < 0.05, P < 0.01). The high expression of STAT3 was significantly associated with the pTNM stage (P < 0.05), and the increased expression of p-STAT3 was significantly associated with depth of invasion (pT), lymph node metastasis (pN), and pTNM stage (P < 0.05, P < 0.05, P < 0.05). The 5-year survival rate for AEG patients was 41.0% and was significantly associated with tumor differentiation, pN, pTNM, and p-STAT3 (P < 0.05, P < 0.01, P < 0.05, P < 0.01). Cox regression analysis confirmed that tumor differentiation, pN, and high expression of p-STAT3 were independent risk factors for the 5-year survival rate in patients with AEG (P < 0.05, P < 0.01, P < 0.05). Our study showed that STAT3 and p-STAT3 play a critical role in AEG development.
Collapse
|
14
|
Kuo IY, Hsieh CH, Kuo WT, Chang CP, Wang YC. Recent advances in conventional and unconventional vesicular secretion pathways in the tumor microenvironment. J Biomed Sci 2022; 29:56. [PMID: 35927755 PMCID: PMC9354273 DOI: 10.1186/s12929-022-00837-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
All cells in the changing tumor microenvironment (TME) need a class of checkpoints to regulate the balance among exocytosis, endocytosis, recycling and degradation. The vesicular trafficking and secretion pathways regulated by the small Rab GTPases and their effectors convey cell growth and migration signals and function as meditators of intercellular communication and molecular transfer. Recent advances suggest that Rab proteins govern conventional and unconventional vesicular secretion pathways by trafficking widely diverse cargoes and substrates in remodeling TME. The mechanisms underlying the regulation of conventional and unconventional vesicular secretion pathways, their action modes and impacts on the cancer and stromal cells have been the focus of much attention for the past two decades. In this review, we discuss the current understanding of vesicular secretion pathways in TME. We begin with an overview of the structure, regulation, substrate recognition and subcellular localization of vesicular secretion pathways. We then systematically discuss how the three fundamental vesicular secretion processes respond to extracellular cues in TME. These processes are the conventional protein secretion via the endoplasmic reticulum-Golgi apparatus route and two types of unconventional protein secretion via extracellular vesicles and secretory autophagy. The latest advances and future directions in vesicular secretion-involved interplays between tumor cells, stromal cell and host immunity are also described.
Collapse
Affiliation(s)
- I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsiung Hsieh
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan
| | - Wan-Ting Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
15
|
Sadrkhanloo M, Entezari M, Orouei S, Ghollasi M, Fathi N, Rezaei S, Hejazi ES, Kakavand A, Saebfar H, Hashemi M, Goharrizi MASB, Salimimoghadam S, Rashidi M, Taheriazam A, Samarghandian S. STAT3-EMT axis in tumors: Modulation of cancer metastasis, stemness and therapy response. Pharmacol Res 2022; 182:106311. [PMID: 35716914 DOI: 10.1016/j.phrs.2022.106311] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/07/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis of tumor cells and their spread to various organs and tissues of body, providing undesirable prognosis. In addition to migration, EMT increases stemness and mediates therapy resistance. Hence, pathways involved in EMT regulation should be highlighted. STAT3 is an oncogenic pathway that can elevate growth rate and migratory ability of cancer cells and induce drug resistance. The inhibition of STAT3 signaling impairs cancer progression and promotes chemotherapy-mediated cell death. Present review focuses on STAT3 and EMT interaction in modulating cancer migration. First of all, STAT3 is an upstream mediator of EMT and is able to induce EMT-mediated metastasis in brain tumors, thoracic cancers and gastrointestinal cancers. Therefore, STAT3 inhibition significantly suppresses cancer metastasis and improves prognosis of patients. EMT regulators such as ZEB1/2 proteins, TGF-β, Twist, Snail and Slug are affected by STAT3 signaling to stimulate cancer migration and invasion. Different molecular pathways such as miRNAs, lncRNAs and circRNAs modulate STAT3/EMT axis. Furthermore, we discuss how STAT3 and EMT interaction affects therapy response of cancer cells. Finally, we demonstrate targeting STAT3/EMT axis by anti-tumor agents and clinical application of this axis for improving patient prognosis.
Collapse
Affiliation(s)
- Mehrdokht Sadrkhanloo
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nikoo Fathi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
16
|
Jiang X, Yang L, Gao Q, Liu Y, Feng X, Ye S, Yang Z. The Role of RAB GTPases and Its Potential in Predicting Immunotherapy Response and Prognosis in Colorectal Cancer. Front Genet 2022; 13:828373. [PMID: 35154286 PMCID: PMC8833848 DOI: 10.3389/fgene.2022.828373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/10/2022] [Indexed: 12/29/2022] Open
Abstract
Background: Colorectal cancer (CRC) is the third most common cancer worldwide, in which aberrant activation of the RAS signaling pathway appears frequently. RAB proteins (RABs) are the largest Ras small GTPases superfamily that regulates intracellular membrane trafficking pathways. The dysregulation of RABs have been found in various diseases including cancers. Compared with other members of Ras families, the roles of RABs in colorectal cancer are less well understood. Methods: We analyzed the differential expression and clinicopathological association of RABs in CRC using RNA sequencing and genotyping datasets from TCGA samples. Moreover, the biological function of RAB17 and RAB34 were investigated in CRC cell lines and patient samples. Results: Of the 62 RABs we analyzed in CRC, seven (RAB10, RAB11A, RAB15, RAB17, RAB19, RAB20, and RAB25) were significantly upregulated, while six (RAB6B, RAB9B, RAB12, RAB23, RAB31, and RAB34) were significantly downregulated in tumor tissues as compared to normal. We found that the upregulated-RABs, which were highly expressed in metabolic activated CRC subtype (CMS3), are associated with cell cycle related pathways enrichment and positively correlated with the mismatch repair (MMR) genes in CRC, implying their role in regulating cell metabolism and tumor growth. While, high expression of the downregulated-RABs were significantly associated with poor prognostic CRC mesenchymal subtypes (CMS4), immune checkpoint genes, and tumor infiltrating immune cells, indicating their role in predicting prognosis and immunotherapy efficacy. Interestingly, though RAB34 mRNA is downregulated in CRC, its high expression is significantly associated with poor prognosis. In vitro experiments showed that RAB17 overexpression can promote cell proliferation via cell cycle regulation. While, RAB34 overexpression can promote cell migration and invasion and is associated with PD-L1/PD-L2 expression increase in CRC cells. Conclusions: Our study showed that RABs may play important roles in regulating cell cycle and immune-related pathways, therefore might be potential biomarkers in predicting prognosis and immunotherapy response in CRC.
Collapse
|
17
|
Du P, Luo K, Li G, Zhu J, Xiao Q, Li Y, Zhang X. Long non-coding RNA VCAN-AS1 promotes the malignant behaviors of breast cancer by regulating the miR-106a-5p-mediated STAT3/HIF-1α pathway. Bioengineered 2021; 12:5028-5044. [PMID: 34365889 PMCID: PMC8806652 DOI: 10.1080/21655979.2021.1960774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An accumulating number of studies have found that long noncoding RNAs (lncRNAs) participate in breast cancer (BC) development. LncRNA VCAN-AS1, a novel lncRNA, has been confirmed to regulate the progression of gastric cancer, while its role in BC is elusive. Here, our results illustrate that VCAN-AS1 is overexpressed in BC tissues and cells, while miR-106a-5p was downregulated and negatively correlated with VCAN-AS1. In addition, high VCAN-AS1 expression and low miR-106a-5p expression were closely correlated with poor overall survival in BC patients. Functional experiments confirmed that VCAN-AS1 overexpression notably accelerated BC cell proliferation, migration, invasion, and epithelial–mesenchymal transition (EMT) and enhanced tumor cell growth while also suppressing cell apoptosis. However, overexpression of miR-106a-5p had the opposite effects. In addition, rescue experiments confirmed that overexpression of VCAN-AS1 inhibited the tumor-suppressive effects mediated by miR-106a-5p. Mechanistically, through bioinformatics analysis, we found that VCAN-AS1 functions as a competitive endogenous RNA (ceRNA) of miR-106a-5p, which targets the 3ʹ untranslated region (UTR) of signal transducer and activator of transcription 3 (STAT3). Further experiments indicated that miR-106a-5p downregulated the STAT3/hypoxia-inducible factor-1alpha (HIF-1α) pathway, while activating the STAT3 pathway reversed miR-106a-5p-mediated antitumor effects. Collectively, our data suggest that VCAN-AS1 is upregulated in breast cancer and promotes its progression by regulating the miR-106a-5p-mediated STAT3/HIF-1α pathway. This study provides a new target for BC therapy.
Collapse
Affiliation(s)
- Peng Du
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kaifeng Luo
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guoyong Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jisheng Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yong Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingjian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Brunel A, Bégaud G, Auger C, Durand S, Battu S, Bessette B, Verdier M. Autophagy and Extracellular Vesicles, Connected to rabGTPase Family, Support Aggressiveness in Cancer Stem Cells. Cells 2021; 10:1330. [PMID: 34072080 PMCID: PMC8227744 DOI: 10.3390/cells10061330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
Even though cancers have been widely studied and real advances in therapeutic care have been made in the last few decades, relapses are still frequently observed, often due to therapeutic resistance. Cancer Stem Cells (CSCs) are, in part, responsible for this resistance. They are able to survive harsh conditions such as hypoxia or nutrient deprivation. Autophagy and Extracellular Vesicles (EVs) secretion are cellular processes that help CSC survival. Autophagy is a recycling process and EVs secretion is essential for cell-to-cell communication. Their roles in stemness maintenance have been well described. A common pathway involved in these processes is vesicular trafficking, and subsequently, regulation by Rab GTPases. In this review, we analyze the role played by Rab GTPases in stemness status, either directly or through their regulation of autophagy and EVs secretion.
Collapse
|
19
|
Liu H, Zhou Y, Qiu H, Zhuang R, Han Y, Liu X, Qiu X, Wang Z, Xu L, Tan R, Hong W, Wang T. Rab26 suppresses migration and invasion of breast cancer cells through mediating autophagic degradation of phosphorylated Src. Cell Death Dis 2021; 12:284. [PMID: 33731709 PMCID: PMC7969620 DOI: 10.1038/s41419-021-03561-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
Rab proteins play crucial roles in membrane trafficking. Some Rab proteins are implicated in cancer development through regulating protein sorting or degradation. In this study, we found that the expression of Rab26 is suppressed in the aggressive breast cancer cells as compared to the levels in non-invasive breast cancer cells. Over-expression of Rab26 inhibits cell migration and invasion, while Rab26 knockdown significantly promotes the migration and invasion of breast cancer cells. Rab26 reduces focal adhesion association of Src kinase and induces endosomal translocation of Src. Further experiments revealed that Rab26 mediates the autophagic degradation of phosphorylated Src through interacting with ATG16L1, consequently, resulting in the suppression of the migration and invasion ability of breast cancer cells.
Collapse
Affiliation(s)
- Huiying Liu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Yuxia Zhou
- grid.413458.f0000 0000 9330 9891School of Basic Medical Sciences, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550025 Guiyang, China
| | - Hantian Qiu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Ruijuan Zhuang
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Yang Han
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Xiaoqing Liu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Xi Qiu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Ziyan Wang
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Liju Xu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Ran Tan
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Wanjin Hong
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China ,grid.185448.40000 0004 0637 0221Institute of Molecular and Cell Biology, A STAR (Agency of ScienceTechnology and Research), 61 Biopolis Drive, Singapore, 138673 Singapore
| | - Tuanlao Wang
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| |
Collapse
|
20
|
Guo M, Li S, Zhao X, Yuan Y, Zhang B, Guan Y. Knockdown of Circular RNA Hsa_circ_0000714 Can Regulate RAB17 by Sponging miR-370-3p to Reduce Paclitaxel Resistance of Ovarian Cancer Through CDK6/RB Pathway. Onco Targets Ther 2020; 13:13211-13224. [PMID: 33380810 PMCID: PMC7769200 DOI: 10.2147/ott.s285153] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Paclitaxel resistance in ovarian cancer has become an urgent clinical problem. This study investigated the regulatory effects of RAB17 on the non-coding RNA network of the paclitaxel-resistant ovarian cancer cell A2780/PTX. Methods Microarray analysis was used to identify differentially expressed genes in paclitaxel-resistant cell A2780/PTX compared to the parent paclitaxel-sensitive cell A2780. Quantitative real-time PCR and Western blot were used to measure the expression of related mRNAs and proteins. The CCK8 assay was used to determine cell survival ratios and drug resistance indices in ovarian cancer cells. The clone forming assay was used to analyze the cell clone proliferation. Flow cytometry was used to analyze the cell cycle. Dual-luciferase reporter gene assays evaluated the relationship between the genes. Results RAB17 is highly expressed in A2780/PTX cells. RAB17 knockdown increased the cell sensitivity to paclitaxel, inhibited proliferation, and caused cell cycle arrest in the G1 phase in A2780/PTX. Western blot confirmed that RAB17 influenced cell behavior by activating the CDK6/RB signaling pathway. Bioinformatics analyses identified RAB17 as a new target by the microRNA miR-370-3p, and the latter was predicted to interact with circular RNA hsa_circ_0000714. Hsa_circ_0000714 indeed acted as a miRNA sponge for miR-370-3p allowing its regulation of RAB17 expression. This regulation was accomplished through the CDK6/RB signaling pathway. Conclusion Hsa_circ_0000714 acts as a sponge for miR-370-3p, and regulates RAB17 expression through the CDK6/RB signaling pathway, which plays a role in the malignant progression of the paclitaxel-resistant ovarian cancer cell A2780/PTX.
Collapse
Affiliation(s)
- Min Guo
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, People's Republic of China
| | - Shuo Li
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, People's Republic of China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Ying Yuan
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, People's Republic of China
| | - Bin Zhang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, People's Republic of China
| | - Yifu Guan
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, People's Republic of China
| |
Collapse
|
21
|
Dong L, Cao X, Luo Y, Zhang G, Zhang D. A Positive Feedback Loop of lncRNA DSCR8/miR-98-5p/STAT3/HIF-1α Plays a Role in the Progression of Ovarian Cancer. Front Oncol 2020; 10:1713. [PMID: 32984052 PMCID: PMC7492662 DOI: 10.3389/fonc.2020.01713] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
Background Accumulating studies have revealed that long non-coding RNA (lncRNA) and microRNA (miRNA) contribute to ovarian cancer (OC). DSCR8 has been found to mediate hepatocellular carcinoma development, while its role in OC remains to be explored. Methods In this study, lncRNA DSCR8 and miR-98-5p expressions in OC tissues and adjacent non-cancer tissues were determined by reverse transcriptase polymerase chain reaction (RT-PCR). Besides, gain-of-function or loss-of-function assays of DSCR8 and miR-98-5p were conducted on OC cell lines SKOV-3 and A2780. Cell proliferation was detected with Cell Counting Kit (CCK)8 and colony formation assay, and western blot was used to test the apoptotic levels of OC cells. Transwell assay was conducted to examine cell invasion, and the epithelial–mesenchymal transition (EMT) of OC cells was tested by western blot. Moreover, luciferase activity assay and RNA immunoprecipitation (RIP) assay were conducted to verify the relationships between DSCR8 and miR-98-5p, miR-98-5p, and signal transducer and activator of transcription 3 (STAT3). Results DSCR8 was remarkedly increased in OC tissues and associated with poorer survival of OC patients. Overexpressing DSCR8 promoted cell proliferation, invasion, and EMT but inhibited apoptosis. On the other hand, miR-98-5p was downregulated in OC tissues and relieved the progression of OC. Moreover, overexpressed DSCR8 increased the levels of STAT3 and hypoxia inducible factor 1 alpha (HIF-1α) and dampened the functions of miR-98-5p on OC. Pharmaceutical intervention of STAT3 and HIF-1α significantly altered the expressions of DSCR8 and miR-98-5p. Conclusion The present results suggested a positive feedback loop of lncRNA DSCR8/miR-98-5p/STAT3/HIF-α axis in the progression of OC.
Collapse
Affiliation(s)
- Lina Dong
- Department of Obstetrics and Gynecology Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuejiao Cao
- Department of Obstetrics and Gynecology Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guoqing Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dandan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Comprehensive Analysis of Expression, Clinicopathological Association and Potential Prognostic Significance of RABs in Pancreatic Cancer. Int J Mol Sci 2020; 21:ijms21155580. [PMID: 32759795 PMCID: PMC7432855 DOI: 10.3390/ijms21155580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
RAB proteins (RABs) represent the largest subfamily of Ras-like small GTPases that regulate a wide variety of endosomal membrane transport pathways. Their aberrant expression has been demonstrated in various malignancies and implicated in pathogenesis. Using The Cancer Genome Atlas (TCGA) database, we analyzed the differential expression and clinicopathological association of RAB genes in pancreatic ductal adenocarcinoma (PDAC). Of the 62 RAB genes analyzed, five (RAB3A, RAB26, RAB25, RAB21, and RAB22A) exhibited statistically significant upregulation, while five (RAB6B, RAB8B, RABL2A, RABL2B, and RAB32) were downregulated in PDAC as compared to the normal pancreas. Racially disparate expression was also reported for RAB3A, RAB25, and RAB26. However, no clear trend of altered expression was observed with increasing stage and grade, age, and gender of the patients. PDAC from occasional drinkers had significantly higher expression of RAB21 compared to daily or weekly drinkers, whereas RAB25 expression was significantly higher in social drinkers, compared to occasional ones. The expression of RABL2A was significantly reduced in PDAC from diabetic patients, whereas RAB26 was significantly lower in pancreatitis patients. More importantly, a significant association of high expression of RAB21, RAB22A, and RAB25, and low expression of RAB6B, RABL2A, and RABL2B was observed with poorer survival of PC patients. Together, our study suggests potential diagnostic and prognostic significance of RABs in PDAC, warranting further investigations to define their functional and mechanistic significance.
Collapse
|
23
|
Wang H, Jia R, Lv T, Wang M, He S, Zhang X. Resveratrol Suppresses Tumor Progression via Inhibiting STAT3/HIF-1α/VEGF Pathway in an Orthotopic Rat Model of Non-Small-Cell Lung Cancer (NSCLC). Onco Targets Ther 2020; 13:7057-7063. [PMID: 32801741 PMCID: PMC7382608 DOI: 10.2147/ott.s259016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background The STAT3/HIF-1α/VEGF pathway is associated with the development and progress of various tumors including NSCLC. The aim of the present study was to investigate whether resveratrol (RES) could suppress NSCLC progression via inhibiting the expressions of STAT3, HIF-1α, and VEGF in a nude rat model. Methods Twenty-four nude rats were randomly divided into control, NSCLC, and NSCLC+RES groups. An orthotopic rat model of NSCLC was established. The animals in the NSCLC+RES group received the same operation as the NSCLC group and were intragastrically administered RES at 250 mg/kg/day for 12 weeks. Lung tissue samples were harvested for gross tumor burden measurement, histological examinations, RT-PCR, and Western blot assays. Results In the NSCLC+RES group, significant decreases in lung weight index, lung tumor burden, STAT3/HIF-1α/VEGF mRNA, and protein levels were observed when compared with the NSCLC group (all P<0.05). The structural integrity of the lung was less affected and the apoptotic index was significantly higher in the NSCLC+RES group, when compared to the NSCLC group (P<0.05). Conclusion RES suppresses NSCLC partly through inhibiting the expressions of STAT3, HIF-1α, and VEGF. The STAT3/HIF-1α/VEGF pathway might be a candidate drug target for developing new chemotherapy agents derived from RES for the treatment of NSCLC.
Collapse
Affiliation(s)
- Huixia Wang
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Ruzhen Jia
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Tianle Lv
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Mei Wang
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Shiwei He
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Xia Zhang
- Department of Pulmonary and Critical Care Medicine, Central Hospital of Hanzhong City, Hanzhong, Shaanxi 723000, People's Republic of China
| |
Collapse
|