1
|
Ghahfarrokhi SSM, Karimi P, Mahdigholi FS, Haji Abdolvahab M. Vaccination and personalized cancer vaccines focusing on common cancers in women: A narrative review. Pathol Res Pract 2025; 270:155983. [PMID: 40262377 DOI: 10.1016/j.prp.2025.155983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Immunotherapy has recently cast great attention on cancer vaccines in order to aim to decrease tumor growth, elicit persistent anti-tumor memory, and avert adverse reactions. Moreover, cancer vaccines employ tumor antigens to stimulate anti-tumor immunity using different platforms, for example, whole cells, nucleic acids, peptides, etc. Recent findings have classified cancer vaccines into cell-based, virus-based, peptide-based, and nucleic acid-based types. Personalized cancer vaccines, also known as neoantigens, have exhibited acceptable safety and efficacy in eliciting immune responses against melanoma and glioblastoma. Neoantigen-based vaccines, concentrating on tumor antigens present only in cancer cells, bring intriguing opportunities for different types of cancer, including melanoma, lung, bladder, breast, renal, head and neck, and colorectal cancers. Furthermore, breast cancer research underscores ongoing trials of vaccines targeting α-lactalbumin to prevent the recurrence of triple-negative breast cancer. Lung cancer studies have discovered interesting outcomes with liposomal vaccines and the potential of CIMAvax-EGF in the prevention of lung cancer. Studies on ovarian cancer highlight personalized cancer vaccines using dendritic cells and various tumor-associated antigens to elicit T-cell responses against cancer cells. Overall, such advancements suggest great promise for future clinical translation of cancer novel immunotherapy-based approaches to effectively counter various types of cancer.
Collapse
Affiliation(s)
- Seyed Sadeq Mousavi Ghahfarrokhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Pegah Karimi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fateme-Sadat Mahdigholi
- Department of Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Haji Abdolvahab
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Flores Banda JS, Gangane S, Raza F, Massarelli E. Current Development of Therapeutic Vaccines in Lung Cancer. Vaccines (Basel) 2025; 13:185. [PMID: 40006732 PMCID: PMC11860707 DOI: 10.3390/vaccines13020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer vaccines have a potential to change the current landscape of immunotherapy research and development. They target and neutralize specific tumor cells by utilizing the body's own immune system which offers a promising modality in treating various cancers including lung cancer. Historically, prior vaccination approaches specifically towards lung cancer have posed several challenges but also potential with early phase I/II trials showing improved overall survival. With better understanding of the body's immune system as well as advancements in vaccine development, the use of vaccines to target lung cancer cells in both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) has shown promise but also challenges in the setting of advanced stage cancers, tumor resistance mechanisms, immune evasion, and tumor heterogeneity. The proposed solution is to enroll patients in the early stages of the disease, rather than waiting until progression occurs. Additionally, future efforts will focus on the targeted identification of specific and novel tumor neo-antigens. This review offers discussion and analysis of both completed and ongoing trials utilizing different strategies for vaccine development in relation to treating lung cancer as well as current challenges faced.
Collapse
Affiliation(s)
| | | | | | - Erminia Massarelli
- Department of Medicine, University of Texas at Tyler School of Medicine, 11937 US Hwy 271, Tyler, TX 75799, USA; (J.S.F.B.); (S.G.); (F.R.)
| |
Collapse
|
3
|
Chen S, Cheng S, Cai J, Liu Z, Li H, Wang P, Li Y, Yang F, Chen K, Qiu M. The current therapeutic cancer vaccines landscape in non-small cell lung cancer. Int J Cancer 2024; 155:1909-1927. [PMID: 39109825 DOI: 10.1002/ijc.35088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 10/04/2024]
Abstract
Currently, conventional immunotherapies for the treatment of non-small cell lung cancer (NSCLC) have low response rates and benefit only a minority of patients, particularly those with advanced disease, so novel therapeutic strategies are urgent deeded. Therapeutic cancer vaccines, a form of active immunotherapy, harness potential to activate the adaptive immune system against tumor cells via antigen cross-presentation. Cancer vaccines can establish enduring immune memory and guard against recurrences. Vaccine-induced tumor cell death prompts antigen epitope spreading, activating functional T cells and thereby sustaining a cancer-immunity cycle. The success of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rendered cancer vaccines a promising avenue, especially when combined with immunotherapy or chemoradiotherapy for NSCLC. This review delves into the intricate antitumor immune mechanisms underlying therapeutic cancer vaccines, enumerates the tumor antigen spectrum of NSCLC, discusses different cancer vaccines progress and summarizes relevant clinical trials. Additionally, we analyze the combination strategies, current limitations, and future prospects of cancer vaccines in NSCLC treatment, aiming to offer fresh insights for their clinical application in managing NSCLC. Overall, cancer vaccines offer promising potential for NSCLC treatment, particularly combining with chemoradiotherapy or immunotherapy could further improve survival in advanced patients. Exploring inhaled vaccines or prophylactic vaccines represents a crucial research avenue.
Collapse
Affiliation(s)
- Shaoyi Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Sida Cheng
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Jingsheng Cai
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Zheng Liu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Haoran Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Peiyu Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yun Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Kezhong Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|
4
|
Kang DH, Lee J, Im S, Chung C. Navigating the Complexity of Resistance in Lung Cancer Therapy: Mechanisms, Organoid Models, and Strategies for Overcoming Treatment Failure. Cancers (Basel) 2024; 16:3996. [PMID: 39682183 DOI: 10.3390/cancers16233996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background: The persistence of chemotherapy-resistant and dormant cancer cells remains a critical challenge in the treatment of lung cancer. Objectives: This review focuses on non-small cell lung cancer and small cell lung cancer, examining the complex mechanisms that drive treatment resistance. Methods: This review analyzed current studies on chemotherapy resistance in NSCLC and SCLC, focusing on tumor microenvironment, genetic mutations, cancer cell heterogeneity, and emerging therapies. Results: Conventional chemotherapy and targeted therapies, such as tyrosine kinase inhibitors, often fail due to factors including the tumor microenvironment, genetic mutations, and cancer cell heterogeneity. Dormant cancer cells, which can remain undetected in a quiescent state for extended periods, pose a significant risk of recurrence upon reactivation. These cells, along with intrinsic resistance mechanisms, greatly complicate treatment efforts. Understanding these pathways is crucial for the development of more effective therapies. Emerging strategies, including combination therapies that target multiple pathways, are under investigation to improve treatment outcomes. Innovative approaches, such as antibody-drug conjugates and targeted protein degradation, offer promising solutions by directly delivering cytotoxic agents to cancer cells or degrading proteins that are essential for cancer survival. The lung cancer organoid model shows substantial promise to advance both research and clinical applications in this field, enhancing the ability to study resistance mechanisms and develop personalized treatments. The integration of current research underscores the need for continuous innovation in treatment modalities. Conclusions: Personalized strategies that combine novel therapies with an in-depth understanding of tumor biology are essential to overcome the challenges posed by treatment-resistant and dormant cancer cells in lung cancer. A multifaceted approach has the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Da Hyun Kang
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jisoo Lee
- College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Subin Im
- College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
5
|
Papavassiliou KA, Sofianidi AA, Gogou VA, Papavassiliou AG. Seeing the Future of Lung Cancer Vaccination. Int J Mol Sci 2024; 25:11521. [PMID: 39519075 PMCID: PMC11546973 DOI: 10.3390/ijms252111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
It has been nearly fifteen years since the Food and Drug Administration (FDA) approved the first therapeutic cancer vaccine for solid tumors, namely Sipuleucel-T (Provenge®), marking a significant milestone in the treatment of metastatic castration-resistant prostate cancer [...].
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, ‘Sotiria’ Chest Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (V.A.G.)
| | - Amalia A. Sofianidi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vassiliki A. Gogou
- First University Department of Respiratory Medicine, ‘Sotiria’ Chest Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (V.A.G.)
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
6
|
Almarii F, Sajin M, Simion G, Dima SO, Herlea V. Analyzing the Spatial Distribution of Immune Cells in Lung Adenocarcinoma. J Pers Med 2024; 14:925. [PMID: 39338178 PMCID: PMC11433064 DOI: 10.3390/jpm14090925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: This study investigates the tumor immune microenvironment, focusing on immune cell distribution in lung adenocarcinoma. (2) Methods: We evaluated fifty cases of lung adenocarcinoma, and suitable areas for further studies were annotated on the histological slides. Two tumor cores per case were obtained, one from the tumor's center and another from its periphery, and introduced into three paraffin receptor blocks for optimized processing efficiency. The 4-micrometer-thick tissue microarray sections were stained for H&E and for CD68, CD163, CD8, CD4, and PD-L1; (3) Results: Our investigation revealed significant correlations between PD-L1 expression in tumor cells and the presence of CD163+ macrophages, between CD4+ cells and CD8+, CD68+, and CD163+ cells, and also between CD8+ T cells and CD163+ cells. Additionally, while we observed some differences in cellular components and densities between the tumor center and periphery, these differences were not statistically significant. However, distinct correlations between PD-L1 and immune cells in these regions were identified, suggesting spatial heterogeneity in the immune landscape. (4) Conclusions: These results emphasize the intricate interactions between immune cells and tumor cells in lung adenocarcinoma. Understanding patient spatial immune profile could improve patient selection for immunotherapy, ensuring that those most likely to benefit are identified.
Collapse
Affiliation(s)
- Florina Almarii
- Department of Pathology, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Pathology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Maria Sajin
- Department of Pathology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Pathology, Emergency University Hospital, 050098 Bucharest, Romania
| | - George Simion
- Department of Pathology, Emergency University Hospital, 050098 Bucharest, Romania
| | - Simona O Dima
- Department of Pathology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Surgery, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Histopathology, The Center for Excellence in Translational Medicine, 022328 Bucharest, Romania
| | - Vlad Herlea
- Department of Pathology, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Pathology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Histopathology, The Center for Excellence in Translational Medicine, 022328 Bucharest, Romania
| |
Collapse
|
7
|
Reyes A, Muddasani R, Massarelli E. Overcoming Resistance to Checkpoint Inhibitors with Combination Strategies in the Treatment of Non-Small Cell Lung Cancer. Cancers (Basel) 2024; 16:2919. [PMID: 39199689 PMCID: PMC11353073 DOI: 10.3390/cancers16162919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer continues to contribute to the highest percentage of cancer-related deaths worldwide. Advancements in the treatment of non-small cell lung cancer like immune checkpoint inhibitors have dramatically improved survival and long-term disease response, even in curative and perioperative settings. Unfortunately, resistance develops either as an initial response to treatment or more commonly as a progression after the initial response. Several modalities have been utilized to combat this. This review will focus on the various combination treatments with immune checkpoint inhibitors including the addition of chemotherapy, various immunotherapies, radiation, antibody-drug conjugates, bispecific antibodies, neoantigen vaccines, and tumor-infiltrating lymphocytes. We discuss the status of these agents when used in combination with immune checkpoint inhibitors with an emphasis on lung cancer. The early toxicity signals, tolerability, and feasibility of implementation are also reviewed. We conclude with a discussion of the next steps in treatment.
Collapse
Affiliation(s)
| | | | - Erminia Massarelli
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.); (R.M.)
| |
Collapse
|
8
|
Batheja S, Gupta S, Tejavath KK, Gupta U. TPP-based conjugates: potential targeting ligands. Drug Discov Today 2024; 29:103983. [PMID: 38641237 DOI: 10.1016/j.drudis.2024.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Mitochondria are one of the major sources of energy as well as regulators of cancer cell metabolism. Thus, they are potential targets for the effective treatment and management of cancer. Research has explored triphenylphosphonium (TPP) derivatives as potent cancer-targeting ligands because of their lipophilic nature and mitochondrial affinity. In this review, we summarize the utility of TPP-based conjugates targeting mitochondria in different types of cancer and other diseases, such as neurodegenerative and cardiovascular disorders. Such conjugates offer versatile therapeutic potential by modulating membrane potential, influencing reactive oxygen species (ROS) production, and coupling of molecular modifications (such as ATP metabolism and energy metabolism). Thus, we highlight TPP conjugates as promising mitochondria-targeting agents for use in targeted drug delivery systems.
Collapse
Affiliation(s)
- Sanya Batheja
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
| | - Shruti Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India; Department of Biochemistry, All India Institute of Medical Sciences, BIBINAGAR, Hyderabad Metropolitan Region (HMR), Telangana 508126, India.
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India.
| |
Collapse
|
9
|
Liu MH, Liu ZK, Liu F. An anti-tumor protein PFAP specifically interacts with cholesterol-enriched membrane domains of A549 cells and induces paraptosis and endoplasmic reticulum stress. Int J Biol Macromol 2024; 264:130690. [PMID: 38458297 DOI: 10.1016/j.ijbiomac.2024.130690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Nowadays, non-small cell lung cancer (NSCLC) is still one of the most life-threatening diseases in the world. In previous studies, a fungal protein PFAP with anti-NSCLC properties was isolated and identified from Pleurotus ferulae lanzi. In this study, the amino acid sequence of PFAP was analyzed and found to be highly homologous to the aegerolysin family. PFAP, like other members of the aegerolysin family, specifically recognizes lipid raft domains rich in cholesterol and sphingomyelin, which is probably its specific anti-tumor mechanism. Previous studies have shown that PFAP can induce AMPK-mediated autophagy and G1-phase cell cycle arrest in A549 lung cancer cells. This study further revealed that PFAP can also induce paraptosis and endoplasmic reticulum stress (ERS) in A549 cells in vitro by targeting AMPK. PFAP induces multi-pathway death of A549 cells, and thus demonstrates its potential value for developing new drugs for NSCLC.
Collapse
Affiliation(s)
- Meng-Han Liu
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhao-Kun Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Fang Liu
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|