1
|
Drayson OGG, Montay-Gruel P, Limoli CL. Radiomics approach for identifying radiation-induced normal tissue toxicity in the lung. Sci Rep 2024; 14:24256. [PMID: 39415029 PMCID: PMC11484882 DOI: 10.1038/s41598-024-75993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
The rapidly evolving field of radiomics has shown that radiomic features are able to capture characteristics of both tumor and normal tissue that can be used to make accurate and clinically relevant predictions. In the present study we sought to determine if radiomic features can characterize the adverse effects caused by normal tissue injury as well as identify if human embryonic stem cell (hESC) derived extracellular vesicle (EV) treatment can resolve certain adverse complications. A cohort of 72 mice (n = 12 per treatment group) were exposed to X-ray radiation to the whole lung (3 × 8 Gy) or to the apex of the right lung (3 × 12 Gy), immediately followed by retro-orbital injection of EVs. Cone-Beam Computed Tomography images were acquired before and 2 weeks after treatment. In total, 851 radiomic features were extracted from the whole lungs and < 20 features were selected to train and validate a series of random forest classification models trained to predict radiation status, EV status and treatment group. It was found that all three classification models achieved significantly high prediction accuracies on a validation subset of the dataset (AUCs of 0.91, 0.86 and 0.80 respectively). In the locally irradiated lung, a significant difference between irradiated and unirradiated groups as well as an EV sparing effect were observed in several radiomic features that were not seen in the unirradiated lung (including wavelet-LLH Kurtosis, wavelet HLL Large Area High Gray Level Emphasis, and Gray Level Non-Uniformity). Additionally, a radiation difference was not observed in a secondary comparison cohort, but there was no impact of imaging machine parameters on the radiomic signature of unirradiated mice. Our data demonstrate that radiomics has the potential to identify radiation-induced lung injury and could be applied to predict therapeutic efficacy at early timepoints.
Collapse
Affiliation(s)
- Olivia G G Drayson
- Department of Radiation Oncology, University of California, Irvine, CA, 92697-2695, USA.
- Dept. of Radiation Oncology, University of California, Irvine, CA, 92617-2695, USA.
| | - Pierre Montay-Gruel
- Department of Radiation Oncology, University of California, Irvine, CA, 92697-2695, USA
- Antwerp Research in Radiation Oncology (AReRO), Centre for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, 92697-2695, USA
| |
Collapse
|
2
|
Ismail M, Hanifa MAM, Mahidin EIM, Manan HA, Yahya N. Cone beam computed tomography (CBCT) and megavoltage computed tomography (MVCT)-based radiomics in head and neck cancers: a systematic review and radiomics quality score assessment. Quant Imaging Med Surg 2024; 14:6963-6977. [PMID: 39281127 PMCID: PMC11400681 DOI: 10.21037/qims-24-334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/27/2024] [Indexed: 09/18/2024]
Abstract
Background Cone beam computed tomography (CBCT) and megavoltage computed tomography (MVCT)-based images demonstrate measurable radiomics features that are potentially prognostic. This study aims to systematically synthesize the current research applying radiomics in head and neck cancers for outcome prediction and to assess the radiomics quality score (RQS) of the studies. Methods A systematic search was performed to identify available studies on PubMed, Web of Science, and Scopus databases. Studies related to radiomics in oncology/radiotherapy fields and based on predefined Patient, Intervention, Comparator, Outcome, and Study design (PICOS) criteria were included. The methodological quality of the included study was evaluated independently by two reviewers according to the RQS. The Mann-Whitney U test was performed according to subgroups. The P values <0.05 were considered statistically significant. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 reporting guidelines were adhered to. Results From a total of 743 identified studies, six original studies were eligible for inclusion in the systematic review (median =97 patients). The intraclass correlation coefficient (ICC) for inter-reviewer on total RQS was excellent with 0.99 [95% confidence interval (CI) of 0.946< ICC <0.999]. There were no significant differences in the analyses between each RQS domain and subgroup components (P always >0.05). Numerically higher RQS domains score for publication year ≤2022 than 2023 and number of patients > median than ≤ median but not statistically significant. Conclusions The number of radiomics studies involving CBCT and MVCT is still very limited. Self-reported RQS assessments should be encouraged for all radiomics studies.
Collapse
Affiliation(s)
- Mahayu Ismail
- Faculty of Health Sciences, National University of Malaysia, Jalan Raja Muda Aziz, Kuala Lumpur, Malaysia
- Department of Radiotherapy and Oncology, Hospital Kuala Lumpur, Jalan Pahang, Kuala Lumpur, Malaysia
| | - Mohd Ariff Mohamed Hanifa
- Department of Radiotherapy and Oncology, Hospital Kuala Lumpur, Jalan Pahang, Kuala Lumpur, Malaysia
| | - Eznal Izwadi Mohd Mahidin
- Department of Radiotherapy and Oncology, Hospital Kuala Lumpur, Jalan Pahang, Kuala Lumpur, Malaysia
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Noorazrul Yahya
- Faculty of Health Sciences, National University of Malaysia, Jalan Raja Muda Aziz, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Brown KH, Ghita-Pettigrew M, Kerr BN, Mohamed-Smith L, Walls GM, McGarry CK, Butterworth KT. Characterisation of quantitative imaging biomarkers for inflammatory and fibrotic radiation-induced lung injuries using preclinical radiomics. Radiother Oncol 2024; 192:110106. [PMID: 38253201 DOI: 10.1016/j.radonc.2024.110106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND AND PURPOSE Radiomics is a rapidly evolving area of research that uses medical images to develop prognostic and predictive imaging biomarkers. In this study, we aimed to identify radiomics features correlated with longitudinal biomarkers in preclinical models of acute inflammatory and late fibrotic phenotypes following irradiation. MATERIALS AND METHODS Female C3H/HeN and C57BL6 mice were irradiated with 20 Gy targeting the upper lobe of the right lung under cone-beam computed tomography (CBCT) image-guidance. Blood samples and lung tissue were collected at baseline, weeks 1, 10 & 30 to assess changes in serum cytokines and histological biomarkers. The right lung was segmented on longitudinal CBCT scans using ITK-SNAP. Unfiltered and filtered (wavelet) radiomics features (n = 842) were extracted using PyRadiomics. Longitudinal changes were assessed by delta analysis and principal component analysis (PCA) was used to remove redundancy and identify clustering. Prediction of acute (week 1) and late responses (weeks 20 & 30) was performed through deep learning using the Random Forest Classifier (RFC) model. RESULTS Radiomics features were identified that correlated with inflammatory and fibrotic phenotypes. Predictive features for fibrosis were detected from PCA at 10 weeks yet overt tissue density was not detectable until 30 weeks. RFC prediction models trained on 5 features were created for inflammation (AUC 0.88), early-detection of fibrosis (AUC 0.79) and established fibrosis (AUC 0.96). CONCLUSIONS This study demonstrates the application of deep learning radiomics to establish predictive models of acute and late lung injury. This approach supports the wider application of radiomics as a non-invasive tool for detection of radiation-induced lung complications.
Collapse
Affiliation(s)
- Kathryn H Brown
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland, UK.
| | - Mihaela Ghita-Pettigrew
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland, UK
| | - Brianna N Kerr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland, UK
| | - Letitia Mohamed-Smith
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland, UK
| | - Gerard M Walls
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland, UK; Northern Ireland Cancer Centre, Belfast Health & Social Care Trust, Northern Ireland, UK
| | - Conor K McGarry
- Northern Ireland Cancer Centre, Belfast Health & Social Care Trust, Northern Ireland, UK
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland, UK
| |
Collapse
|
4
|
Cheung BMF. Radiomics in stereotactic body radiotherapy for non-small cell lung cancer: a systematic review and radiomic quality score study. Radiat Oncol J 2024; 42:4-16. [PMID: 38549380 PMCID: PMC10982060 DOI: 10.3857/roj.2023.00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 04/04/2024] Open
Abstract
PURPOSE Stereotactic body radiotherapy (SBRT) has been widely utilized for curative treatment of early-stage non-small cell lung cancer (NSCLC). It has achieved good local control rate comparable to surgery. Currently, no standard risk model exists for SBRT outcome or complication prediction. Radiomics has the potential to improve clinical outcome prognostication. Here, we reviewed the current literature on the radiomic analyses of thoracic SBRT through the use of radiomic quality score (RQS). MATERIALS AND METHODS Literature search was conducted on PubMed and Embase to retrieve radiomics studies on SBRT for early NSCLC. The literature search included studies up to June 2021. Only full papers published in peer reviewed journals were included. Studies that included metastatic lung cancers or non-lung cancers were excluded. Two independent investigators evaluated each study using the RQS and resolved discrepancies through discussion. RESULTS A total number of 25 studies were analysed. The mean RQS was 7.76 of a maximum score of 36. This corresponds to 21.56% of the maximum score. Lack of feature reduction strategies, external validation and open data sharing were identified as key limitations of the reviewed studies. Meanwhile, various common radiomic signatures across different studies such as gray level co-occurrence matrix Homogeneity and energy have been identified. Multiple robust radiomic models have also been reviewed that may improve outcome or complication prediction. CONCLUSION Radiomics in thoracic SBRT has a very promising future as a prognostication tool. However, larger multicenter prospective studies are required to confirm radiomic signatures. Improvement in future study methodologies can also facilitate its wider application.
Collapse
|
5
|
Boldrini L, D'Aviero A, De Felice F, Desideri I, Grassi R, Greco C, Iorio GC, Nardone V, Piras A, Salvestrini V. Artificial intelligence applied to image-guided radiation therapy (IGRT): a systematic review by the Young Group of the Italian Association of Radiotherapy and Clinical Oncology (yAIRO). LA RADIOLOGIA MEDICA 2024; 129:133-151. [PMID: 37740838 DOI: 10.1007/s11547-023-01708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/16/2023] [Indexed: 09/25/2023]
Abstract
INTRODUCTION The advent of image-guided radiation therapy (IGRT) has recently changed the workflow of radiation treatments by ensuring highly collimated treatments. Artificial intelligence (AI) and radiomics are tools that have shown promising results for diagnosis, treatment optimization and outcome prediction. This review aims to assess the impact of AI and radiomics on modern IGRT modalities in RT. METHODS A PubMed/MEDLINE and Embase systematic review was conducted to investigate the impact of radiomics and AI to modern IGRT modalities. The search strategy was "Radiomics" AND "Cone Beam Computed Tomography"; "Radiomics" AND "Magnetic Resonance guided Radiotherapy"; "Radiomics" AND "on board Magnetic Resonance Radiotherapy"; "Artificial Intelligence" AND "Cone Beam Computed Tomography"; "Artificial Intelligence" AND "Magnetic Resonance guided Radiotherapy"; "Artificial Intelligence" AND "on board Magnetic Resonance Radiotherapy" and only original articles up to 01.11.2022 were considered. RESULTS A total of 402 studies were obtained using the previously mentioned search strategy on PubMed and Embase. The analysis was performed on a total of 84 papers obtained following the complete selection process. Radiomics application to IGRT was analyzed in 23 papers, while a total 61 papers were focused on the impact of AI on IGRT techniques. DISCUSSION AI and radiomics seem to significantly impact IGRT in all the phases of RT workflow, even if the evidence in the literature is based on retrospective data. Further studies are needed to confirm these tools' potential and provide a stronger correlation with clinical outcomes and gold-standard treatment strategies.
Collapse
Affiliation(s)
- Luca Boldrini
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario IRCCS "A. Gemelli", Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea D'Aviero
- Radiation Oncology, Mater Olbia Hospital, Olbia, Sassari, Italy
| | - Francesca De Felice
- Radiation Oncology, Department of Radiological, Policlinico Umberto I, Rome, Italy
- Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Isacco Desideri
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Carlo Greco
- Department of Radiation Oncology, Università Campus Bio-Medico di Roma, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | | | - Valerio Nardone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Antonio Piras
- UO Radioterapia Oncologica, Villa Santa Teresa, Bagheria, Palermo, Italy.
| | - Viola Salvestrini
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- Cyberknife Center, Istituto Fiorentino di Cura e Assistenza (IFCA), 50139, Florence, Italy
| |
Collapse
|
6
|
Abbaspour S, Barahman M, Abdollahi H, Arabalibeik H, Hajainfar G, Babaei M, Iraji H, Barzegartahamtan M, Ay MR, Mahdavi SR. Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study. Biomed Phys Eng Express 2023; 10:015017. [PMID: 37995359 DOI: 10.1088/2057-1976/ad0f3e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Purpose.This study aims to predict radiotherapy-induced rectal and bladder toxicity using computed tomography (CT) and magnetic resonance imaging (MRI) radiomics features in combination with clinical and dosimetric features in rectal cancer patients.Methods.A total of sixty-three patients with locally advanced rectal cancer who underwent three-dimensional conformal radiation therapy (3D-CRT) were included in this study. Radiomics features were extracted from the rectum and bladder walls in pretreatment CT and MR-T2W-weighted images. Feature selection was performed using various methods, including Least Absolute Shrinkage and Selection Operator (Lasso), Minimum Redundancy Maximum Relevance (MRMR), Chi-square (Chi2), Analysis of Variance (ANOVA), Recursive Feature Elimination (RFE), and SelectPercentile. Predictive modeling was carried out using machine learning algorithms, such as K-nearest neighbor (KNN), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), Gradient Boosting (XGB), and Linear Discriminant Analysis (LDA). The impact of the Laplacian of Gaussian (LoG) filter was investigated with sigma values ranging from 0.5 to 2. Model performance was evaluated in terms of the area under the receiver operating characteristic curve (AUC), accuracy, precision, sensitivity, and specificity.Results.A total of 479 radiomics features were extracted, and 59 features were selected. The pre-MRI T2W model exhibited the highest predictive performance with an AUC: 91.0/96.57%, accuracy: 90.38/96.92%, precision: 90.0/97.14%, sensitivity: 93.33/96.50%, and specificity: 88.09/97.14%. These results were achieved with both original image and LoG filter (sigma = 0.5-1.5) based on LDA/DT-RF classifiers for proctitis and cystitis, respectively. Furthermore, for the CT data, AUC: 90.71/96.0%, accuracy: 90.0/96.92%, precision: 88.14/97.14%, sensitivity: 93.0/96.0%, and specificity: 88.09/97.14% were acquired. The highest values were achieved using XGB/DT-XGB classifiers for proctitis and cystitis with LoG filter (sigma = 2)/LoG filter (sigma = 0.5-2), respectively. MRMR/RFE-Chi2 feature selection methods demonstrated the best performance for proctitis and cystitis in the pre-MRI T2W model. MRMR/MRMR-Lasso yielded the highest model performance for CT.Conclusion.Radiomics features extracted from pretreatment CT and MR images can effectively predict radiation-induced proctitis and cystitis. The study found that LDA, DT, RF, and XGB classifiers, combined with MRMR, RFE, Chi2, and Lasso feature selection algorithms, along with the LoG filter, offer strong predictive performance. With the inclusion of a larger training dataset, these models can be valuable tools for personalized radiotherapy decision-making.
Collapse
Affiliation(s)
- Samira Abbaspour
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Barahman
- Department of Radiation Oncology, Firoozgar Hospital, Firoozgar Clinical Research Development Center (FCRDC), Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Hossein Arabalibeik
- Research Center for Science and Technology in Medicine (RCSTM), Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Hajainfar
- Rajaie Cardiovascular Medical & Research Center, Iran University of Medical Science, Tehran, Iran
| | - Mohammadreza Babaei
- Department of Interventional Radiology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Iraji
- Department of Interventional Radiology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Barzegartahamtan
- Clinical Research Development Unit, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ay
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seied Rabi Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Delgadillo R, Spieler BO, Deana AM, Ford JC, Kwon D, Yang F, Studenski MT, Padgett KR, Abramowitz MC, Dal Pra A, Stoyanova R, Dogan N. Cone-beam CT delta-radiomics to predict genitourinary toxicities and international prostate symptom of prostate cancer patients: a pilot study. Sci Rep 2022; 12:20136. [PMID: 36418901 PMCID: PMC9684516 DOI: 10.1038/s41598-022-24435-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
For prostate cancer (PCa) patients treated with definitive radiotherapy (RT), acute and late RT-related genitourinary (GU) toxicities adversely impact disease-specific quality of life. Early warning of potential RT toxicities can prompt interventions that may prevent or mitigate future adverse events. During intensity modulated RT (IMRT) of PCa, daily cone-beam computed tomography (CBCT) images are used to improve treatment accuracy through image guidance. This work investigated the performance of CBCT-based delta-radiomic features (DRF) models to predict acute and sub-acute International Prostate Symptom Scores (IPSS) and Common Terminology Criteria for Adverse Events (CTCAE) version 5 GU toxicity grades for 50 PCa patients treated with definitive RT. Delta-radiomics models were built using logistic regression, random forest for feature selection, and a 1000 iteration bootstrapping leave one analysis for cross validation. To our knowledge, no prior studies of PCa have used DRF models based on daily CBCT images. AUC of 0.83 for IPSS and greater than 0.7 for CTCAE grades were achieved as early as week 1 of treatment. DRF extracted from CBCT images showed promise for the development of models predictive of RT outcomes. Future studies will include using artificial intelligence and machine learning to expand CBCT sample sizes available for radiomics analysis.
Collapse
Affiliation(s)
- Rodrigo Delgadillo
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Benjamin O. Spieler
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Anthony M. Deana
- grid.26790.3a0000 0004 1936 8606Department of Biomedical Engineering, University of Miami, Miami, FL USA
| | - John C. Ford
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Deukwoo Kwon
- grid.267308.80000 0000 9206 2401Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, Houston, TX USA
| | - Fei Yang
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Matthew T. Studenski
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Kyle R. Padgett
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Matthew C. Abramowitz
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Alan Dal Pra
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Radka Stoyanova
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Nesrin Dogan
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| |
Collapse
|
8
|
Abdollahi H, Chin E, Clark H, Hyde DE, Thomas S, Wu J, Uribe CF, Rahmim A. Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6fab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Radiomics is an advanced image-processing framework, which extracts image features and considers them as biomarkers towards personalized medicine. Applications include disease detection, diagnosis, prognosis, and therapy response assessment/prediction. As radiation therapy aims for further individualized treatments, radiomics could play a critical role in various steps before, during and after treatment. Elucidation of the concept of radiomics-guided radiation therapy (RGRT) is the aim of this review, attempting to highlight opportunities and challenges underlying the use of radiomics to guide clinicians and physicists towards more effective radiation treatments. This work identifies the value of RGRT in various steps of radiotherapy from patient selection to follow-up, and subsequently provides recommendations to improve future radiotherapy using quantitative imaging features.
Collapse
|
9
|
Robustness and reproducibility of radiomics in T2 weighted images from magnetic resonance image guided linear accelerator in a phantom study. Phys Med 2022; 96:130-139. [PMID: 35287100 DOI: 10.1016/j.ejmp.2022.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/07/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Quantitative radiomics features extracted from medical images have been shown to provide value in predicting clinical outcomes. The study for robustness and reproducibility of radiomics features obtained with magnetic resonance image guided linear accelerator (MR-Linac) is insufficient. The objective of this work was to investigate the stability of radiomics features extracted from T2-weighted images of MR-Linac for five common effect factors. MATERIALS AND METHOD In this work, ten jellies, five fruits/vegetables, and a dynamic phantom were used to evaluate the impact of test-retest, intraobserver, varied thicknesses, radiation, and motion. These phantoms were scanned on a 1.5 T MRI system of MR-Linac. For test-retest data, the phantoms were scanned twice with repositioning within 15 min. To assess for intraobserver comparison, the segmentation of MR images was repeated by one observer in a double-blind manner. Three slice thicknesses (1.2 mm, 2.4 mm, and 4.8 mm) were used to select robust features that were insensitive to different thicknesses. The effect of radiation on features was studied by acquiring images when the beam was on. Common movement images of patients during radiotherapy were simulated by a dynamic phantom with five motion states to study the motion effect. A total of 1409 radiomics features, including shape features, first-order features, and texture features, were extracted from the original, wavelet, square, logarithmic, exponential and gradient images. The robustness and reproducibility features were evaluated using the concordance correlation coefficient (CCC). RESULT The intraobserver group had the most robust features (936/1079, 86.7%), while the group of motion effects had the lowest robustness (56/936, 6.0%), followed by the group of different thickness cohorts (374/936, 40.0%). The stability of features in the test-retest and radiation groups was 1072 of 1312 (81.7%) and 810 of 936 (86.5%), respectively. Overall, 25 of 1409 (2.4%) radiomics features remained robust in all five tests, mostly focusing on the image type of the wavelet. The number of stable features extracted from when the beam was on was less than that extracted when the beam was off. Shape features were the most robust of all of the features in all of the groups, excluding the motion group. CONCLUSION Compared with other factors fewer features remained robust to the effect of motion. This result emphasizes the need to consider the effect of respiration motion. The study for T2-weighted images from MR-Linac under different conditions will help us to build a robust predictive model applicable for radiotherapy.
Collapse
|
10
|
Geraghty BJ, Dasgupta A, Sandhu M, Malik N, Maralani PJ, Detsky J, Tseng CL, Soliman H, Myrehaug S, Husain Z, Perry J, Lau A, Sahgal A, Czarnota GJ. Predicting survival in patients with glioblastoma using MRI radiomic features extracted from radiation planning volumes. J Neurooncol 2022; 156:579-588. [PMID: 34981301 DOI: 10.1007/s11060-021-03939-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Quantitative image analysis using pre-operative magnetic resonance imaging (MRI) has been able to predict survival in patients with glioblastoma (GBM). The study explored the role of postoperative radiation (RT) planning MRI-based radiomics to predict the outcomes, with features extracted from the gross tumor volume (GTV) and clinical target volume (CTV). METHODS Patients with IDH-wildtype GBM treated with adjuvant RT having MRI as a part of RT planning process were included in the study. 546 features were extracted from each GTV and CTV. A LASSO Cox model was applied, and internal validation was performed using leave-one-out cross-validation with overall survival as endpoint. Cross-validated time-dependent area under curve (AUC) was constructed to test the efficacy of the radiomics model, and clinical features were used to generate a combined model. Analysis was done for the entire group and in individual surgical groups-gross total excision (GTR), subtotal resection (STR), and biopsy. RESULTS 235 patients were included in the study with 57, 118, and 60 in the GTR, STR, and biopsy subgroup, respectively. Using the radiomics model, binary risk groups were feasible in the entire cohort (p < 0.01) and biopsy group (p = 0.04), but not in the other two surgical groups individually. The integrated AUC (iAUC) was 0.613 for radiomics-based classification in the biopsy subgroup, which improved to 0.632 with the inclusion of clinical features. CONCLUSION Imaging features extracted from the GTV and CTV regions can lead to risk-stratification of GBM undergoing biopsy, while the utility in other individual subgroups needs to be further explored.
Collapse
Affiliation(s)
- Benjamin J Geraghty
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Archya Dasgupta
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Michael Sandhu
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Nauman Malik
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Pejman Jabehdar Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Zain Husain
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - James Perry
- Department of Neurology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Angus Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Gregory J Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada. .,Department of Radiation Oncology, University of Toronto, Toronto, Canada. .,Physical Sciences, Sunnybrook Research Institute, Toronto, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
11
|
Morgan HE, Wang K, Dohopolski M, Liang X, Folkert MR, Sher DJ, Wang J. Exploratory ensemble interpretable model for predicting local failure in head and neck cancer: the additive benefit of CT and intra-treatment cone-beam computed tomography features. Quant Imaging Med Surg 2021; 11:4781-4796. [PMID: 34888189 PMCID: PMC8611459 DOI: 10.21037/qims-21-274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Local failure (LF) following chemoradiation (CRT) for head and neck cancer is associated with poor overall survival. If machine learning techniques could stratify patients at risk of treatment failure based on baseline and intra-treatment imaging, such a model could facilitate response-adapted approaches to escalate, de-escalate, or switch therapy. METHODS A 1:2 retrospective case control cohort of patients treated at a single institution with definitive radiotherapy for head and neck cancer who failed locally, in-field at a primary or nodal structure were included. Radiomic features were extracted from baseline CT and CBCT scans at fractions 1 and 21 (delta) of radiotherapy with PyRadiomics and were selected for by: reproducibility (intra-class correlation coefficients ≥0.95), redundancy [maximum relevance and minimum redundancy (mRMR)], and informativeness [recursive feature elimination (RFE)]. Separate models predicting LF of primaries or nodes were created using the explainable boosting machine (EBM) classifier with 5-fold cross-validation for (I) clinical only, (II) radiomic only (CT1 and delta features), and (III) fused models (clinical + radiomic). Twenty-five iterations were performed, and predicted scores were averaged with a parallel ensemble design. Receiver operating characteristic curves were compared between models with paired-samples t-tests. RESULTS The fused ensemble model for primaries (using clinical, CT1, and delta features) achieved an AUC of 0.871 with a sensitivity of 78.3% and specificity of 90.9% at the maximum Youden J statistic. The fused ensemble model trended towards improvement when compared to the clinical only ensemble model (AUC =0.788, P=0.134) but reached significance when compared to the radiomic ensemble model (AUC =0.770, P=0.017). The fused ensemble model for nodes achieved an AUC of 0.910 with a sensitivity of 100.0% and specificity of 68.0%, which also trended towards improvement when compared to the clinical model (AUC =0.865, P=0.080). CONCLUSIONS The fused ensemble EBM model achieved high discriminatory ability at predicting LF for head and neck cancer in independent primary and nodal structures. Although an additive benefit of delta radiomics over clinical factors could not be proven, the results trended towards improvement with the fused ensemble model, which are promising and worthy of prospective investigation in a larger cohort.
Collapse
Affiliation(s)
- Howard E. Morgan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kai Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Dohopolski
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiao Liang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael R. Folkert
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David J. Sher
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
12
|
Liu X, Shao C, Fu J. Promising Biomarkers of Radiation-Induced Lung Injury: A Review. Biomedicines 2021; 9:1181. [PMID: 34572367 PMCID: PMC8470495 DOI: 10.3390/biomedicines9091181] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Radiation-induced lung injury (RILI) is one of the main dose-limiting side effects in patients with thoracic cancer during radiotherapy. No reliable predictors or accurate risk models are currently available in clinical practice. Severe radiation pneumonitis (RP) or pulmonary fibrosis (PF) will reduce the quality of life, even when the anti-tumor treatment is effective for patients. Thus, precise prediction and early diagnosis of lung toxicity are critical to overcome this longstanding problem. This review summarizes the primary mechanisms and preclinical animal models of RILI reported in recent decades, and analyzes the most promising biomarkers for the early detection of lung complications. In general, ideal integrated models considering individual genetic susceptibility, clinical background parameters, and biological variations are encouraged to be built up, and more prospective investigations are still required to disclose the molecular mechanisms of RILI as well as to discover valuable intervention strategies.
Collapse
Affiliation(s)
- Xinglong Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Jiamei Fu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
13
|
Delgadillo R, Spieler BO, Ford JC, Kwon D, Yang F, Studenski M, Padgett KR, Abramowitz MC, Dal Pra A, Stoyanova R, Pollack A, Dogan N. Repeatability of CBCT radiomic features and their correlation with CT radiomic features for prostate cancer. Med Phys 2021; 48:2386-2399. [PMID: 33598943 DOI: 10.1002/mp.14787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/09/2020] [Accepted: 02/09/2021] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Radiomic features of cone-beam CT (CBCT) images have potential as biomarkers to predict treatment response and prognosis for patients of prostate cancer. Previous studies of radiomic feature analysis for prostate cancer were assessed in a variety of imaging modalities, including MRI, PET, and CT, but usually limited to a pretreatment setting. However, CBCT images may provide an opportunity to capture early morphological changes to the tumor during treatment that could lead to timely treatment adaptation. This work investigated the quality of CBCT-based radiomic features and their relationship with reconstruction methods applied to the CBCT projections and the preprocessing methods used in feature extraction. Moreover, CBCT features were correlated with planning CT (pCT) features to further assess the viability of CBCT radiomic features. METHODS The quality of 42 CBCT-based radiomic features was assessed according to their repeatability and reproducibility. Repeatability was quantified by correlating radiomic features between 20 CBCT scans that also had repeated scans within 15 minutes. Reproducibility was quantified by correlating radiomic features between the planning CT (pCT) and the first fraction CBCT for 20 patients. Concordance correlation coefficients (CCC) of radiomic features were used to estimate the repeatability and reproducibility of radiomic features. The same patient dataset was assessed using different reconstruction methods applied to the CBCT projections. CBCT images were generated using 18 reconstruction methods using iterative (iCBCT) and standard (sCBCT) reconstructions, three convolution filters, and five noise suppression filters. Eighteen preprocessing settings were also considered. RESULTS Overall, CBCT radiomic features were more repeatable than reproducible. Five radiomic features are repeatable in > 97% of the reconstruction and preprocessing methods, and come from the gray-level size zone matrix (GLSZM), neighborhood gray-tone difference matrix (NGTDM), and gray-level-run length matrix (GLRLM) radiomic feature classes. These radiomic features were reproducible in > 9.8% of the reconstruction and preprocessing methods. Noise suppression and convolution filter smoothing increased radiomic features repeatability, but decreased reproducibility. The top-repeatable iCBCT method (iCBCT-Sharp-VeryHigh) is more repeatable than the top-repeatable sCBCT method (sCBCT-Smooth) in 64% of the radiomic features. CONCLUSION Methods for reconstruction and preprocessing that improve CBCT radiomic feature repeatability often decrease reproducibility. The best approach may be to use methods that strike a balance repeatability and reproducibility such as iCBCT-Sharp-VeryLow-1-Lloyd-256 that has 17 repeatable and eight reproducible radiomic features. Previous radiomic studies that only used pCT radiomic features have generated prognostic models of prostate cancer outcome. Since our study indicates that CBCT radiomic features correlated well with a subset of pCT radiomic features, one may expect CBCT radiomics to also generate prognostic models for prostate cancer.
Collapse
Affiliation(s)
- Rodrigo Delgadillo
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Benjamin O Spieler
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - John C Ford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Deukwoo Kwon
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fei Yang
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthew Studenski
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kyle R Padgett
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthew C Abramowitz
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alan Dal Pra
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Radka Stoyanova
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alan Pollack
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nesrin Dogan
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
14
|
Delgadillo R, Ford JC, Abramowitz MC, Dal Pra A, Pollack A, Stoyanova R. The role of radiomics in prostate cancer radiotherapy. Strahlenther Onkol 2020; 196:900-912. [PMID: 32821953 PMCID: PMC7545508 DOI: 10.1007/s00066-020-01679-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
"Radiomics," as it refers to the extraction and analysis of a large number of advanced quantitative radiological features from medical images using high-throughput methods, is perfectly suited as an engine for effectively sifting through the multiple series of prostate images from before, during, and after radiotherapy (RT). Multiparametric (mp)MRI, planning CT, and cone beam CT (CBCT) routinely acquired throughout RT and the radiomics pipeline are developed for extraction of thousands of variables. Radiomics data are in a format that is appropriate for building descriptive and predictive models relating image features to diagnostic, prognostic, or predictive information. Prediction of Gleason score, the histopathologic cancer grade, has been the mainstay of the radiomic efforts in prostate cancer. While Gleason score (GS) is still the best predictor of treatment outcome, there are other novel applications of quantitative imaging that are tailored to RT. In this review, we summarize the radiomics efforts and discuss several promising concepts such as delta-radiomics and radiogenomics for utilizing image features for assessment of the aggressiveness of prostate cancer and its outcome. We also discuss opportunities for quantitative imaging with the advance of instrumentation in MRI-guided therapies.
Collapse
Affiliation(s)
- Rodrigo Delgadillo
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1121 NW 14th St, 33136, Miami, FL, USA
| | - John C Ford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1121 NW 14th St, 33136, Miami, FL, USA
| | - Matthew C Abramowitz
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1121 NW 14th St, 33136, Miami, FL, USA
| | - Alan Dal Pra
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1121 NW 14th St, 33136, Miami, FL, USA
| | - Alan Pollack
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1121 NW 14th St, 33136, Miami, FL, USA
| | - Radka Stoyanova
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1121 NW 14th St, 33136, Miami, FL, USA.
| |
Collapse
|
15
|
Christie JR, Lang P, Zelko LM, Palma DA, Abdelrazek M, Mattonen SA. Artificial Intelligence in Lung Cancer: Bridging the Gap Between Computational Power and Clinical Decision-Making. Can Assoc Radiol J 2020; 72:86-97. [PMID: 32735493 DOI: 10.1177/0846537120941434] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lung cancer remains the most common cause of cancer death worldwide. Recent advances in lung cancer screening, radiotherapy, surgical techniques, and systemic therapy have led to increasing complexity in diagnosis, treatment decision-making, and assessment of recurrence. Artificial intelligence (AI)-based prediction models are being developed to address these issues and may have a future role in screening, diagnosis, treatment selection, and decision-making around salvage therapy. Imaging plays an essential role in all components of lung cancer management and has the potential to play a key role in AI applications. Artificial intelligence has demonstrated value in prognostic biomarker discovery in lung cancer diagnosis, treatment, and response assessment, putting it at the forefront of the next phase of personalized medicine. However, although exploratory studies demonstrate potential utility, there is a need for rigorous validation and standardization before AI can be utilized in clinical decision-making. In this review, we will provide a summary of the current literature implementing AI for outcome prediction in lung cancer. We will describe the anticipated impact of AI on the management of patients with lung cancer and discuss the challenges of clinical implementation of these techniques.
Collapse
Affiliation(s)
- Jaryd R Christie
- Department of Medical Biophysics, 6221Western University, London, Ontario, Canada
| | - Pencilla Lang
- Division of Radiation Oncology, 6221Western University, London, Ontario, Canada
| | - Lauren M Zelko
- Department of Medical Biophysics, 6221Western University, London, Ontario, Canada
| | - David A Palma
- Division of Radiation Oncology, 6221Western University, London, Ontario, Canada
| | - Mohamed Abdelrazek
- Department of Medical Imaging, 6221Western University, London, Ontario, Canada
| | - Sarah A Mattonen
- Department of Medical Biophysics, 6221Western University, London, Ontario, Canada.,Department of Oncology, 6221Western University, London, Ontario, Canada
| |
Collapse
|