1
|
Zhang J, Zhu L, Zhou J, Yu Q, Yang G, Luo C, Meng J, Xing S, Liu J, Mou D, Yang X. BDNF alleviates senescence and enhances osteogenic differentiation in bone marrow mesenchymal stem cells via the TrkB/PI3K/AKT pathway. Tissue Cell 2025; 96:102972. [PMID: 40367890 DOI: 10.1016/j.tice.2025.102972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/24/2025] [Accepted: 05/08/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) are stem cells that reside in bone marrow and have multidirectional differentiation potential. BMSCs have been used to treat bone injury. However, long-term passage leads to the aging of BMSCs and the weakening of osteogenic differentiation. Furthermore, brain-derived neurotrophic factor (BDNF) may enhance the antiaging ability of BMSCs. The purpose of this study was to investigate the role of BDNF in the senescence and osteogenic differentiation of human BMSCs (hBMSCs). METHODS The senescence of hBMSCs was induced by successive passages. The mRNA and protein expression levels were measured using RTqPCR and Western blotting. Alkaline phosphatase (ALP) and alizarin red S (ARS) staining were used to identify osteogenic differentiation in the cells. RESULTS After long-term passage, the hBMSCs morphologically gradually expanded and appeared flat, cell viability decreased, the number of fibroblast-like colony-forming units (CFU-Fs) decreased, and the number of β-galactosidase (SA-β-gal)-positive cells and the mRNA expression levels of the senescence-related genes p53, p21 and p16 increased. The activity of ALP, the level of calcium salt deposition and the protein levels of runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN) and BDNF were significantly decreased. Subsequent research indicated that the senescence and inhibition of the osteogenic differentiation of hBMSCs induced by long-term culture were caused by low expression of BDNF. From a mechanistic standpoint, BDNF can activate the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway by upregulating the expression of tropomyosin receptor kinase B (TrkB), thereby improving the senescence and inhibition of the osteogenic differentiation of hBMSCs caused by long-term passage. CONCLUSION BDNF improves the senescence and inhibition of the osteogenic differentiation of hBMSCs caused by long-term passage via regulation of the TrkB/PI3K/AKT signaling axis.
Collapse
Affiliation(s)
- Jimei Zhang
- Gastroenterology Department, Chenggong Hospital, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650505, China
| | - Ling Zhu
- Orthopedics Department, Chenggong Hospital, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650505, China
| | - Jianping Zhou
- Orthopedics Department, Chenggong Hospital, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650505, China
| | - Qunying Yu
- Obstetrics Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Guangyuan Yang
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Chaoli Luo
- Operating Room, Yunnan Pain Disease Hospital, Kunming, Yunnan 650000, China
| | - Jianguo Meng
- Orthopedics Department, Guang Nan Hospital of Traditional Chinese Medicine, Yunnan Province, Guangnan, Yunnan 663300, China
| | - Shan Xing
- Orthopedics Department, The Second People's Hospital of Yanshan County, Yanshan, Yunnan 663100, China
| | - Jing Liu
- Orthopedics Department, Chenggong Hospital, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650505, China
| | - Donggang Mou
- Pain Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650055, China
| | - Xuming Yang
- Orthopedics Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650055, China.
| |
Collapse
|
2
|
Queen NJ, Zou X, Huang W, Mohammed T, Cao L. Environmental Enrichment Normalizes Metabolic Function in the Murine Model of Prader-Willi Syndrome Magel2-Null Mice. Endocrinology 2025; 166:bqaf001. [PMID: 39801003 PMCID: PMC11808065 DOI: 10.1210/endocr/bqaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Indexed: 02/11/2025]
Abstract
Prader-Willi syndrome (PWS) is a rare genetic disease that causes developmental delays, intellectual impairment, constant hunger, obesity, endocrine dysfunction, and various behavioral and neuropsychiatric abnormalities. Standard care of PWS is limited to strict supervision of food intake and GH therapy, highlighting the unmet need for new therapeutic strategies. Environmental enrichment (EE), a housing environment providing physical, social, and cognitive stimulations, exerts broad benefits on mental and physical health. Here we assessed the metabolic and behavioral effects of EE in the Magel2-null mouse model of PWS. EE initiated after the occurrence of metabolic abnormality was sufficient to normalize body weight and body composition, reverse hyperleptinemia, and improve glucose metabolism in the male Magel2-null mice. These metabolic improvements induced by EE were comparable to those achieved by a hypothalamic brain-derived neurotrophic factor gene therapy although the underlying mechanisms remain to be determined. These data suggest biobehavioral interventions such as EE could be effective in the treatment of PWS-related metabolic abnormalities.
Collapse
Affiliation(s)
- Nicholas J Queen
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xunchang Zou
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Wei Huang
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Tawfiq Mohammed
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
3
|
von Bohlen Und Halbach O, Klausch M. The Neurotrophin System in the Postnatal Brain-An Introduction. BIOLOGY 2024; 13:558. [PMID: 39194496 DOI: 10.3390/biology13080558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Neurotrophins can bind to and signal through specific receptors that belong to the class of the Trk family of tyrosine protein kinase receptors. In addition, they can bind and signal through a low-affinity receptor, termed p75NTR. Neurotrophins play a crucial role in the development, maintenance, and function of the nervous system in vertebrates, but they also have important functions in the mature nervous system. In particular, they are involved in synaptic and neuronal plasticity. Thus, it is not surprisingly that they are involved in learning, memory and cognition and that disturbance in the neurotrophin system can contribute to psychiatric diseases. The neurotrophin system is sensitive to aging and changes in the expression levels correlate with age-related changes in brain functions. Several polymorphisms in genes coding for the different neurotrophins or neurotrophin receptors have been reported. Based on the importance of the neurotrophins for the central nervous system, it is not surprisingly that several of these polymorphisms are associated with psychiatric diseases. In this review, we will shed light on the functions of neurotrophins in the postnatal brain, especially in processes that are involved in synaptic and neuronal plasticity.
Collapse
Affiliation(s)
- Oliver von Bohlen Und Halbach
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23c, 17489 Greifswald, Germany
| | - Monique Klausch
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23c, 17489 Greifswald, Germany
| |
Collapse
|
4
|
Radfar F, Shahbazi M, Tahmasebi Boroujeni S, Arab Ameri E, Farahmandfar M. Moderate aerobic training enhances the effectiveness of insulin therapy through hypothalamic IGF1 signaling in rat model of Alzheimer's disease. Sci Rep 2024; 14:15996. [PMID: 38987609 PMCID: PMC11237031 DOI: 10.1038/s41598-024-66637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that is connected with a decline in a person's memory as well as their cognitive ability. One of the key topics of AD research has been the exploration of metabolic causes. We investigated the effects of treadmill exercise and intranasal insulin on learning and memory impairment and the expression of IGF1, BDNF, and GLUT4 in hypothalamus. The animals were put into 9 groups at random. In this study, we examined the impact of insulin on spatial memory in male Wistar rats and analyzed the effects of a 4-week pretreatment of moderate treadmill exercise and insulin on the mechanisms of improved hypothalamic glucose metabolism through changes in gene and protein expression of IGF1, BDNF, and GLUT4. We discovered that rat given Aβ25-35 had impaired spatial learning and memory, which was accompanied by higher levels of Aβ plaque burden in the hippocampus and lower levels of IGF1, BDNF, and GLUT4 mRNA and protein expression in the hypothalamus. Additionally, the administration of exercise training and intranasal insulin results in the enhancement of spatial learning and memory impairments, the reduction of plaque burden in the hippocampus, and the enhancement of the expression of IGF1, BDNF, and GLUT4 in the hypothalamus of rats that were treated with Aβ25-35. Our results show that the improvement of learning and spatial memory due to the improvement of metabolism and upregulation of the IGF1, BDNF, and GLUT4 pathways can be affected by pretreatment exercise and intranasal insulin.
Collapse
Affiliation(s)
- Forough Radfar
- Department of Behavioral and Cognitive Sciences in Sports, Sports and Health Sciences Faculty, University of Tehran, Tehran, 1417935837, Iran
| | - Mehdi Shahbazi
- Department of Behavioral and Cognitive Sciences in Sports, Sports and Health Sciences Faculty, University of Tehran, Tehran, 1417935837, Iran.
| | - Shahzad Tahmasebi Boroujeni
- Department of Behavioral and Cognitive Sciences in Sports, Sports and Health Sciences Faculty, University of Tehran, Tehran, 1417935837, Iran
| | - Elahe Arab Ameri
- Department of Behavioral and Cognitive Sciences in Sports, Sports and Health Sciences Faculty, University of Tehran, Tehran, 1417935837, Iran
| | - Maryam Farahmandfar
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 14177-55469, Iran.
| |
Collapse
|
5
|
Valle A, Castillo P, García-Rodríguez A, Palou A, Palou M, Picó C. Brain-Derived Neurotrophic Factor as a Potential Mediator of the Beneficial Effects of Myo-Inositol Supplementation during Suckling in the Offspring of Gestational-Calorie-Restricted Rats. Nutrients 2024; 16:980. [PMID: 38613013 PMCID: PMC11013066 DOI: 10.3390/nu16070980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
This study aims to investigate the potential mechanisms underlying the protective effects of myo-inositol (MI) supplementation during suckling against the detrimental effects of fetal energy restriction described in animal studies, particularly focusing on the potential connections with BDNF signaling. Oral physiological doses of MI or the vehicle were given daily to the offspring of control (CON) and 25%-calorie-restricted (CR) pregnant rats during suckling. The animals were weaned and then fed a standard diet until 5 months of age, when the diet was switched to a Western diet until 7 months of age. At 25 days and 7 months of age, the plasma BDNF levels and mRNA expression were analyzed in the hypothalamus and three adipose tissue depots. MI supplementation, especially in the context of gestational calorie restriction, promoted BDNF secretion and signaling at a juvenile age and in adulthood, which was more evident in the male offspring of the CR dams than in females. Moreover, the CR animals supplemented with MI exhibited a stimulated anorexigenic signaling pathway in the hypothalamus, along with improved peripheral glucose management and enhanced browning capacity. These findings suggest a novel connection between MI supplementation during suckling, BDNF signaling, and metabolic programming, providing insights into the mechanisms underlying the beneficial effects of MI during lactation.
Collapse
Affiliation(s)
- Ana Valle
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Adrián García-Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| |
Collapse
|
6
|
Ma K, Yin K, Li J, Ma L, Zhou Q, Lu X, Li B, Li J, Wei G, Zhang G. The Hypothalamic Epigenetic Landscape in Dietary Obesity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306379. [PMID: 38115764 PMCID: PMC10916675 DOI: 10.1002/advs.202306379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Indexed: 12/21/2023]
Abstract
The hypothalamus in the brain plays a pivotal role in controlling energy balance in vertebrates. Nutritional excess through high-fat diet (HFD) feeding can dysregulate hypothalamic signaling at multiple levels. Yet, it remains largely unknown in what magnitude HFD feeding may impact epigenetics in this brain region. Here, it is shown that HFD feeding can significantly alter hypothalamic epigenetic events, including posttranslational histone modifications, DNA methylation, and chromatin accessibility. The authors comprehensively analyze the chromatin immunoprecipitation-sequencing (ChIP-seq), methylated DNA immunoprecipitation-sequencing (MeDIP-seq), single nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq), and RNA-seq data of the hypothalamus of C57 BL/6 mice fed with a chow or HFD for 1 to 6 months. The chromatins are categorized into 6 states using the obtained ChIP-seq data for H3K4me3, H3K27ac, H3K9me3, H3K27me3, and H3K36me3. A 1-month HFD feeding dysregulates histone modifications and DNA methylation more pronouncedly than that of 3- or 6-month. Besides, HFD feeding differentially impacts chromatin accessibility in hypothalamic cells. Thus, the epigenetic landscape is dysregulated in the hypothalamus of dietary obesity mice.
Collapse
Affiliation(s)
- Kai Ma
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003China
| | - Kaili Yin
- Key Laboratory of Environmental HealthMinistry of EducationDepartment of ToxicologySchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Institute for Brain ResearchCollaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Jiong Li
- Key Laboratory of Environmental HealthMinistry of EducationDepartment of ToxicologySchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Institute for Brain ResearchCollaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Li Ma
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of Sciences (CAS)CASShanghai200031China
| | - Qun Zhou
- Key Laboratory of Environmental HealthMinistry of EducationDepartment of ToxicologySchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Institute for Brain ResearchCollaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Xiyuan Lu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Bo Li
- Department of EndocrinologyXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Juxue Li
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Gang Wei
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of Sciences (CAS)CASShanghai200031China
| | - Guo Zhang
- Key Laboratory of Environmental HealthMinistry of EducationDepartment of ToxicologySchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Institute for Brain ResearchCollaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanHubei430030China
- Department of Pathophysiology, School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Institute of Metabolism and HealthHenan UniversityKaifengHenanChina
- Zhongzhou LaboratoryZhengzhouHenan450046China
| |
Collapse
|
7
|
Voigt MW, Schepers J, Haas J, von Bohlen Und Halbach O. Reduced Levels of Brain-Derived Neurotrophic Factor Affect Body Weight, Brain Weight and Behavior. BIOLOGY 2024; 13:159. [PMID: 38534429 DOI: 10.3390/biology13030159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
Neurotrophins, which belong to the family of growth factors, not only play crucial roles during development but are also involved in many processes in the postnatal brain. One representative of neurotrophins is brain-derived neurotrophic factor (BDNF). BDNF plays a role in the regulation of body weight and neuronal plasticity and is, therefore, also involved in processes associated with learning and memory formation. Many of the studies on BDNF have been carried out using BDNF-deficient mice. Unfortunately, homozygous deletion of BDNF is lethal in the early postnatal stage, so heterozygous BDNF-deficient mice are often studied. Another possibility is the use of conditional BDNF-deficient mice in which the expression of BDNF is strongly downregulated in some brain cells, for example, in the neurons of the central nervous system, but the expression of BDNF in other cells in the brain is unchanged. To further reduce BDNF expression, we crossed heterozygous BDNF-deficient mice with mice carrying a deletion of BDNF in neurofilament L-positive neurons. These offspring are viable, and the animals with a strong reduction in BDNF in the brain show a strongly increased body weight, which is accompanied by a reduction in brain weight. In addition, these animals show behavioral abnormalities, particularly with regard to locomotion.
Collapse
Affiliation(s)
- Matthias Wilhelm Voigt
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich-Loeffler Str. 23c, D-17489 Greifswald, Germany
| | - Jens Schepers
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich-Loeffler Str. 23c, D-17489 Greifswald, Germany
| | - Jacqueline Haas
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich-Loeffler Str. 23c, D-17489 Greifswald, Germany
| | - Oliver von Bohlen Und Halbach
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich-Loeffler Str. 23c, D-17489 Greifswald, Germany
| |
Collapse
|
8
|
Šimončičová E, Henderson Pekarik K, Vecchiarelli HA, Lauro C, Maggi L, Tremblay MÈ. Adult Neurogenesis, Learning and Memory. ADVANCES IN NEUROBIOLOGY 2024; 37:221-242. [PMID: 39207695 DOI: 10.1007/978-3-031-55529-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neural plasticity can be defined as the ability of neural circuits to be shaped by external and internal factors. It provides the brain with a capacity for functional and morphological remodelling, with many lines of evidence indicating that these changes are vital for learning and memory formation. The basis of this brain plasticity resides in activity- and experience-driven modifications of synaptic strength, including synaptic formation, elimination or weakening, as well as of modulation of neuronal population, which drive the structural reorganization of neural networks. Recent evidence indicates that brain-resident glial cells actively participate in these processes, suggesting that mechanisms underlying plasticity in the brain are multifaceted. Establishing the 'tripartite' synapse, the role of astrocytes in modulating synaptic transmission in response to neuronal activity was recognized first. Further redefinition of the synapse as 'quad-partite' followed to acknowledge the contribution of microglia which were revealed to affect numerous brain functions via dynamic interactions with synapses, acting as 'synaptic sensors' that respond to neuronal activity and neurotransmitter release, as well as crosstalk with astrocytes. Early studies identified microglial ability to dynamically survey their local brain environment and established their integral role in the active interfacing of environmental stimuli (both internal and external), with brain plasticity and remodelling. Following the introduction to neurogenesis, this chapter details the role that microglia play in regulating neurogenesis in adulthood, specifically as it relates to learning and memory, as well as factors involved in modulation of microglia. Further, a microglial perspective is introduced for the context of environmental enrichment impact on neurogenesis, learning and memory across states of stress, ageing, disease and injury.
Collapse
Affiliation(s)
- Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | | | - Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
9
|
Song JW, Lee KH, Seong H, Shin DM, Shon WJ. Taste receptor type 1 member 3 enables western diet-induced anxiety in mice. BMC Biol 2023; 21:243. [PMID: 37926812 PMCID: PMC10626698 DOI: 10.1186/s12915-023-01723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Accumulating evidence supports that the Western diet (WD), a diet high in saturated fat and sugary drinks, contributes to the pathogenesis of anxiety disorders, which are the most prevalent mental disorders worldwide. However, the underlying mechanisms by which WD causes anxiety remain unclear. Abundant expression of taste receptor type 1 member 3 (TAS1R3) has been identified in the hypothalamus, a key brain area involved in sensing peripheral nutritional signals and regulating anxiety. Thus, we investigated the influence of excessive WD intake on anxiety and mechanisms by which WD intake affects anxiety development using wild-type (WT) and Tas1r3 deficient (Tas1r3-/-) mice fed a normal diet (ND) or WD for 12 weeks. RESULTS WD increased anxiety in male WT mice, whereas male Tas1r3-/- mice were protected from WD-induced anxiety, as assessed by open field (OF), elevated plus maze (EPM), light-dark box (LDB), and novelty-suppressed feeding (NSF) tests. Analyzing the hypothalamic transcriptome of WD-fed WT and Tas1r3-/- mice, we found 1,432 genes significantly up- or down-regulated as a result of Tas1r3 deficiency. Furthermore, bioinformatic analysis revealed that the CREB/BDNF signaling-mediated maintenance of neuronal regeneration, which can prevent anxiety development, was enhanced in WD-fed Tas1r3-/- mice compared with WD-fed WT mice. Additionally, in vitro studies further confirmed that Tas1r3 knockdown prevents the suppression of Creb1 and of CREB-mediated BDNF expression caused by high levels of glucose, fructose, and palmitic acid in hypothalamic neuronal cells. CONCLUSIONS Our results imply that TAS1R3 may play a key role in WD-induced alterations in hypothalamic functions, and that inhibition of TAS1R3 overactivation in the hypothalamus could offer therapeutic targets to alleviate the effects of WD on anxiety.
Collapse
Affiliation(s)
- Jae Won Song
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Keon-Hee Lee
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Hobin Seong
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Dong-Mi Shin
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Gwanak-Gu, Seoul, 08826, Republic of Korea.
- Research Institute of Human Ecology, Seoul National University, Gwanak-Gu, Seoul, 08826, Republic of Korea.
| | - Woo-Jeong Shon
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Gwanak-Gu, Seoul, 08826, Republic of Korea.
- Research Institute of Human Ecology, Seoul National University, Gwanak-Gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
10
|
Masliukov PM. Changes of Signaling Pathways in Hypothalamic Neurons with Aging. Curr Issues Mol Biol 2023; 45:8289-8308. [PMID: 37886966 PMCID: PMC10605528 DOI: 10.3390/cimb45100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
The hypothalamus is an important regulator of autonomic and endocrine functions also involved in aging regulation. The aging process in the hypothalamus is accompanied by disturbed intracellular signaling including insulin/insulin-like growth factor-1 (IGF-1)/growth hormone (GH), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/the mammalian target of rapamycin (mTOR), mitogen activated protein kinase (MAPK), janus kinase (JAK)/signal transducer and activator of transcription (STAT), AMP-activated protein kinase (AMPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB), and nitric oxide (NO). In the current review, I have summarized the current understanding of the changes in the above-mentioned pathways in aging with a focus on hypothalamic alterations.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department Normal Physiology, Yaroslavl State Medical University, ul. Revoliucionnaya 5, 150000 Yaroslavl, Russia
| |
Collapse
|
11
|
Xu L, Jiao M, Cui ZL, Zhao QY, Wang Y, Chen S, Zhang JJ, Jin YH, Mu D, Yang YQ. Enriched environment during adolescence modulates lipid metabolism and emotion-related behaviors in mice. J APPL ANIM WELF SCI 2023; 26:218-228. [PMID: 34470518 DOI: 10.1080/10888705.2021.1972421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Enriched environment (EE) is an important animal experimental paradigm to decipher gene-environment interaction. It is thought to be efficient in aiding recovery from certain metabolism disorders or cognitive impairments. Recently, the effects of EE during adolescence in mice gradually draw much attention. We first established an EE model in adolescent mice, dissected lipid metabolism, and further examined baseline level of anxiety and depression by multiple behavioral tests, including open field test (OFT), elevated zero maze (EZM), tail suspension test (TST), and forced swimming test (FST). EE mice exhibited lower weights, lower cholesterol than standard housing (SH) mice. Behaviorally, EE mice traveled more distance and had higher velocity than SH mice in OFT and EZM. Besides, EE mice showed reduced anxiety levels in OFT and EZM. Furthermore, EE mice also had less immobility time than SH mice in TST and FST. Thus, these results suggest that EE during adolescence has metabolic and behavioral benefits in mice.
Collapse
Affiliation(s)
- Ling Xu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Jiao
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze-Lin Cui
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Ya Zhao
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Chen
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Jie Zhang
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin-Hui Jin
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Mu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Qin Yang
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Anderson JM, Boardman AA, Bates R, Zou X, Huang W, Cao L. Hypothalamic TrkB.FL overexpression improves metabolic outcomes in the BTBR mouse model of autism. PLoS One 2023; 18:e0282566. [PMID: 36893171 PMCID: PMC9997972 DOI: 10.1371/journal.pone.0282566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
BTBR T+ Itpr3tf/J (BTBR) mice are used as a model of autism spectrum disorder (ASD), displaying similar behavioral and physiological deficits observed in patients with ASD. Our recent study found that implementation of an enriched environment (EE) in BTBR mice improved metabolic and behavioral outcomes. Brain-derived neurotrophic factor (Bdnf) and its receptor tropomyosin kinase receptor B (Ntrk2) were upregulated in the hypothalamus, hippocampus, and amygdala by implementing EE in BTBR mice, suggesting that BDNF-TrkB signaling plays a role in the EE-BTBR phenotype. Here, we used an adeno-associated virus (AAV) vector to overexpress the TrkB full-length (TrkB.FL) BDNF receptor in the BTBR mouse hypothalamus in order to assess whether hypothalamic BDNF-TrkB signaling is responsible for the improved metabolic and behavioral phenotypes associated with EE. Normal chow diet (NCD)-fed and high fat diet (HFD)-fed BTBR mice were randomized to receive either bilateral injections of AAV-TrkB.FL or AAV-YFP as control, and were subjected to metabolic and behavioral assessments up to 24 weeks post-injection. Both NCD and HFD TrkB.FL overexpressing mice displayed improved metabolic outcomes, characterized as reduced percent weight gain and increased energy expenditure. NCD TrkB.FL mice showed improved glycemic control, reduced adiposity, and increased lean mass. In NCD mice, TrkB.FL overexpression altered the ratio of TrkB.FL/TrkB.T1 protein expression and increased phosphorylation of PLCγ in the hypothalamus. TrkB.FL overexpression also upregulated expression of hypothalamic genes involved in energy regulation and altered expression of genes involved in thermogenesis, lipolysis, and energy expenditure in white adipose tissue and brown adipose tissue. In HFD mice, TrkB.FL overexpression increased phosphorylation of PLCγ. TrkB.FL overexpression in the hypothalamus did not improve behavioral deficits in either NCD or HFD mice. Together, these results suggest that enhancing hypothalamic TrkB.FL signaling improves metabolic health in BTBR mice.
Collapse
Affiliation(s)
- Jacqueline M. Anderson
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Amber A. Boardman
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Rhiannon Bates
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Xunchang Zou
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Wei Huang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Lei Cao
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
13
|
Queen NJ, Zou X, Anderson JM, Huang W, Appana B, Komatineni S, Wevrick R, Cao L. Hypothalamic AAV-BDNF gene therapy improves metabolic function and behavior in the Magel2-null mouse model of Prader-Willi syndrome. Mol Ther Methods Clin Dev 2022; 27:131-148. [PMID: 36284766 PMCID: PMC9573893 DOI: 10.1016/j.omtm.2022.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
Abstract
Individuals with Prader-Willi syndrome (PWS) display developmental delays, cognitive impairment, excessive hunger, obesity, and various behavioral abnormalities. Current PWS treatments are limited to strict supervision of food intake and growth hormone therapy, highlighting the need for new therapeutic strategies. Brain-derived neurotrophic factor (BDNF) functions downstream of hypothalamic feeding circuitry and has roles in energy homeostasis and behavior. In this preclinical study, we assessed the translational potential of hypothalamic adeno-associated virus (AAV)-BDNF gene therapy as a therapeutic for metabolic dysfunction in the Magel2-null mouse model of PWS. To facilitate clinical translation, our BDNF vector included an autoregulatory element allowing for transgene titration in response to the host's physiological needs. Hypothalamic BDNF gene transfer prevented weight gain, decreased fat mass, increased lean mass, and increased relative energy expenditure in female Magel2-null mice. Moreover, BDNF gene therapy improved glucose metabolism, insulin sensitivity, and circulating adipokine levels. Metabolic improvements were maintained through 23 weeks with no adverse behavioral effects, indicating high levels of efficacy and safety. Male Magel2-null mice also responded positively to BDNF gene therapy, displaying improved body composition, insulin sensitivity, and glucose metabolism. Together, these data suggest that regulating hypothalamic BDNF could be effective in the treatment of PWS-related metabolic abnormalities.
Collapse
Affiliation(s)
- Nicholas J. Queen
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xunchang Zou
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jacqueline M. Anderson
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Wei Huang
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Bhavya Appana
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Suraj Komatineni
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Lei Cao
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Lissek T. Activity-Dependent Induction of Younger Biological Phenotypes. Adv Biol (Weinh) 2022; 6:e2200119. [PMID: 35976161 DOI: 10.1002/adbi.202200119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/11/2022] [Indexed: 01/28/2023]
Abstract
In several mammalian species, including humans, complex stimulation patterns such as cognitive and physical exercise lead to improvements in organ function, organism health and performance, as well as possibly longer lifespans. A framework is introduced here in which activity-dependent transcriptional programs, induced by these environmental stimuli, move somatic cells such as neurons and muscle cells toward a state that resembles younger cells to allow remodeling and adaptation of the organism. This cellular adaptation program targets several process classes that are heavily implicated in aging, such as mitochondrial metabolism, cell-cell communication, and epigenetic information processing, and leads to functional improvements in these areas. The activity-dependent gene program (ADGP) can be seen as a natural, endogenous cellular reprogramming mechanism that provides deep insight into the principles of inducible improvements in cell and organism function and can guide the development of therapeutic approaches for longevity. Here, these ADGPs are analyzed, exemplary critical molecular nexus points such as cAMP response element-binding protein, myocyte enhancer factor 2, serum response factor, and c-Fos are identified, and it is explored how one may leverage them to prevent, attenuate, and reverse human aging-related decline of body function.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| |
Collapse
|
15
|
Sapsford TP, Johnson SR, Headrick JP, Branjerdporn G, Adhikary S, Sarfaraz M, Stapelberg NJC. Forgetful, sad and old: Do vascular cognitive impairment and depression share a common pre-disease network and how is it impacted by ageing? J Psychiatr Res 2022; 156:611-627. [PMID: 36372004 DOI: 10.1016/j.jpsychires.2022.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022]
Abstract
Vascular cognitive impairment (VCI) and depression frequently coexist in geriatric populations and reciprocally increase disease risks. We assert that a shared pre-disease state of the psycho-immune-neuroendocrine (PINE) network model mechanistically explains bidirectional associations between VCI and depression. Five pathophysiological sub-networks are identified that are shared by VCI and depression: neuroinflammation, kynurenine pathway imbalance, hypothalamic-pituitary-adrenal (HPA) axis overactivity, impaired neurotrophic support and cerebrovascular dysfunction. These do not act independently, and their complex interactions necessitate a systems biology approach to better define disease pathogenesis. The PINE network is already established in the context of non-communicable diseases (NCDs) such as depression, hypertension, atherosclerosis, coronary heart disease and type 2 diabetes mellitus. We build on previous literature to specifically explore mechanistic links between MDD and VCI in the context of PINE pathways and discuss key mechanistic commonalities linking these comorbid conditions and identify a common pre-disease state which precedes transition to VCI and MDD. We expand the model to incorporate bidirectional interactions with biological ageing. Diathesis factors for both VCI and depression feed into this network and the culmination of shared mechanisms (on an ageing substrate) lead to a critical network transition to one or both disease states. A common pre-disease state underlying VCI and depression can provide clinicians a unique opportunity for early risk assessment and intervention in disease development. Establishing the mechanistic elements and systems biology of this network can reveal early warning or predictive biomarkers together with novel therapeutic targets. Integrative studies are recommended to elucidate the dynamic networked biology of VCI and depression over time.
Collapse
Affiliation(s)
- Timothy P Sapsford
- Griffith University School of Medicine, Gold Coast, Queensland, Australia; Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia
| | - Susannah R Johnson
- Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia
| | - John P Headrick
- Griffith University School of Medicine, Gold Coast, Queensland, Australia
| | - Grace Branjerdporn
- Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia.
| | - Sam Adhikary
- Mater Young Adult Health Centre, Mater Hospital, Brisbane, Queensland, Australia
| | - Muhammad Sarfaraz
- Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia
| | - Nicolas J C Stapelberg
- Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia; Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
16
|
Agh F, Hasani M, Khazdouz M, Amiri F, Heshmati J, Aryaeian N. The Effect of Zinc Supplementation on Circulating Levels of Brain-Derived Neurotrophic Factor (BDNF): A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int J Prev Med 2022; 13:117. [PMID: 36276891 PMCID: PMC9580557 DOI: 10.4103/ijpvm.ijpvm_478_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/08/2021] [Indexed: 11/04/2022] Open
Abstract
Background There are randomized controlled trials (RCTs) about the zinc supplementation effect on circulating levels of brain-derived neurotrophic factor (BDNF). However, the findings of these studies are inconsistent. The purpose of this systematic review and meta-analysis was to determine the zinc supplementation effect on BDNF and zinc levels in published RCTs. Methods We searched PubMed/Medline, Cochrane, Scopus, ISI Web of Science, EMBASE, "Clinicaltrials.gov", "Cochrane Register of Controlled Trials", "IRCT" and also key journals up to 2019. RCTs with two intervention (zinc) and control (placebo) groups that evaluated zinc supplementation efficacy on BDNF levels were included. Study heterogeneity was assessed, and then, meta-analysis was performed using the fixed-effects model. Results Four studies were included in the present secondary analysis. Compared with placebo, zinc supplementation significantly enhanced circulating levels of BDNF [(SMD): 0.31, 95% confidence interval (CI): (0.22, 0.61)] and zinc [(SMD): 0.88, 95% CI: (0.54, 1.22)] with no considerable heterogeneity among the studies [(Q = 3.46; P = 0.32; I2% = 13.4); (Q = 2.01; P = 0, 37; I2% = 0.5), respectively]. Conclusions Our results propose that zinc supplementation can increase the circulating levels of BDNF and zinc. This study was registered at PROSPERO as CRD42020149513.
Collapse
Affiliation(s)
- Fahimeh Agh
- Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Motahareh Hasani
- Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Khazdouz
- Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amiri
- Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Naheed Aryaeian
- Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran,Address for correspondence: Dr. Naheed Aryaeian, Department of Nutrition, School of Health, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, Iran. E-mail:
| |
Collapse
|
17
|
The effect of young blood plasma administration on gut microbiota in middle-aged rats. Arch Microbiol 2022; 204:541. [PMID: 35930195 DOI: 10.1007/s00203-022-03154-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022]
Abstract
Numerous in-depth studies continue to reveal the many benefits of gut microbiota and young blood plasma administration. Dysbiosis, which occurs in the intestinal microbiota, especially in the aging process, is associated with many metabolic and cognitive disorders. Therefore, many studies aim to reverse the dysbiosis that occurs. There are also studies showing that young blood plasma application reverses the effects of aging at the level of many tissues and organs. Today, while research continues to reveal all the benefits of young blood plasma application in terms of health, blood plasma centers are also being established. In this study, we aimed to reveal the impact of young blood plasma, administered for 1 month, on the intestinal microbiota of middle-aged rats. After detailed metagenome analysis, alpha diversity indices demonstrated greater bacterial richness in the microbiota of plasma-administered rats compared with control rats. In addition, the Firmicutes/Bacteroidetes ratio was significantly diminished in plasma group microbiota, confirming possible rejuvenation properties of young plasma. Furthermore, increased counts of Bifidobacterium longum, Coprococcus catus, and Romboutsia ilealis species were measured in plasma-administered rats. The study revealed many fluctuations in different bacterial taxonomic units of the microbiota that could be valuable in future research on blood-based anti-aging treatments.
Collapse
|
18
|
Tran LT, Park S, Kim SK, Lee JS, Kim KW, Kwon O. Hypothalamic control of energy expenditure and thermogenesis. Exp Mol Med 2022; 54:358-369. [PMID: 35301430 PMCID: PMC9076616 DOI: 10.1038/s12276-022-00741-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Energy expenditure and energy intake need to be balanced to maintain proper energy homeostasis. Energy homeostasis is tightly regulated by the central nervous system, and the hypothalamus is the primary center for the regulation of energy balance. The hypothalamus exerts its effect through both humoral and neuronal mechanisms, and each hypothalamic area has a distinct role in the regulation of energy expenditure. Recent studies have advanced the understanding of the molecular regulation of energy expenditure and thermogenesis in the hypothalamus with targeted manipulation techniques of the mouse genome and neuronal function. In this review, we elucidate recent progress in understanding the mechanism of how the hypothalamus affects basal metabolism, modulates physical activity, and adapts to environmental temperature and food intake changes. The hypothalamus is a key regulator of metabolism, controlling resting metabolism, activity levels, and responses to external temperature and food intake. The balance between energy intake and expenditure must be tightly controlled, with imbalances resulting in metabolic disorders such as obesity or diabetes. Obin Kwon at Seoul National University College of Medicine and Ki Woo Kim at Yonsei University College of Dentistry, Seoul, both in South Korea, and coworkers reviewed how metabolism is regulated by the hypothalamus, a small hormone-producing brain region. They report that hormonal and neuronal signals from the hypothalamus influence the ratio of lean to fatty tissue, gender-based differences in metabolism, activity levels, and weight gain in response to food intake. They note that further studies to untangle cause-and-effect relationships and other genetic factors will improve our understanding of metabolic regulation.
Collapse
Affiliation(s)
- Le Trung Tran
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Sohee Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seul Ki Kim
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Jin Sun Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ki Woo Kim
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea.
| | - Obin Kwon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
19
|
Arjmand G, Abbas-Zadeh M, Eftekhari MH. Effect of MIND diet intervention on cognitive performance and brain structure in healthy obese women: a randomized controlled trial. Sci Rep 2022; 12:2871. [PMID: 35190536 PMCID: PMC8861002 DOI: 10.1038/s41598-021-04258-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/08/2021] [Indexed: 12/31/2022] Open
Abstract
AbstractPrevious studies suggested adherence to recently developed Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) associated with cognitive performance. This study aimed to examine the effect of MIND dietary pattern on cognitive performance features and changes in brain structure in healthy obese women. As a total of 50 obese women were assessed for eligibility, we randomly allocated 40 participants with mean BMI 32 ± 4.31 kg/m2 and mean age 48 ± 5.38 years to either calorie-restricted modified MIND diet or a calorie-restricted standard control diet. Change in cognitive performance was the primary outcome measured with a comprehensive neuropsychological test battery. We also performed voxel-based morphometry as a secondary outcome to quantify the differences in brain structure. All of the measurements were administered at baseline and 3 months follow-up. Thirty-seven participants (MIND group = 22 and control group = 15) completed the study. The results found in the MIND diet group working memory + 1.37 (95% CI 0.79, 1.95), verbal recognition memory + 4.85 (95% CI 3.30, 6.40), and attention + 3.75 (95% CI 2.43, 5.07) improved more compared with the control group (ps < 0.05). Results of brain MRI consist of an increase in surface area of the inferior frontal gyrus in the MIND diet group. Furthermore, the results showed a decrease in the cerebellum-white matter and cerebellum-cortex in two groups of study. Still, the effect in the MIND group was greater than the control group. The study findings declare for the first time that the MIND diet intervention can reverse the destructive effects of obesity on cognition and brain structure, which could be strengthened by a modest calorie restriction.Clinical trial registration ClinicalTrials.gov ID: NCT04383704 (First registration date: 05/05/2020).
Collapse
|
20
|
Queen NJ, Deng H, Huang W, Mo X, Wilkins RK, Zhu T, Wu X, Cao L. Environmental Enrichment Mitigates Age-Related Metabolic Decline and Lewis Lung Carcinoma Growth in Aged Female Mice. Cancer Prev Res (Phila) 2021; 14:1075-1088. [PMID: 34535449 PMCID: PMC8639669 DOI: 10.1158/1940-6207.capr-21-0085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/05/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
Aging is a complex physiological process that leads to the progressive decline of metabolic and immune function, among other biological mechanisms. As global life expectancy increases, it is important to understand determinants of healthy aging-including environmental and genetic factors-and thus slow the onset or progression of age-related disease. Environmental enrichment (EE) is a housing environment wherein laboratory animals engage with complex physical and social stimulation. EE is a prime model to understand environmental influences on aging dynamics, as it confers an antiobesity and anticancer phenotype that has been implicated in healthy aging and health span extension. Although EE is frequently used to study malignancies in young mice, fewer studies characterize EE-cancer outcomes in older mice. Here, we used young (3-month-old) and aged (14-month-old) female C57BL/6 mice to determine whether EE would be able to mitigate age-related deficiencies in metabolic function and thus alter Lewis lung carcinoma (LLC) growth. Overall, EE improved metabolic function, resulting in reduced fat mass, increased lean mass, and improved glycemic processing; many of these effects were stronger in the aged cohort than in the young cohort, indicating an age-driven effect on metabolic responses. In the aged-EE cohort, subcutaneously implanted LLC tumor growth was inhibited and tumors exhibited alterations in various markers of apoptosis, proliferation, angiogenesis, inflammation, and malignancy. These results validate EE as an anticancer model in aged mice and underscore the importance of understanding environmental influences on cancer malignancy in aged populations. PREVENTION RELEVANCE: Environmental enrichment (EE) serves as a model of complex physical and social stimulation. This study validates EE as an anticancer intervention paradigm in aged mice and underscores the importance of understanding environmental influences on cancer malignancy in aged populations.
Collapse
Affiliation(s)
- Nicholas J Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Hong Deng
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wei Huang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Ryan K Wilkins
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Tao Zhu
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiaoyu Wu
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio.
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
21
|
Ghaffari-Nasab A, Badalzadeh R, Mohaddes G, Javani G, Ebrahimi-Kalan A, Alipour MR. Young Plasma Induces Antidepressant-Like Effects in Aged Rats Subjected to Chronic Mild Stress by Suppressing Indoleamine 2,3-Dioxygenase Enzyme and Kynurenine Pathway in the Prefrontal Cortex. Neurochem Res 2021; 47:358-371. [PMID: 34626305 DOI: 10.1007/s11064-021-03440-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Pathophysiology of depression in elderlies is linked to aging-associated increase in indoleamine 2,3-dioxygenase (IDO) levels and activity and kynurenine (Kyn) metabolites. Moreover, these aging-induced changes may alter the brain's responses to stress. Growing evidence suggested that young plasma can positively affect brain dysfunctions in old age. The present study aimed to investigate whether the antidepressant effects of young plasma administration in aged rats subjected to chronic unpredictable mild stress (CUMS) and underlying mechanisms, focusing on the prefrontal cortex (PFC). Young (3 months old) and aged (22 months old) male rats were divided into five groups; young control, aged control, aged rats subjected to CUMS (A + CUMS), aged rats subjected to CUMS and treated with young plasma (A + CUMS + YP), and aged rats subjected to CUMS and treated with old plasma (A + CUMS + OP). Plasma was injected (1 ml, intravenously) three times per week for four weeks. Young plasma significantly improved CUMS-induced depressive-like behaviors, evidenced by the increased sucrose consumption ratio in the sucrose preference test and the reduced immobility time in the forced swimming test. Furthermore, young plasma markedly reduced the levels of interferon-gamma (IFN-γ), IDO, Kyn, and Kyn to tryptophan (Kyn/Trp) ratio in PFC tissue. Expression levels of the serotonin transporter and growth-associated protein (GAP)-43 were also significantly increased after chronic administration of young plasma. These findings provide evidence for the antidepressant effect of young plasma in old age; however, whether it improves depressive behaviors or faster recovery from stress-induced deficits is required to be elucidated.
Collapse
Affiliation(s)
| | - Reza Badalzadeh
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gonja Javani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alipour
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Xiao R, Ali S, Caligiuri MA, Cao L. Enhancing Effects of Environmental Enrichment on the Functions of Natural Killer Cells in Mice. Front Immunol 2021; 12:695859. [PMID: 34394087 PMCID: PMC8355812 DOI: 10.3389/fimmu.2021.695859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023] Open
Abstract
The environment of an organism can convey a powerful influence over its biology. Environmental enrichment (EE), as a eustress model, has been used extensively in neuroscience to study neurogenesis and brain plasticity. EE has also been used as an intervention for the treatment and prevention of neurological and psychiatric disorders with limited clinical application. By contrast, the effects of EE on the immune system are relatively less investigated. Recently, accumulating evidence has demonstrated that EE can robustly impact immune function. In this review, we summarize the major components of EE, the impact of EE on natural killer (NK) cells, EE's immunoprotective roles in cancer, and the underlying mechanisms of EE-induced NK cell regulation. Moreover, we discuss opportunities for translational application based on insights from animal research of EE-induced NK cell regulation.
Collapse
Affiliation(s)
- Run Xiao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH, United States
| | - Seemaab Ali
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH, United States
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, United States
| | - Michael A. Caligiuri
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and the Beckman Research Institute, Los Angeles, CA, United States
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH, United States
| |
Collapse
|
23
|
|
24
|
Neuroprotective effects of bone marrow Sca-1 + cells against age-related retinal degeneration in OPTN E50K mice. Cell Death Dis 2021; 12:613. [PMID: 34127652 PMCID: PMC8203676 DOI: 10.1038/s41419-021-03851-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/08/2022]
Abstract
Glaucoma is characterized by retinal ganglion cell (RGC) death, the underlying mechanisms of which are still largely unknown. An E50K mutation in the Optineurin (OPTN) gene is a leading cause of normal-tension glaucoma (NTG), which directly affects RGCs in the absence of high intraocular pressure and causes severe glaucomatous symptoms in patients. Bone marrow (BM) stem cells have been demonstrated to play a key role in regenerating damaged tissue during ageing and disease through their trophic effects and homing capability. Here, we separated BM stem cells into Sca-1+ and Sca-1- cells and transplanted them into lethally irradiated aged OPTN E50K mice to generate Sca-1+ and Sca-1- chimaeras, respectively. After 3 months of BM repopulation, we investigated whether Sca-1+ cells maximized the regenerative effects in the retinas of NTG model mice with the OPTN E50K mutation. We found that the OPTN E50K mutation aggravated age-related deficiency of neurotrophic factors in both retinas and BM during NTG development, leading to retinal degeneration and BM dysfunction. Sca-1+ cells from young healthy mice had greater paracrine trophic effects than Sca-1- cells and Sca-1+ cells from young OPTN E50K mice. In addition, Sca-1+ chimaeras demonstrated better visual functions than Sca-1- chimaeras and untreated OPTN E50K mice. More Sca-1+ cells than Sca-1- cells were recruited to repair damaged retinas and reverse visual impairment in NTG resulting from high expression levels of neurotrophic factors. These findings indicated that the Sca-1+ cells from young, healthy mice may have exhibited an enhanced ability to repair retinal degeneration in NTG because of their excellent neurotrophic capability.
Collapse
|
25
|
Cao L, Ali S, Queen NJ. Hypothalamic gene transfer of BDNF promotes healthy aging. VITAMINS AND HORMONES 2021; 115:39-66. [PMID: 33706955 DOI: 10.1016/bs.vh.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aging process and age-related diseases all involve metabolic decline and impaired ability to cope with adversity. Environmental enrichment (EE)-a housing environment which recapitulates aspects of active lifestyle-exerts a wide range of health benefits in laboratory rodents. Brain-derived neurotrophic factor (BDNF) in the hypothalamus orchestrates autonomic and neuroendocrine processes, serving as one key brain mediator of EE-induced resistance to obesity, cancer, and autoimmunity. Recombinant adeno-associated virus (AAV)-mediated hypothalamic BDNF gene transfer alleviates obesity, diabetes, and metabolic syndromes in both diet-induced and genetic models. One recent study by our lab demonstrates the efficacy and safety of a built-in autoregulatory system to control transgene BDNF expression, mimicking the body's natural feedback systems in middle-age mice. Twelve-month old mice were treated with autoregulatory BDNF vector and monitored for 7months. BDNF gene transfer prevented age-associated metabolic decline by: reducing adiposity, preventing the decline of brown fat activity, increasing adiponectin while reducing leptin and insulin in circulation, improving glucose tolerance, increasing energy expenditure, alleviating hepatic steatosis, and suppressing inflammatory genes in the hypothalamus and adipose tissues. Furthermore, BDNF treatment reduced anxiety-like and depression-like behaviors. This chapter summarizes this work and discusses potential roles that hypothalamic BDNF might play in promoting healthy aging.
Collapse
Affiliation(s)
- Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States; The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.
| | - Seemaab Ali
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States; The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Nicholas J Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States; The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
26
|
Adipose PTEN acts as a downstream mediator of a brain-fat axis in environmental enrichment. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2020; 4. [PMID: 35355831 PMCID: PMC8963210 DOI: 10.1016/j.cpnec.2020.100013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background/Objectives Environmental enrichment (EE) is a physiological model to investigate brain-fat interactions. We previously discovered that EE activates the hypothalamic-sympathoneural adipocyte (HSA) axis via induction of brain-derived neurotrophic factor (BDNF), thus leading to sympathetic stimulation of white adipose tissue (WAT) and an anti-obesity phenotype. Here, we investigate whether PTEN acts as a downstream mediator of the HSA axis in the EE. Methods Mice were housed in EE for 4- and 16-week periods to determine how EE regulates adipose PTEN. Hypothalamic injections of adeno-associated viral (AAV) vectors expressing BDNF and a dominant negative form of its receptor were performed to assess the role of the HSA axis in adipose PTEN upregulation. A β-blocker, propranolol, and a denervation agent, 6-hydroydopamine, were administered to assess sympathetic signaling in the observed EE-PTEN phenotype. To determine whether inducing PTEN is sufficient to reproduce certain EE adipose remodeling, we overexpressed PTEN in WAT using an AAV vector. To determine whether adipose PTEN is necessary for the EE-mediated reduction in adipocyte size, we injected a rAAV vector expressing Cre recombinase to the WAT of adult PTENflox mice and placed the mice in EE. Results EE upregulated adipose PTEN expression, which was associated with suppression of AKT and ERK phosphorylation, increased hormone-sensitive lipase (HSL) phosphorylation, and reduced adiposity. PTEN regulation was found to be controlled by the HSA axis—with the hypothalamic BDNF acting as the upstream mediator—and dependent on sympathetic innervation. AAV-mediated adipose PTEN overexpression recapitulated EE-mediated adipose changes including suppression of AKT and ERK phosphorylation, increased HSL phosphorylation, and reduced adipose mass, whereas PTEN knockdown blocked the EE-induced reduction of adipocyte size. Conclusions These data suggest that adipose PTEN responds to environmental stimuli and serves as downstream mediator of WAT remodeling in the EE paradigm, resulting in decreased adipose mass and decreased adipocyte size. Environmental enrichment (EE) induces adipose PTEN expression and is associated with (1) suppression of AKT phosphorylation, (2) increased hormone-sensitive lipase phosphorylation, and (3) decreased adiposity The hypothalamic-sympathoneural-adipocyte (HSA) axis mediates EE-induced adipose PTEN rAAV-mediated gene delivery of PTEN to adipose tissues mimics EE-related adipose remodeling Knockdown of adipose PTEN blocks EE-induced reductions in adipocyte size
Collapse
|
27
|
Hassan QN, Queen NJ, Cao L. Regulation of aging and cancer by enhanced environmental activation of a hypothalamic-sympathoneural-adipocyte axis. Transl Cancer Res 2020; 9:5687-5699. [PMID: 33134111 PMCID: PMC7595574 DOI: 10.21037/tcr.2020.02.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
Social and environmental factors impact cancer and energy balance profoundly. Years ago, our lab established the existence of a novel brain-fat interaction we termed the "hypothalamic-sympathoneural-adipocyte (HSA) axis", through which complex environmental stimuli provided by an enriched environment regulate body composition, energy balance, and development of cancer. We have spent a significant portion of the past decade to further characterize the broad health benefits of an enriched environment (for example, leanness, enhanced immune function, and cancer resistance), and to identify mediators in the brain and periphery along the HSA axis. This review summarizes our recent work regarding the interface between endocrinology, immunology, cancer biology, aging, and neuroscience. We will discuss the interplay between these systemic phenomena and how the HSA axis can be targeted for regulation of cancer and aging.
Collapse
Affiliation(s)
- Quais N. Hassan
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Medical Scientist Training Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Nicholas J. Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
28
|
Exercise-Induced Neuroprotection in the 6-Hydroxydopamine Parkinson's Disease Model. Neurotox Res 2020; 38:850-858. [PMID: 32803628 DOI: 10.1007/s12640-020-00189-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 01/18/2023]
Abstract
Exercise exerts helpful effects in Parkinson's disease. In this study, the 6-hydroxydopamine (6-OHDA) injection was used to investigate the effect of exercise on apomorphine-induced rotation and neurorestoration. Rats (n = 32) were divided into four groups: (1) Saline+Noexercise (Sham); (2) 6-OHDA+Noexercise (6-OHDA); (3) Saline+Exercise (S+EXE), and (4) 6-OHDA+Exercise (6-OHDA+EXE). The rats were administered 8 μg 6-OHDA by injection into the right medial forebrain bundle. After 2 weeks, the exercise group was run (14 consecutive days, 30 min per day). One month after the surgery, following the injection of apomorphine, the 6-OHDA group displayed a significant increase in rotation and the 6-OHDA+EXE group showed a significant reduction of rotational asymmetry (P < 0.001). 6-OHDA injection reduced the mRNA and protein expression of the AMP-activated protein kinase, brain-derived neurotropic factor, and tyrosine hydroxylase in relation to the Sham group and exercise increased these levels. Expression of the silent information regulator 2 homolog 1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha was unexpectedly enhanced in the 6-OHDA groups in relation to the Sham group. These findings suggest that the 6-OHDA injection increased the neurodegeneration and mitochondrial and behavioral dysfunctions and the treadmill running attenuated these disorders in the ipsilateral striatum of the 6-OHDA+EXE group.
Collapse
|
29
|
Agosti E, De Feudis M, Angelino E, Belli R, Alves Teixeira M, Zaggia I, Tamiso E, Raiteri T, Scircoli A, Ronzoni FL, Muscaritoli M, Graziani A, Prodam F, Sampaolesi M, Costelli P, Ferraro E, Reano S, Filigheddu N. Both ghrelin deletion and unacylated ghrelin overexpression preserve muscles in aging mice. Aging (Albany NY) 2020; 12:13939-13957. [PMID: 32712599 PMCID: PMC7425472 DOI: 10.18632/aging.103802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
Sarcopenia, the decline in muscle mass and functionality during aging, might arise from age-associated endocrine dysfunction. Ghrelin is a hormone circulating in both acylated (AG) and unacylated (UnAG) forms with anti-atrophic activity on skeletal muscle. Here, we show that not only lifelong overexpression of UnAG (Tg) in mice, but also the deletion of ghrelin gene (Ghrl KO) attenuated the age-associated muscle atrophy and functionality decline, as well as systemic inflammation. Yet, the aging of Tg and Ghrl KO mice occurs with different dynamics: while old Tg mice seem to preserve the characteristics of young animals, Ghrl KO mice features deteriorate with aging. However, young Ghrl KO mice show more favorable traits compared to WT animals that result, on the whole, in better performances in aged Ghrl KO animals. Treatment with pharmacological doses of UnAG improved muscle performance in old mice without modifying the feeding behavior, body weight, and adipose tissue mass. The antiatrophic effect on muscle mass did not correlate with modifications of protein catabolism. However, UnAG treatment induced a strong shift towards oxidative metabolism in muscle. Altogether, these data confirmed and expanded some of the previously reported findings and advocate for the design of UnAG analogs to treat sarcopenia.
Collapse
Affiliation(s)
- Emanuela Agosti
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.,Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Marilisa De Feudis
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Elia Angelino
- Division of Oncology, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milano, Italy.,Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Roberta Belli
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | | | - Ivan Zaggia
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Edoardo Tamiso
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Tommaso Raiteri
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Andrea Scircoli
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Flavio L Ronzoni
- Department of Public Health, Experimental and Forensic Medicine, Institute of Human Anatomy, University of Pavia, Pavia, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Andrea Graziani
- Division of Oncology, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milano, Italy.,Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Flavia Prodam
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Maurilio Sampaolesi
- Department of Public Health, Experimental and Forensic Medicine, Institute of Human Anatomy, University of Pavia, Pavia, Italy.,Center for Health Technologies (CHT), University of Pavia, Pavia, Italy.,Stem Cell Institute, KU Leuven, Leuven, Belgium.,Istituto Interuniversitario di Miologia (IIM)
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,Istituto Interuniversitario di Miologia (IIM)
| | - Elisabetta Ferraro
- Division of Orthopaedics and Traumatology, Hospital "Maggiore della Carità", Novara, Italy
| | - Simone Reano
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Nicoletta Filigheddu
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.,Istituto Interuniversitario di Miologia (IIM)
| |
Collapse
|
30
|
Serra M, Marongiu F, Pisu MG, Serra M, Laconi E. Time-restricted feeding delays the emergence of the age-associated, neoplastic-prone tissue landscape. Aging (Albany NY) 2020; 11:3851-3863. [PMID: 31188781 PMCID: PMC6594823 DOI: 10.18632/aging.102021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/05/2019] [Indexed: 12/18/2022]
Abstract
Aging increases the risk of cancer partly through alterations in the tissue microenvironment. Time-restricted feeding (TRF) is being proposed as an effective strategy to delay biological aging. In the present studies, we assessed the effect of long-term exposure to TRF on the emergence of the age-associated, neoplastic-prone tissue landscape. Animals were exposed to either ad libitum feeding (ALF) or TRF for 18 months and then transplanted with hepatocytes isolated from pre-neoplastic nodules. Both groups were continued ALF and the growth of transplanted cells was evaluated 3 months later. A significant decrease in frequency of larger size clusters of pre-neoplastic hepatocytes was seen in TRF-exposed group compared to controls. Furthermore, TRF modified several parameters related to both liver and systemic aging towards the persistence of a younger phenotype, including a decrease in liver cell senescence, diminished fat accumulation and up-regulation of SIRT1 in the liver, down-regulation of plasma IGF-1, decreased levels of plasma lipoproteins and up-regulation of hippocampal brain-derived growth factor (BDNF).These results indicate that TRF was able to delay the onset of the neoplastic-prone tissue landscape typical of aging. To our knowledge, this is the first investigation to describe a direct beneficial effect of TRF on early phases of carcinogenesis.
Collapse
Affiliation(s)
- Monica Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Mariangela Serra
- Department of Life and Environment Sciences University of Cagliari, Cagliari, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
31
|
Queen NJ, Hassan QN, Cao L. Improvements to Healthspan Through Environmental Enrichment and Lifestyle Interventions: Where Are We Now? Front Neurosci 2020; 14:605. [PMID: 32655354 PMCID: PMC7325954 DOI: 10.3389/fnins.2020.00605] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Environmental enrichment (EE) is an experimental paradigm that is used to explore how a complex, stimulating environment can impact overall health. In laboratory animal experiments, EE housing conditions typically include larger-than-standard cages, abundant bedding, running wheels, mazes, toys, and shelters which are rearranged regularly to further increase stimulation. EE has been shown to improve multiple aspects of health, including but not limited to metabolism, learning and cognition, anxiety and depression, and immunocompetence. Recent advances in lifespan have led some researchers to consider aging as a risk factor for disease. As such, there is a pressing need to understand the processes by which healthspan can be increased. The natural and predictable changes during aging can be reversed or decreased through EE and its underlying mechanisms. Here, we review the use of EE in laboratory animals to understand mechanisms involved in aging, and comment on relative areas of strength and weakness in the current literature. We additionally address current efforts toward applying EE-like lifestyle interventions to human health to extend healthspan. Although increasing lifespan is a clear goal of medical research, improving the quality of this added time also deserves significant attention. Despite hurdles in translating experimental results toward clinical application, we argue there is great potential in using features of EE toward improving human healthy life expectancy or healthspan, especially in the context of increased global longevity.
Collapse
Affiliation(s)
- Nicholas J. Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Quais N. Hassan
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- Medical Scientist Training Program, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
32
|
Colitti M, Montanari T. Brain-derived neurotrophic factor modulates mitochondrial dynamics and thermogenic phenotype on 3T3-L1 adipocytes. Tissue Cell 2020; 66:101388. [PMID: 32933711 DOI: 10.1016/j.tice.2020.101388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Obesity is a growing threat. In recent years, the finding of functional brown adipose tissue (BAT) in adult humans implemented the studies of anti-obesity therapies based on triggering energy expenditure. The activation of BAT thermogenesis and the recruitment of brite (brown-in-white) adipocytes are under noradrenergic control. Brain-derived neurotrophic factor (BDNF), if centrally administered, enhances thermogenesis through sympathetic activation, but its direct effect on adipocytes is still unclear. The phenotypic change from fat storing to thermogenic adipocytes is recognized by the presence of multilocular lipid droplets (LDs) and fissed mitochondria that tend to surround LDs, maximizing the efficiency of fatty acid release for thermogenesis. BDNF treatment on differentiated 3T3-L1 adipocytes was compared to negative (CTRL) and positive (norepinephrine, NE) controls. BDNF significantly increased small globular mitochondria percentage (>150% CTRL), while the area surface and elongation index of branched tubules were respectively 55% and 10% lower than NE. Canonical discriminant analysis of mitochondria morphological data clearly separated differentially treated cells with 85% of the total variance. The expression of brown markers and mitochondrial dynamic genes was significantly affected by BDNF. Investigating the pathways involved in adipocyte BDNF stimulation could clarify its role in thermogenesis and its possible local regulation.
Collapse
Affiliation(s)
- M Colitti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| | - T Montanari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
33
|
Ali S, Mansour AG, Huang W, Queen NJ, Mo X, Anderson JM, Hassan II QN, Patel RS, Wilkins RK, Caligiuri MA, Cao L. CSF1R inhibitor PLX5622 and environmental enrichment additively improve metabolic outcomes in middle-aged female mice. Aging (Albany NY) 2020; 12:2101-2122. [PMID: 32007953 PMCID: PMC7041757 DOI: 10.18632/aging.102724] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/02/2020] [Indexed: 04/12/2023]
Abstract
As the elderly population grows, chronic metabolic dysfunction including obesity and diabetes are becoming increasingly common comorbidities. Hypothalamic inflammation through CNS resident microglia serves as a common pathway between developing obesity and developing systemic aging pathologies. Despite understanding aging as a life-long process involving interactions between individuals and their environment, limited studies address the dynamics of environment interactions with aging or aging therapeutics. We previously demonstrated environmental enrichment (EE) is an effective model for studying improved metabolic health and overall healthspan in mice, which acts through a brain-fat axis. Here we investigated the CSF1R inhibitor PLX5622 (PLX), which depletes microglia, and its effects on metabolic decline in aging in interaction with EE. PLX in combination with EE substantially improved metabolic outcomes in middle-aged female mice over PLX or EE alone. Chronic PLX treatment depleted 75% of microglia from the hypothalamus and reduced markers of inflammation without affecting brain-derived neurotrophic factor levels induced by EE. Adipose tissue remodeling and adipose tissue macrophage modulation were observed in response to CSF1R inhibition, which may contribute to the combined benefits seen in EE with PLX. Our study suggests benefits exist from combined drug and lifestyle interventions in aged animals.
Collapse
Affiliation(s)
- Seemaab Ali
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
- Medical Scientist Training Program, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anthony G. Mansour
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
- Department of Hematological Malignancies and Stem Cell Transplantation, City of Hope National Medical Center and the Beckman Research Institute, Los Angeles, CA 91010, USA
| | - Wei Huang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Nicholas J. Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jacqueline M. Anderson
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Quais N. Hassan II
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
- Medical Scientist Training Program, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ripal S. Patel
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Ryan K. Wilkins
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Michael A. Caligiuri
- Department of Hematological Malignancies and Stem Cell Transplantation, City of Hope National Medical Center and the Beckman Research Institute, Los Angeles, CA 91010, USA
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| |
Collapse
|
34
|
Queen NJ, Boardman AA, Patel RS, Siu JJ, Mo X, Cao L. Environmental enrichment improves metabolic and behavioral health in the BTBR mouse model of autism. Psychoneuroendocrinology 2020; 111:104476. [PMID: 31648110 PMCID: PMC6914218 DOI: 10.1016/j.psyneuen.2019.104476] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/20/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022]
Abstract
BTBR T + Itpr3tf/J (BTBR) mice are an Autism Spectrum Disorder (ASD)-like model that exhibit behavioral and physiological deficits similar to those observed in patients with ASD. While behavioral therapy is a first line of treatment in ASD patients, comparable non-pharmacological treatments are less explored in murine models. Here, we administer a bio-behavioral intervention for BTBR mice by way of environmental enrichment (EE) - an experimental housing paradigm previously shown to improve systemic metabolism, learning/memory, anxious behavior, neurogenesis, locomotion, and immunocompetence in C57BL/6 mice. Juvenile BTBR mice were randomized to standard or EE housing and were subjected to metabolic and behavioral assessments up to 17 weeks. Following EE exposure, we report an EE-induced metabolic and behavioral phenotype. Male BTBR mice responded metabolically to EE, displaying reduced adiposity, increased lean mass, improved glycemic control, and decreased circulating leptin. The gene expressions of brain-derived neurotrophic factor (Bdnf) and its receptor (Ntrk2/TrkB) were upregulated in several brain areas in EE-BTBR males. EE-BTBR females showed modest reduction of adiposity and no changes in glycemic control, circulating leptin, or Bdnf/Ntrk2 gene expression. With regard to behavior, EE resulted in decreased anxiety, and increased social affiliation. Together, these results suggest that EE improves metabolic and behavioral health in BTBR mice.
Collapse
Affiliation(s)
- Nicholas J Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Amber A Boardman
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Ripal S Patel
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jason J Siu
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
| |
Collapse
|
35
|
Abstract
Under conditions leading to aging and metabolic syndrome, the hypothalamus atypically undergoes proinflammatory signaling activation leading to a chronic and stable background inflammation, referred to as "hypothalamic microinflammation." Through the past decade of research, progress has been made to causally link this hypothalamic inflammation to the mechanism of aging as well as metabolic syndrome, promoting the "hypothalamic microinflammation" theory, which helps characterize the consensus of these epidemic health problems. In general, it is consistently appreciated that hypothalamic microinflammation emerges during the early stages of aging and metabolic syndrome and evolves to be multifaceted and advanced alongside disease progression, while inhibition of key inflammatory components in the hypothalamus has a broad range of effects in counteracting these disorders. Herein, focusing on aging and metabolic syndrome, this writing aims to provide an overview of and insights into the mediators, signaling components, cellular impacts, and physiological significance of this hypothalamic microinflammation.
Collapse
|
36
|
Ali S, Liu X, Queen NJ, Patel RS, Wilkins R, Mo X, Cao L. Long-term environmental enrichment affects microglial morphology in middle age mice. Aging (Albany NY) 2019; 11:2388-2402. [PMID: 31039130 PMCID: PMC6519992 DOI: 10.18632/aging.101923] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/14/2019] [Indexed: 12/17/2022]
Abstract
Aging is associated with increased central nervous system inflammation, in large part due to dysfunctional microglia. Environmental enrichment (EE) provides a model for studying the dynamics of lifestyle factors in the development of age-related neuroinflammation and microglial dysfunction. EE results in improvements in learning and memory, metabolism, and mental health in a variety of animal models. We recently reported that implementing EE in middle age promotes healthy aging. In the present study, we investigated whether EE influences microglial morphology, and whether EE is associated with changes in expression of microglial and neuroinflammatory markers. Inflammatory cytokines and MHC-II were reduced following 12-month EE in 10-month-old mice. Long-term EE for 7.5 months resulted in broad increases in Iba1 expression in hippocampus, hypothalamus, and amygdala detected by immunohistochemistry. Quantification of microglial morphology reveal both hypertrophy and ramification in these three brain regions, without increases in microglial cell density. These data indicate that long-term EE implemented in middle age results in a microglial state distinct from that of normal aging in standard laboratory housing, in specific brain regions, associated with reduced neuroinflammatory markers and improvement of systemic metabolism.
Collapse
Affiliation(s)
- Seemaab Ali
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xianglan Liu
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Nicholas J. Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Ripal S. Patel
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Ryan K. Wilkins
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
37
|
McMurphy T, Huang W, Liu X, Siu JJ, Queen NJ, Xiao R, Cao L. Hypothalamic gene transfer of BDNF promotes healthy aging in mice. Aging Cell 2019; 18:e12846. [PMID: 30585393 PMCID: PMC6413658 DOI: 10.1111/acel.12846] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/15/2018] [Accepted: 09/02/2018] [Indexed: 12/26/2022] Open
Abstract
The aging process and age-related diseases all involve perturbed energy adaption and impaired ability to cope with adversity. Brain-derived neurotrophic factor (BDNF) in the hypothalamus plays important role in regulation of energy balance. Our previous studies show that recombinant adeno-associated virus (AAV)-mediated hypothalamic BDNF gene transfer alleviates obesity, diabetes, and metabolic syndromes in both diet-induced and genetic models. Here we examined the efficacy and safety of a built-in autoregulatory system to control transgene BDNF expression mimicking the body's natural feedback systems in middle-aged mice. Twelve-month-old mice were treated with either autoregulatory BDNF vector or yellow fluorescence protein (YFP) control, maintained on normal diet, and monitored for 28 weeks. BDNF gene transfer prevented the development of aging-associated metabolic declines characterized by: preventing aging-associated weight gain, reducing adiposity, reversing the decline of brown fat activity, increasing adiponectin while reducing leptin and insulin in circulation, improving glucose tolerance, increasing energy expenditure, alleviating hepatic steatosis, and suppressing inflammatory genes in the hypothalamus and adipose tissues. Moreover, BDNF treatment reduced anxiety-like and depression-like behaviors. These safety and efficacy data provide evidence that hypothalamic BDNF is a target for promoting healthy aging.
Collapse
Affiliation(s)
- Travis McMurphy
- Department of Cancer Biology and Genetics, College of MedicineThe Ohio State UniversityColumbusOhio
- The Ohio State University Comprehensive Cancer CenterColumbusOhio
| | - Wei Huang
- Department of Cancer Biology and Genetics, College of MedicineThe Ohio State UniversityColumbusOhio
- The Ohio State University Comprehensive Cancer CenterColumbusOhio
| | - Xianglan Liu
- Department of Cancer Biology and Genetics, College of MedicineThe Ohio State UniversityColumbusOhio
- The Ohio State University Comprehensive Cancer CenterColumbusOhio
| | - Jason J. Siu
- Department of Cancer Biology and Genetics, College of MedicineThe Ohio State UniversityColumbusOhio
- The Ohio State University Comprehensive Cancer CenterColumbusOhio
| | - Nicholas J. Queen
- Department of Cancer Biology and Genetics, College of MedicineThe Ohio State UniversityColumbusOhio
- The Ohio State University Comprehensive Cancer CenterColumbusOhio
| | - Run Xiao
- Department of Cancer Biology and Genetics, College of MedicineThe Ohio State UniversityColumbusOhio
- The Ohio State University Comprehensive Cancer CenterColumbusOhio
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of MedicineThe Ohio State UniversityColumbusOhio
- The Ohio State University Comprehensive Cancer CenterColumbusOhio
| |
Collapse
|
38
|
Fang W, Liao W, Zheng Y, Huang X, Weng X, Fan S, Chen X, Zhang X, Chen J, Xiao S, Thea A, Luan P, Liu J. Neurotropin reduces memory impairment and neuroinflammation via BDNF/NF-κB in a transgenic mouse model of Alzheimer's disease. Am J Transl Res 2019; 11:1541-1554. [PMID: 30972181 PMCID: PMC6456545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease with limited treatments and no cure. Neurotropin (NTP) is an analgesic drug widely prescribed for neuropathic pain. Increasing evidence suggests that NTP may also protect against neurodegeneration, but NTP's treatment potential against memory impairments of AD remains to be explored. APP/PS1 mice, which model AD, were given NTP for three months then cognitively tested with the Morris water maze. Their Aβ burden, microglial and astrocytic activation, and BDNF levels were compared to untreated controls using immunofluorescent staining. Expression of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and NF-κB pathway related proteins (p65 and IκB-α) were examined by ELISA or Western blots in vivo and in vitro in the microglia cell line. Lastly, BV-2 cells were pre-treated with the selective BDNF inhibitor ANA-12 and with NTP to examine mechanistic pathways. Taken together, NTP treatment reduced cognitive impairment, Aβ deposits, and glial activation in cortex and hippocampus APP/PS1 mice. IL-1β, IL-6 and TNF-α also decreased after NTP treatment in vivo and in vitro, and BDNF levels rose. Also, NTP reduced p65 and IκB-α activation and the effect of NTP on pro-inflammatory cytokines and NF-κB pathway related proteins was abolished by BDNF inhibitor. Our results indicate that NTP reduces neuroinflammation and improves the cognitive deficits in APP/PS1 mice possibly via BDNF/NF-κB pathway. NTP may be a new promising drug candidate for patients with AD.
Collapse
Affiliation(s)
- Wenli Fang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
| | - Wang Liao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
- Department of Psychiatry, McLean Hospital, Harvard Medical SchoolBelmont, MA 02478, USA
| | - Yuqiu Zheng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
| | - Xiaoyun Huang
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical UniversityDongguan 523945, Guangdong, China
| | - Xueling Weng
- Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
| | - Shengnuo Fan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
| | - Xiaoyu Chen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
- People’s Hospital of Zhongshan CityZhongshan 528403, Guangdong, China
| | - Xingmei Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University HospitalKarolinska Sjukhuset, Sweden
| | - Jianjun Chen
- Department of Psychiatry, McLean Hospital, Harvard Medical SchoolBelmont, MA 02478, USA
| | - Songhua Xiao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
| | - Anderson Thea
- Department of Psychiatry, McLean Hospital, Harvard Medical SchoolBelmont, MA 02478, USA
| | - Ping Luan
- Medicine School, Shenzhen UniversityShenzhen 518060, Guangdong, China
| | - Jun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
- Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou 510120, Guangdong, China
| |
Collapse
|