1
|
Yang X, Li Y, Peng Y, Chang Y, He B, Zhang T, Zhang S, Geng C, Liu Y, Li X, Hao J, Ma L. An integrative analysis of ASCL1 in breast cancer and inhibition of ASCL1 increases paclitaxel sensitivity by activating ferroptosis via the CREB1/GPX4 axis. Front Immunol 2025; 16:1546794. [PMID: 39963143 PMCID: PMC11830715 DOI: 10.3389/fimmu.2025.1546794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Objective Our previous study found that Achaete-scute complex homolog 1 (ASCL1) is involved in classifying BC subtypes with different prognostic and pathological characteristics. However, the biological role of ASCL1 in BC still remains largely unexplored. This study aims to elucidate the function of ASCL1 in BC using bioinformatics analyses, as well as in vitro and in vivo experimental approaches. Methods Data from the TCGA, GEO, and Human Protein Atlas databases were utilized to evaluate ASCL1 expression in BC and its association with patient prognosis. Genetic alterations in ASCL1 were assessed through the COSMIC and cBioPortal databases, while the TIMER2.0 database provided insights into the relationship between ASCL1 expression and key gene mutations in BC. The GDSC database was used to examine correlations between ASCL1 levels and sensitivity to standard chemotherapeutic agents. Associations between ASCL1 expression and cytokines, immunomodulatory factors, MHC molecules, and receptors were analyzed using Pearson and Spearman correlation methods. The TIP database was employed to investigate the connection between ASCL1 expression and immunoreactivity scores, and six computational approaches were applied to evaluate immune cell infiltration. Functional assays were conducted on BC cell lines MCF-7 and MDA-MB-231, and nude mouse models were used for in vivo studies. Results ASCL1 was found to be upregulated in BC and correlated with unfavorable prognosis and mutations in key oncogenes. Its expression was linked to immunomodulatory factors, immune cell infiltration, and immunoreactivity scores in the tumor microenvironment. Additionally, ASCL1 influenced tumor immune dynamics and chemosensitivity in BC. Overexpression of ASCL1 enhanced BC cell proliferation, migration and invasion, while its knockdown had the opposite effect. Notably, inhibition of ASCL1 increased BC cell sensitivity to paclitaxel both in vitro and in vivo. In addition, inhibition of ASCL1 activated ferroptosis in BC, including altered mitochondrial morphology, increased MDA and ROS levels, decreased GSH levels and reduced GSH/GSSG ratio. Mechanistically, inhibition of ASCL1 decreases the phosphorylation of CREB1, thus reducing the expression of GPX4. In summary, inhibition of ASCL1 increases paclitaxel sensitivity by activating ferroptosis via the CREB1/GPX4 axis. Conclusions ASCL1 exerts oncogenic effects in BC and represents a potential therapeutic target for intervention.
Collapse
Affiliation(s)
- Xiaolu Yang
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yilun Li
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yaqi Peng
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yuan Chang
- Department of Breast Disease Center, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Binglu He
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Tianqi Zhang
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Shiyu Zhang
- Department of Breast Disease Center, Xingtai Renmin Hospital, Xingtai, China
| | - Cuizhi Geng
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunjiang Liu
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaolong Li
- Department of Breast Disease Center, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Li Ma
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Zhu Y, Li S, Wang H, Ren W, Chi K, Wu J, Mao L, Huang X, Zhuo M, Lin D. Molecular subtypes, predictive markers and prognosis in small-cell lung carcinoma. J Clin Pathol 2024; 78:42-50. [PMID: 37775262 DOI: 10.1136/jcp-2023-209109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023]
Abstract
AIMS A new molecular subtype classification was proposed for small-cell lung carcinoma (SCLC). We aimed to further validate the classification in various SCLC patient samples using immunohistochemistry (IHC) to highlight its clinical significance. METHODS We analysed the protein expression of four subtype (achaete-scute family BHLH transcription factor 1 (ASCL1), neuronal differentiation 1 (NEUROD1), POU class 2 homeobox 3 (POU2F3) and Yes1-associated transcriptional regulator (YAP1)) and two predictive markers (delta-like ligand 3 (DLL3) and MYC) using IHC in 216 specimens from 195 SCLC patients, including 21 pairs of resected biopsy tumours. Associations among molecular subtypes, clinicopathological features and prognostic implications were also explored. RESULTS The ASCL1, NEUROD1, POU2F3, YAP1, DLL3 and MYC-positive expression rates were 70.3%, 56.9%, 14.9%, 19.0%, 75.4% and 22.6%, respectively. DLL3 expression had positive and negative associations with that of ASCL1 and POU2F3/YAP1, respectively, whereas MYC had the opposite effect. Strong associations of ASCL1 (Ρ=0.8603, p<0.0001), NEUROD1 (Ρ=0.8326, p<0.0001), POU2F3 (Ρ=0.6950, p<0.0001) and YAP1 (Ρ=0.7466, p<0.0001) expressions were detected between paired resected biopsy tumours. In addition to SCLC-A (ASCL1-dominant), SCLC-N (NEUROD1-dominant) and SCLC-P (POU2F3-dominant), unsupervised hierarchical cluster analyses identified a fourth, quadruple-negative SCLC subtype (SCLC-QN) characterised by the low expression of all four subtype-specific proteins, and 55.4% (n=108), 27.2% (n=53), 11.8% (n=23) and 5.6% (n=11) were categorised as SCLC-A, SCLC-N, SCLC-P and SCLC-QN, respectively. Significant enrichment of SCLC-P in the combined SCLC cohort was observed, and adenocarcinoma was more prevalent in SCLC-A, while large-cell neuroendocrine carcinoma was more commonly seen in SCLC-P. No survival difference was found among molecular subtypes. CONCLUSIONS Our results provide clinical insights into the diagnostic, prognostic and predictive significance of SCLC molecular subtype classifications.
Collapse
Affiliation(s)
- Yanli Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Sheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department I of Thoracic Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Haiyue Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Wenhao Ren
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Kaiwen Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jianghua Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Luning Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaozheng Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Minglei Zhuo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department I of Thoracic Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Dongmei Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
3
|
Qiang M, Liu H, Yang L, Wang H, Guo R. Immunotherapy for small cell lung cancer: the current state and future trajectories. Discov Oncol 2024; 15:355. [PMID: 39152301 PMCID: PMC11329494 DOI: 10.1007/s12672-024-01119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/21/2024] [Indexed: 08/19/2024] Open
Abstract
Small cell lung cancer (SCLC) constitutes approximately 10% to 15% of all lung cancer diagnoses and represents a pressing global public health challenge due to its high mortality rates. The efficacy of conventional treatments for SCLC is suboptimal, characterized by limited anti-tumoral effects and frequent relapses. In this context, emerging research has pivoted towards immunotherapy combined with chemotherapy, a rapidly advancing field that has shown promise in ameliorating the clinical outcomes of SCLC patients. Through originally developed for non-small cell lung cancer (NSCLC), these therapies have extended new treatment avenues for SCLC. Currently, a nexus of emerging hot-spot treatments has demonstrated significant therapeutic efficacy. Based on the amalgamation of chemotherapy and immunotherapy, and the development of new immunotherapy agents, the treatment of SCLC has seen the hoping future. Progress has been achieved in enhancing the tumor immune microenvironment through the concomitant use of chemotherapy, immunotherapy, and tyrosine kinase inhibitors (TKI), as evinced by emerging clinical trial data. Moreover, a tripartite approach involving immunotherapy, targeted therapy, and chemotherapy appears auspicious for future clinical applications. Overcoming resistance to post-immunotherapy regimens remains an urgent area of exploration. Finally, bispecific antibodies, adoptive cell transfer (ACT), oncolytic virus, monotherapy, including Delta-like ligand 3 (DLL3) and T cell immunoreceptor with Ig and ITIM domains (TIGIT), as well as precision medicine, may present a prospective route towards achieving curative outcomes in SCLC. This review aims to synthesize extant literature and highlight future directions in SCLC treatment, acknowledging the persistent challenges in the field. Furthermore, the continual development of novel therapeutic agents and technologies renders the future of SCLC treatment increasingly optimistic.
Collapse
Affiliation(s)
- Min Qiang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hongyang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Guo
- Clinical Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Zhu Y, Li S, Wang H, Chi K, Ren W, Huang X, Zhuo M, Lin D. Molecular subtype expression and genomic profiling differ between surgically resected pure and combined small cell lung carcinoma. Hum Pathol 2023; 141:118-129. [PMID: 37586462 DOI: 10.1016/j.humpath.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
A new molecular subtype classification method has been proposed for small cell lung carcinoma (SCLC). However, little is known about the differences between the pure (P-SCLC) and combined subtypes (C-SCLC). We aimed to compare the molecular subtype expression and genomic profiling in terms of clinical relevance between the two groups. 154 surgically resected SCLCs were analyzed for protein expression of four subtypes (ASCL1, NEUROD1, POU2F3, and YAP1) and two predictive markers (DLL3 and MYC) by immunohistochemistry (IHC). We also performed whole exome sequencing of 60 samples to examine genomic profiles. A total of 113 patients with P-SCLC and 41 with C-SCLC were included. In P-SCLC and C-SCLC, the expression of these markers was 78.8% and 41.5%, 98.2% and 97.6%, 42.5% and 51.2%, 38.9% and 85.4%, 85.0% and 68.3%, and 24.8% and 34.1%, respectively. ASCL1 and DLL3 were highly expressed in P-SCLC (p = 0.000 and p = 0.021, respectively), and YAP1 expression was significantly enriched in C-SCLC (p = 0.000). NGS results, including 45 P-SCLCs and 15 C-SCLCs, indicated that EGFR gene mutations were mostly observed in C-SCLCs (p = 0.000). C-SCLC showed higher CNA burden and wGII than P-SCLC (p < 0.01 and p < 0.05); conversely, P-SCLC had higher TMB burden and SDI (p < 0.05 and p < 0.05). YAP1 expression was associated with poor prognosis in P-SCLC but with favorable prognosis in C-SCLC. P-SCLC and C-SCLC are heterogeneous diseases characterized by different molecular subtype expressions and genomic profiles. Our data provide a basis for adopting histological subtype-based treatments, and further prospective studies are required to confirm our conclusions.
Collapse
Affiliation(s)
- Yanli Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Sheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department I of Thoracic Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Haiyue Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Kaiwen Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Wenhao Ren
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Xiaozheng Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Minglei Zhuo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department I of Thoracic Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Dongmei Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
5
|
Qi J, Zhang J, Liu N, Zhao L, Xu B. Prognostic Implications of Molecular Subtypes in Primary Small Cell Lung Cancer and Their Correlation With Cancer Immunity. Front Oncol 2022; 12:779276. [PMID: 35311069 PMCID: PMC8924463 DOI: 10.3389/fonc.2022.779276] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
Introduction Small cell lung cancer (SCLC) has recently been characterized as heterogeneous tumors due to consensus nomenclature for distinct molecular subtypes on the basis of differential expression of four transcription markers (ASCL1, NEUROD1, POU2F3, and YAP1). It is necessary to validate molecular subtype classification in primary SCLC tumors by immunohistochemical (IHC) staining and investigate its relevance to survival outcomes. Methods Using a large number of surgically resected primary SCLC tumors, we assessed the mRNA and protein levels of the four subtype markers (ASCL1, NEUROD1, POU2F3 and YAP1) in two independent cohorts, respectively. Next, molecular subtypes defined by the four subtype markers was conducted to identify the association with clinicopathologic characteristics, survival outcomes, the expression of classic neuroendocrine markers, and molecules related to tumor immune microenvironment. Results Samples were categorized into four subtypes based on the relative expression levels of the four subtype markers, yielding to ASCL1, NEUROD1, POU2F3 and YAP1 subtypes, respectively. The combined neuroendocrine differentiation features were more prevalent in either ASCL1 or NEUROD1 subtypes. Kaplan-Meier analyses found that patients with tumors of the YAP1 subtype and ASCL1 subtype obtained the best and worst prognosis on both mRNA and IHC levels, respectively. Based on multivariate Cox proportional-hazards regression model, molecular subtype classification determined by IHC was identified as an independent indicator for survival outcomes in primary SCLC tumors. Correlation analyses indicated that the four subtype markers in SCLC cancer cells were interacted with its tumor immune microenvironment. Specifically, tumors positive for YAP1 was associated with fewer CTLA4+ T cell infiltration, while more immune-inhibitory receptors (FoxP3,PD1, and CTLA4) and fewer immune-promoting receptor (CD8) were found in tumors positive for ASCL1. Conclusions We validated the new molecular subtype classification and clinical relevance on both mRNA and protein levels from primary SCLC tumors. The molecular subtypes determined by IHC could be a pre-selected effective biomarker significantly influenced on prognosis in patients with SCLC, which warrants further studies to provide better preventative and therapeutic options for distinct molecular subtypes.
Collapse
Affiliation(s)
- Jing Qi
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jiaqi Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ningbo Liu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bo Xu
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
6
|
Lin F, Li R. MiR-1226, mediated by ASCL1, suppresses the progression of non-small cell lung cancer by targeting FGF2. Bull Cancer 2022; 109:424-435. [DOI: 10.1016/j.bulcan.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/16/2021] [Accepted: 11/27/2021] [Indexed: 10/19/2022]
|
7
|
Hu C, Dong J, Liu L, Liu J, Sun X, Teng F, Wang X, Ying J, Li J, Xing P, Yang L. ASCL1
and
DLL3
expressions and their clinicopathological implications in surgically resected pure small cell lung cancer: A study of 247 cases from the
National Cancer Center of China. Thorac Cancer 2021; 13:338-345. [PMID: 34931456 PMCID: PMC8807256 DOI: 10.1111/1759-7714.14249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Chunfang Hu
- Department of Pathology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jiyan Dong
- Department of Pathology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Li Liu
- Department of Pathology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jingbo Liu
- Department of Pathology The Fifth Affiliated Hospital of Qiqihar Medical College/Longnan Hospital Daqing China
| | - Xujie Sun
- Department of Pathology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Fei Teng
- Department of Medical Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Xin Wang
- Department of Pathology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jianming Ying
- Department of Pathology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Junling Li
- Department of Medical Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Puyuan Xing
- Department of Medical Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Lin Yang
- Department of Pathology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|