1
|
Zhao C, Kong K, Liu P, Chen X, Rong K, Zhang P, Wang L, Wang X. Regulating obesity-induced osteoarthritis by targeting p53-FOXO3, osteoclast ferroptosis, and mesenchymal stem cell adipogenesis. Nat Commun 2025; 16:4532. [PMID: 40374649 PMCID: PMC12081733 DOI: 10.1038/s41467-025-59883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/08/2025] [Indexed: 05/17/2025] Open
Abstract
Obesity-related osteoarthritis (OA) and the molecular mechanisms governing multiple joint structural changes that occur with obesity are not well understood. This study investigated the progression of obesity in mice and validated the results using human joint samples post-arthroplasty. The results show that obesity is associated with the degeneration of the cartilage layer and abnormal remodeling of the subchondral bone layer, and this occurs alongside aging and DNA damage in chondrocytes, osteoclasts, and stem cells. Regulation of p53-FOXO3 gene loop expression in response to DNA damage effectively inhibits chondrocyte apoptosis, catabolism, and excessive osteoclast differentiation, while the intra-articular delivery of a lentivirus expressing FOXO3 to mouse joints alleviates the progression of OA. The excessive differentiation of subchondral bone marrow osteoclasts is ferroptosis-dependent and driven by the senescence-associated secretory phenotype. The results have identified multiple potential targets for future research into the progression of obesity-related OA.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keyu Kong
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengcheng Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kewei Rong
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pu Zhang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaoqing Wang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Liu C, Peng H, Yu J, Luo P, Xiong C, Chen H, Fan H, Ma Y, Ou W, Zhang S, Yang C, Zhao L, Zhang Y, Guo X, Ke Q, Wang T, Deng C, Li W, Xiang AP, Xia K. Impaired ketogenesis in Leydig Cells drives testicular aging. Nat Commun 2025; 16:4224. [PMID: 40328805 PMCID: PMC12056170 DOI: 10.1038/s41467-025-59591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
Testicular aging commonly leads to testosterone deficiency and impaired spermatogenesis, yet the underlying mechanisms remain elusive. Here, we show that Leydig cells are particularly vulnerable to aging processes in testis. Single-cell RNA sequencing identifies the expression of Hmgcs2, the gene encoding rate-limiting enzyme of ketogenesis, decreases significantly in Leydig cells from aged mice. Additionally, the concentrations of ketone bodies β-hydroxybutyric acid and acetoacetic acid in young testes are substantially higher than that in serum, but significantly diminish in aged testes. Silencing of Hmgcs2 in young Leydig cells drives cell senescence and accelerated testicular aging. Mechanistically, β-hydroxybutyric acid upregulates the expression of Foxo3a by facilitating histone acetylation, thereby mitigating Leydig cells senescence and promoting testosterone production. Consistently, enhanced ketogenesis by genetic manipulation or oral β-hydroxybutyric acid supplementation alleviates Leydig cells senescence and ameliorates testicular aging in aged mice. These findings highlight defective ketogenesis as a pivotal factor in testicular aging, suggesting potential therapeutic avenues for addressing age-related testicular dysfunction.
Collapse
Grants
- This work was supported by National Key Research and Development Program of China(2022YFA1104100), National Natural Science Foundation of China (82430050, 32130046, 82371611, 82371609, 82171564, 82101669, 82301847, 82171617, 82301796), Key Research and Development Program of Guangdong Province (2019B020235002), Natural Science Foundation of Guangdong Province (2022A1515010371), Guangdong Basic and Applied Basic Research Foundation (2021A1515010377), Key Scientific and Technological Program of Guangzhou City (2023B01J1002), Pioneering talents project of Guangzhou Development Zone (2021-L029), China Postdoctoral Science Foundation (2023M733656), Shenzhen Nanshan District Health System Science and Technology Major Project (NSZD2023049), Sanming Project of Medicine in Shenzhen Nanshan (SZSM202103012).
Collapse
Affiliation(s)
- Congyuan Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao Peng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiajie Yu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peng Luo
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, The Key Laboratory for Reproductive Medicine of Guangdong Province, Guangzhou, Guangdong, China
| | - Chuanfeng Xiong
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hong Chen
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hang Fan
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wangsheng Ou
- State Key Laboratory of Ophthalmology, Zhong Shan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Suyuan Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cuifeng Yang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lerong Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuchen Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaolu Guo
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chunhua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Kai Xia
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Lin S, Sun B, Zhu Y, Huang Y, Qin Y, Yao N, Liu Y, Chen G. Natural product Pulsatilla saponin D sensitizes BRCA-proficient ovarian cancers to PARP inhibitors through inhibiting homologous recombination repair. J Pharm Pharmacol 2025; 77:511-523. [PMID: 40036611 DOI: 10.1093/jpp/rgaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND As a strategy in the development of effective cancer therapeutics, synthetic lethality has been used in clinical practice. Poly adenosine diphosphate (ADP)-ribose polymerase inhibitors are the first approved drug utilized synthetic lethality and achieved promising therapeutic efficacy in cancer cells with BRCA1/2 mutation. Nonetheless, most cancer patients with wild-type BRCA1/2 gene are not qualified for PARPi therapy. To induce BRCAness phenotype in cancer cells with normal BRCA1/2 status, we identified Pulsatilla Saponin D (SB365), which efficiently inhibited recruitment of BRCA1 at DNA double-strand breaks, leading to homologous recombination repair deficiency. METHODS We utilized the HR repair reporter system. The reporter cells were treated with a natural compounds library to identify the agent that significantly decreased HR activity. Then, we detected the expression of HR related proteins using immunofluorescence and western blot. Colony formation and CCK8 was used to detect the inhibitory effect of Pulsatilla Saponin D on cell proliferation. Apoptosis was measured using Annexin V/PI staining. Comet assay kits were used to carry out the comet assay. Ovarian cancer xenograft model, immunohistochemical staining and Hematoxylin-Eosin staining was used to detect the antitumor efficacy and toxicity of Pulsatilla Saponin D. KEY FINDINGS Pulsatilla Saponin D greatly increased PARPi-induced DNA DSBs, growth inhibition and apoptosis in ovarian cancer cells. Combined administration of PARPi and Pulsatilla Saponin D induced synergistic anti-tumor effects in ovarian cancer cells and xenograft mouse model without obvious toxicity. CONCLUSIONS In summary, our study found Pulsatilla Saponin D is a novel HR repair inhibitor and would optimize clinical application of PARP inhibitors on cancer patients with WT BRCA1/2.
Collapse
Affiliation(s)
- Shengbin Lin
- School of Biopharmacy, China Pharmaceutical University, Nanjing, P.R. China
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Binghe Sun
- School of Biopharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yin Zhu
- Department of Oncology, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, P.R. China
| | - Yi Huang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yu Qin
- School of Biopharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Nan Yao
- School of Biopharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yongzhu Liu
- Department of Gynecology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangdong, P.R. China
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
4
|
Calubag MF, Robbins PD, Lamming DW. A nutrigeroscience approach: Dietary macronutrients and cellular senescence. Cell Metab 2024; 36:1914-1944. [PMID: 39178854 PMCID: PMC11386599 DOI: 10.1016/j.cmet.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Cellular senescence, a process in which a cell exits the cell cycle in response to stressors, is one of the hallmarks of aging. Senescence and the senescence-associated secretory phenotype (SASP)-a heterogeneous set of secreted factors that disrupt tissue homeostasis and promote the accumulation of senescent cells-reprogram metabolism and can lead to metabolic dysfunction. Dietary interventions have long been studied as methods to combat age-associated metabolic dysfunction, promote health, and increase lifespan. A growing body of literature suggests that senescence is responsive to diet, both to calories and specific dietary macronutrients, and that the metabolic benefits of dietary interventions may arise in part through reducing senescence. Here, we review what is currently known about dietary macronutrients' effect on senescence and the SASP, the nutrient-responsive molecular mechanisms that may mediate these effects, and the potential for these findings to inform the development of a nutrigeroscience approach to healthy aging.
Collapse
Affiliation(s)
- Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
5
|
Abou Kamar S, Bracun V, El-Qendouci M, Bomer N, Bakker SJL, Gansevoort RT, Boersma E, Kardys I, de Boer RA, Suthahar N. Association of baseline and longitudinal changes in insulin-like growth factor-binding protein-7 with the risk of incident heart failure: Data from the PREVEND study. Eur J Heart Fail 2024. [PMID: 39015086 DOI: 10.1002/ejhf.3328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/26/2024] [Accepted: 05/23/2024] [Indexed: 07/18/2024] Open
Abstract
AIM Senescence is a major risk factor for heart failure (HF), and insulin-like growth factor-binding protein-7 (IGFBP7) has been identified as an important senescence-inducing factor. The aim of this study was to examine the value of baseline and repeat IGFBP7 measurements in predicting future HF among community-dwelling Dutch adults from the Prevention of Renal and Vascular End-stage Disease (PREVEND) study. METHODS AND RESULTS Individuals without prevalent HF who attended PREVEND visits 2 and 4 median of 5.1 years apart (25th-75th percentile, 4.9-5.2) with measurements of IGFBP7 were included. We used Cox proportional hazards models to investigate the association between IGFBP7 and HF incidence. A total of 6125 participants attending visit 2 (mean ± standard deviation [SD] age 53.1 ± 12.2 years; 3151 [51.4%] men) were followed for a median of 8.4 (7.8-8.9) years, and 194 participants (3.2%) developed incident HF. Median baseline IGFBP7 concentration was 87.0 (75.1-97.3) ng/ml, and baseline IGFBP7 levels were significantly associated with risk for incident HF (HF risk factors adjusted hazard ratio [HR] per 1 SD change in log-transformed IGFBP7: 1.22, 95% confidence interval [CI] 1.03-1.46). Baseline IGFBP7 was also significantly associated with incident HF in individuals with N-terminal pro-B-type natriuretic peptide <125 ng/L. Among 3879 participants attending both visits 2 and 4 (mean ± SD age 57.5 ± 11.3 years; 1952 [50.3%] men), 93 individuals developed HF (after visit 4) during a median follow-up of 3.2 (2.8-3.9) years. Median increase in IGFBP7 concentration between visits was 0.68 (-7.09 to 8.36) ng/ml, and changes in IGFBP7 levels were significantly associated with risk for incident HF (HF risk factors adjusted HR per 1 SD change in log-transformed IGFBP7: 1.68, 95% CI 1.19-2.36). CONCLUSIONS Both baseline as well as repeat IGFBP7 measurements provide information about the risk of developing HF.
Collapse
Affiliation(s)
- Sabrina Abou Kamar
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, Rotterdam, The Netherlands
- Department of Cardiology, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Valentina Bracun
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maissa El-Qendouci
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ron T Gansevoort
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eric Boersma
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Isabella Kardys
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Navin Suthahar
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Ferreira JP, Packer M, Sattar N, Butler J, González Maldonado S, Panova-Noeva M, Sumin M, Masson S, Pocock SJ, Anker SD, Zannad F, Januzzi JL. Insulin-like growth factor binding protein-7 concentrations in chronic heart failure: Results from the EMPEROR programme. Eur J Heart Fail 2024; 26:806-816. [PMID: 38587259 DOI: 10.1002/ejhf.3227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
AIMS Insulin-like growth factor binding protein-7 (IGFBP7) is a biomarker of tissue senescence with a role in cardio-renal pathophysiology. The role of IGFBP7 as a prognostic biomarker across the full ejection fraction (EF) spectrum of heart failure (HF) remains less well understood. We examined associations between IGFBP7 and risk of cardio-renal outcomes regardless of EF and the effect of empagliflozin treatment on IGFBP7 concentrations among individuals with HF. METHODS AND RESULTS IGFBP7 was measured in 1125 study participants from the EMPEROR-Reduced and EMPEROR-Preserved trials. Cox regression was used to study associations with outcomes. Study participants with IGFBP7 levels in the highest tertile had a higher-risk clinical profile. In Cox proportional hazards models adjusted for clinical variables, N-terminal pro-B-type natriuretic peptide and high-sensitivity cardiac troponin T, baseline IGFBP7 values in the highest tertile predicted an increased risk of HF hospitalization or cardiovascular death (hazard ratio [HR] 2.00, 95% confidence interval [CI] 1.28-3.10, p = 0.002, p for trend <0.001) and higher risk of the renal composite endpoint (HR 4.66, 95% CI 1.61-13.53, p = 0.005, p for trend = 0.001), regardless of EF. Empagliflozin reduced risk for cardiovascular death/HF hospitalization irrespective of baseline IGFBP7 (p for trend across IGFBP7 tertiles = 0.26). Empagliflozin treatment was not associated with meaningful change in IGFBP7 at 12 or 52 weeks. CONCLUSION Across the entire left ventricular EF spectrum in the EMPEROR Programme, concentrations of the senescence-associated biomarker IGFBP7 were associated with higher risk clinical status and predicted adverse cardio-renal outcomes even in models adjusted for conventional biomarkers. Empagliflozin did not significantly affect IGFBP7 levels over time.
Collapse
Affiliation(s)
- João Pedro Ferreira
- Centre d'Investigations Cliniques Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France; F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
- UnIC@RISE, Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Milton Packer
- Imperial College London, London, UK; Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX, USA
- Dallas, TX, USA; University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | - Mikhail Sumin
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Serge Masson
- Roche Diagnostics International Ltd, Rotkreuz, Switzerland
| | | | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité; Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - Faiez Zannad
- Université de Lorraine, Centre d'Investigations Cliniques Plurithématique 1433, INSERM, CHRU, Nancy, France
| | - James L Januzzi
- Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, MA, USA
| |
Collapse
|
7
|
Güllülü Ö, Mayer BE, Toplek FB. Linking Gene Fusions to Bone Marrow Failure and Malignant Transformation in Dyskeratosis Congenita. Int J Mol Sci 2024; 25:1606. [PMID: 38338888 PMCID: PMC10855549 DOI: 10.3390/ijms25031606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Dyskeratosis Congenita (DC) is a multisystem disorder intrinsically associated with telomere dysfunction, leading to bone marrow failure (BMF). Although the pathology of DC is largely driven by mutations in telomere-associated genes, the implications of gene fusions, which emerge due to telomere-induced genomic instability, remain unexplored. We meticulously analyzed gene fusions in RNA-Seq data from DC patients to provide deeper insights into DC's progression. The most significant DC-specific gene fusions were subsequently put through in silico assessments to ascertain biophysical and structural attributes, including charge patterning, inherent disorder, and propensity for self-association. Selected candidates were then analyzed using deep learning-powered structural predictions and molecular dynamics simulations to gauge their potential for forming higher-order oligomers. Our exploration revealed that genes participating in fusion events play crucial roles in upholding genomic stability, facilitating hematopoiesis, and suppressing tumors. Notably, our analysis spotlighted a particularly disordered polyampholyte fusion protein that exhibits robust higher-order oligomerization dynamics. To conclude, this research underscores the potential significance of several high-confidence gene fusions in the progression of BMF in DC, particularly through the dysregulation of genomic stability, hematopoiesis, and tumor suppression. Additionally, we propose that these fusion proteins might hold a detrimental role, specifically in inducing proteotoxicity-driven hematopoietic disruptions.
Collapse
Affiliation(s)
- Ömer Güllülü
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Benjamin E. Mayer
- Computational Biology & Simulation, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Fran Bačić Toplek
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
8
|
Gong GS, Muyayalo KP, Zhang YJ, Lin XX, Liao AH. Flip a coin: cell senescence at the maternal-fetal interface†. Biol Reprod 2023; 109:244-255. [PMID: 37402700 DOI: 10.1093/biolre/ioad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
During pregnancy, cell senescence at the maternal-fetal interface is required for maternal well-being, placental development, and fetal growth. However, recent reports have shown that aberrant cell senescence is associated with multiple pregnancy-associated abnormalities, such as preeclampsia, fetal growth restrictions, recurrent pregnancy loss, and preterm birth. Therefore, the role and impact of cell senescence during pregnancy requires further comprehension. In this review, we discuss the principal role of cell senescence at the maternal-fetal interface, emphasizing its "bright side" during decidualization, placentation, and parturition. In addition, we highlight the impact of its deregulation and how this "dark side" promotes pregnancy-associated abnormalities. Furthermore, we discuss novel and less invasive therapeutic practices associated with the modulation of cell senescence during pregnancy.
Collapse
Affiliation(s)
- Guang-Shun Gong
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Kahindo P Muyayalo
- Department of Obstetrics and Gynecology, University of Kinshasa, Kinshasa, D.R. Congo
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| |
Collapse
|
9
|
Cao G, Lin M, Gu W, Su Z, Duan Y, Song W, Liu H, Zhang F. The rules and regulatory mechanisms of FOXO3 on inflammation, metabolism, cell death and aging in hosts. Life Sci 2023:121877. [PMID: 37352918 DOI: 10.1016/j.lfs.2023.121877] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The FOX family of transcription factors was originally identified in 1989, comprising the FOXA to FOXS subfamilies. FOXO3, a well-known member of the FOXO subfamily, is widely expressed in various human organs and tissues, with higher expression levels in the ovary, skeletal muscle, heart, and spleen. The biological effects of FOXO3 are mostly determined by its phosphorylation, which occurs in the nucleus or cytoplasm. Phosphorylation of FOXO3 in the nucleus can promote its translocation into the cytoplasm and inhibit its transcriptional activity. In contrast, phosphorylation of FOXO3 in the cytoplasm leads to its translocation into the nucleus and exerts regulatory effects on biological processes, such as inflammation, aerobic glycolysis, autophagy, apoptosis, oxidative stress, cell cycle arrest and DNA damage repair. Additionally, FOXO3 isoform 2 acts as an important suppressor of osteoclast differentiation. FOXO3 can also interfere with the development of various diseases, including inhibiting the proliferation and invasion of tumor cells, blocking the production of inflammatory factors in autoimmune diseases, and inhibiting β-amyloid deposition in Alzheimer's disease. Furthermore, FOXO3 slows down the aging process and exerts anti-aging effects by delaying telomere attrition, promoting cell self-renewal, and maintaining genomic stability. This review suggests that changes in the levels and post-translational modifications of FOXO3 protein can maintain organismal homeostasis and improve age-related diseases, thus counteracting aging. Moreover, this may indicate that alterations in FOXO3 protein levels are also crucial for longevity, offering new perspectives for therapeutic strategies targeting FOXO3.
Collapse
Affiliation(s)
- Guoding Cao
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Monan Lin
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Wei Gu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Zaiyu Su
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Yagan Duan
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Wuqi Song
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Hailiang Liu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China.
| | - Fengmin Zhang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China.
| |
Collapse
|
10
|
Jacome Burbano MS, Robin JD, Bauwens S, Martin M, Donati E, Martínez L, Lin P, Sacconi S, Magdinier F, Gilson E. Non-canonical telomere protection role of FOXO3a of human skeletal muscle cells regulated by the TRF2-redox axis. Commun Biol 2023; 6:561. [PMID: 37231173 DOI: 10.1038/s42003-023-04903-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Telomeric repeat binding factor 2 (TRF2) binds to telomeres and protects chromosome ends against the DNA damage response and senescence. Although the expression of TRF2 is downregulated upon cellular senescence and in various aging tissues, including skeletal muscle tissues, very little is known about the contribution of this decline to aging. We previously showed that TRF2 loss in myofibers does not trigger telomere deprotection but mitochondrial dysfunction leading to an increased level of reactive oxygen species. We show here that this oxidative stress triggers the binding of FOXO3a to telomeres where it protects against ATM activation, revealing a previously unrecognized telomere protective function of FOXO3a, to the best of our knowledge. We further showed in transformed fibroblasts and myotubes that the telomere properties of FOXO3a are dependent on the C-terminal segment of its CR2 domain (CR2C) but independent of its Forkhead DNA binding domain and of its CR3 transactivation domain. We propose that these non-canonical properties of FOXO3a at telomeres play a role downstream of the mitochondrial signaling induced by TRF2 downregulation to regulate skeletal muscle homeostasis and aging.
Collapse
Affiliation(s)
| | - Jérôme D Robin
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Serge Bauwens
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Marjorie Martin
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Emma Donati
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Lucia Martínez
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Peipei Lin
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
- Department of Geriatrics, Medical center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Pôle Sino-Français de Recherches en Sciences du Vivant et Génomique, International Research Project in Hematology, Cancer and Aging, RuiJin Hospital, Shanghai Jiao Tong University School, Shanghai, China
| | - Sabrina Sacconi
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
- Peripheral Nervous System, Muscle and ALS, Neuromuscular & ALS Center of Reference, FHU Oncoage, Nice University Hospital, Pasteur 2, Nice, France
| | | | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France.
- Department of Geriatrics, Medical center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Pôle Sino-Français de Recherches en Sciences du Vivant et Génomique, International Research Project in Hematology, Cancer and Aging, RuiJin Hospital, Shanghai Jiao Tong University School, Shanghai, China.
- Department of Genetics, CHU; FHU OncoAge, Nice, France.
| |
Collapse
|
11
|
Jenni R, Chikhaoui A, Nabouli I, Zaouak A, Khanchel F, Hammami-Ghorbel H, Yacoub-Youssef H. Differential Expression of ATM, NF-KB, PINK1 and Foxo3a in Radiation-Induced Basal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24087181. [PMID: 37108343 PMCID: PMC10138907 DOI: 10.3390/ijms24087181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Research in normal tissue radiobiology is in continuous progress to assess cellular response following ionizing radiation exposure especially linked to carcinogenesis risk. This was observed among patients with a history of radiotherapy of the scalp for ringworm who developed basal cell carcinoma (BCC). However, the involved mechanisms remain largely undefined. We performed a gene expression analysis of tumor biopsies and blood of radiation-induced BCC and sporadic patients using reverse transcription-quantitative PCR. Differences across groups were assessed by statistical analysis. Bioinformatic analyses were conducted using miRNet. We showed a significant overexpression of the FOXO3a, ATM, P65, TNF-α and PINK1 genes among radiation-induced BCCs compared to BCCs in sporadic patients. ATM expression level was correlated with FOXO3a. Based on receiver-operating characteristic curves, the differentially expressed genes could significantly discriminate between the two groups. Nevertheless, TNF-α and PINK1 blood expression showed no statistical differences between BCC groups. Bioinformatic analysis revealed that the candidate genes may represent putative targets for microRNAs in the skin. Our findings may yield clues as to the molecular mechanism involved in radiation-induced BCC, suggesting that deregulation of ATM-NF-kB signaling and PINK1 gene expression may contribute to BCC radiation carcinogenesis and that the analyzed genes could represent candidate radiation biomarkers associated with radiation-induced BCC.
Collapse
Affiliation(s)
- Rim Jenni
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| | - Imen Nabouli
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| | - Anissa Zaouak
- Department of Dermatology, Habib Thameur Hospital (LR12SP03), Medicine Faculty, University Tunis El Manar, Tunis 1008, Tunisia
| | - Fatma Khanchel
- Anatomopathology Department, Habib Thameur Hospital (LR12SP03), Medicine Faculty, University Tunis El Manar, Tunis 1008, Tunisia
| | - Houda Hammami-Ghorbel
- Department of Dermatology, Habib Thameur Hospital (LR12SP03), Medicine Faculty, University Tunis El Manar, Tunis 1008, Tunisia
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| |
Collapse
|
12
|
FOXO3a Mediates Homologous Recombination Repair (HRR) via Transcriptional Activation of MRE11, BRCA1, BRIP1, and RAD50. Molecules 2022; 27:molecules27238623. [PMID: 36500714 PMCID: PMC9741359 DOI: 10.3390/molecules27238623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
To test whether homologous recombination repair (HRR) depends on FOXO3a, a cellular aging model of human dermal fibroblast (HDF) and tet-on flag-h-FOXO3a transgenic mice were studied. HDF cells transfected with over-expression of wt-h-FOXO3a increased the protein levels of MRE11, BRCA1, BRIP1, and RAD50, while knock-down with siFOXO3a decreased them. The protein levels of MRE11, BRCA1, BRIP1, RAD50, and RAD51 decreased during cellular aging. Chromatin immunoprecipitation (ChIP) assay was performed on FOXO3a binding accessibility to FOXO consensus sites in human MRE11, BRCA1, BRIP1, and RAD50 promoters; the results showed FOXO3a binding decreased during cellular aging. When the tet-on flag-h-FOXO3a mice were administered doxycycline orally, the protein and mRNA levels of flag-h-FOXO3a, MRE11, BRCA1, BRIP1, and RAD50 increased in a doxycycline-dose-dependent manner. In vitro HRR assays were performed by transfection with an HR vector and I-SceI vector. The mRNA levels of the recombined GFP increased after doxycycline treatment in MEF but not in wt-MEF, and increased in young HDF comparing to old HDF, indicating that FOXO3a activates HRR. Overall, these results demonstrate that MRE11, BRCA1, BRIP1, and RAD50 are transcriptional target genes for FOXO3a, and HRR activity is increased via transcriptional activation of MRE11, BRCA1, BRIP1, and RAD50 by FOXO3a.
Collapse
|
13
|
Zhang L, Smyth D, Al-Khalaf M, Blet A, Du Q, Bernick J, Gong M, Chi X, Oh Y, Roba-Oshin M, Coletta E, Feletou M, Gramolini AO, Kim KH, Coutinho T, Januzzi JL, Tyl B, Ziegler A, Liu PP. Insulin-like growth factor-binding protein-7 (IGFBP7) links senescence to heart failure. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1195-1214. [PMID: 39196168 PMCID: PMC11358005 DOI: 10.1038/s44161-022-00181-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/02/2022] [Indexed: 08/29/2024]
Abstract
Heart failure (HF) is a rising global cardiovascular epidemic driven by aging and chronic inflammation. As elderly populations continue to increase, precision treatments for age-related cardiac decline are urgently needed. Here we report that cardiac and blood expression of IGFBP7 is robustly increased in patients with chronic HF and in an HF mouse model. In a pressure overload mouse HF model, Igfbp7 deficiency attenuated cardiac dysfunction by reducing cardiac inflammatory injury, tissue fibrosis and cellular senescence. IGFBP7 promoted cardiac senescence by stimulating IGF-1R/IRS/AKT-dependent suppression of FOXO3a, preventing DNA repair and reactive oxygen species (ROS) detoxification, thereby accelerating the progression of HF. In vivo, AAV9-shRNA-mediated cardiac myocyte Igfbp7 knockdown indicated that myocardial IGFBP7 directly regulates pathological cardiac remodeling. Moreover, antibody-mediated IGFBP7 neutralization in vivo reversed IGFBP7-induced suppression of FOXO3a, restored DNA repair and ROS detoxification signals and attenuated pressure-overload-induced HF in mice. Consequently, selectively targeting IGFBP7-regulated senescence pathways may have broad therapeutic potential for HF.
Collapse
Affiliation(s)
- Liyong Zhang
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - David Smyth
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | | | - Alice Blet
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Qiujiang Du
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Jordan Bernick
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Michael Gong
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Xu Chi
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Yena Oh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Michel Feletou
- Cardiovascular and Metabolic Disease Center for Therapeutic Innovation, Institut de Recherches Internationales Servier, Suresnes, France
| | - Anthony O Gramolini
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Thais Coutinho
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - James L Januzzi
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Baim Institute for Clinical Research, Boston, MA, USA
| | - Benoit Tyl
- Cardiovascular and Metabolic Disease Center for Therapeutic Innovation, Institut de Recherches Internationales Servier, Suresnes, France
| | - Andre Ziegler
- Roche Diagnostics International, Ltd., Rotkreuz, Switzerland
| | - Peter P Liu
- University of Ottawa Heart Institute, Ottawa, ON, Canada.
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
14
|
Shiau JP, Chuang YT, Tang JY, Yang KH, Chang FR, Hou MF, Yen CY, Chang HW. The Impact of Oxidative Stress and AKT Pathway on Cancer Cell Functions and Its Application to Natural Products. Antioxidants (Basel) 2022; 11:1845. [PMID: 36139919 PMCID: PMC9495789 DOI: 10.3390/antiox11091845] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding. Notably, the contribution of regulating cell functions by AKT downstream effectors is not yet well integrated. This review explores the role of oxidative stress and AKT pathway (AKT/AKT effectors) on ten cell functions, including apoptosis, autophagy, endoplasmic reticulum stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, migration, and cell-cycle progression. The impact of oxidative stress and AKT are connected to these cell functions through cell function mediators. Moreover, the AKT effectors related to cell functions are integrated. Based on this rationale, natural products with the modulating abilities for oxidative stress and AKT pathway exhibit the potential to regulate these cell functions, but some were rarely reported, particularly for AKT effectors. This review sheds light on understanding the roles of oxidative stress and AKT pathway in regulating cell functions, providing future directions for natural products in cancer treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
15
|
Lee JH, Park J, Shin DW. The Molecular Mechanism of Polyphenols with Anti-Aging Activity in Aged Human Dermal Fibroblasts. Molecules 2022; 27:molecules27144351. [PMID: 35889225 PMCID: PMC9322955 DOI: 10.3390/molecules27144351] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Skin is the largest organ in the body comprised of three different layers including the epidermis, dermis, and hypodermis. The dermis is mainly composed of dermal fibroblasts and extracellular matrix (ECM), such as collagen and elastin, which are strongly related to skin elasticity and firmness. Skin is continuously exposed to different kinds of environmental stimuli. For example, ultraviolet (UV) radiation, air pollutants, or smoking aggravates skin aging. These external stimuli accelerate the aging process by reactive oxygen species (ROS)-mediated signaling pathways and even cause aging-related diseases. Skin aging is characterized by elasticity loss, wrinkle formation, a reduced dermal-epidermal junction, and delayed wound healing. Thus, many studies have shown that natural polyphenol compounds can delay the aging process by regulating age-related signaling pathways in aged dermal fibroblasts. This review first highlights the relationship between aging and its related molecular mechanisms. Then, we discuss the function and underlying mechanism of various polyphenols for improving skin aging. This study may provide essential insights for developing functional cosmetics and future clinical applications.
Collapse
Affiliation(s)
- Joo Hwa Lee
- College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea;
| | - Jooho Park
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea;
| | - Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea;
- Correspondence: ; Tel.: +82-43-840-3693
| |
Collapse
|
16
|
Liu Y, Wang Y, Li X, Jia Y, Wang J, Ao X. FOXO3a in cancer drug resistance. Cancer Lett 2022; 540:215724. [DOI: 10.1016/j.canlet.2022.215724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
|
17
|
Li J, Wang J, Li Y, Zhao P, Tian Y, Liu X, He H, Jia R. Effective-component compatibility of Bufei Yishen formula protects COPD rats against PM2.5-induced oxidative stress via miR-155/FOXO3a pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112918. [PMID: 34773846 DOI: 10.1016/j.ecoenv.2021.112918] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/02/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Ambient particulate matter <2.5 µm (PM2.5) has been identified as a critical risk factor in chronic obstructive pulmonary disease (COPD) exacerbation, but therapies for this condition are limited. Effective-component compatibility of Bufei Yishen formula (ECC-BYF) exhibits beneficial efficacy on COPD rats. However, its effect on PM2.5-aggravated COPD rats are considered to be uncertain. In this study, we used an established PM2.5-aggravated COPD rat model in vivo to evaluate the protective effect of ECC-BYF, and focused on its antioxidative role in PM2.5-stimulated bronchial epithelial cells via regulating microRNA (miR)-155/ forkhead box class O3a (FOXO3a) pathway. As expected, PM2.5-aggravated COPD rats showed a reduction of lung function, persistent lung inflammation, and remodeling of lung tissue. In comparison, ECC-BYF administration significantly enhanced lung function, alleviated alveolar destruction, inflammatory cell infiltration, mucus hypersecretion, and collagen deposition, along with diminishing inflammatory cytokine production and oxidative stress. Furthermore, ECC-BYF pretreatment markedly decreased the fluorescence intensity of reactive oxygen species (ROS) in PM2.5-induced human bronchial epithelial (Beas-2B) cells and primary mouse tracheal epithelial cells (MTECs), as well as reversing the imbalance between oxidants and antioxidants in Beas-2B. Meanwhile, ECC-BYF elevated FOXO3a while inhibiting miR-155 expression dose -dependently. In vitro transfection of miR-155 mimic into Beas-2B significantly decreased FOXO3a protein expression, accompanied by the reduced superoxide dismutase 2 (SOD2) and catalase (CAT) expressions, thus eliminating the protective effect of ECC-BYF on PM2.5-evoked oxidative stress. Nonethless, FOXO3a overexpression could partially restore the antioxidative effect of ECC-BYF. In conclusion, ECC-BYF can protect pre-existing COPD against PM2.5 contamination by exerting a profound antioxidative influence via regulating miR-155/FOXO3a signaling.
Collapse
Affiliation(s)
- Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Jing Wang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China; Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Ya Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China; Institute of Respiratory Disease and Centre Laboratory, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Peng Zhao
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China; Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Yange Tian
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China; Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Xuefang Liu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China; Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Huihui He
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Rui Jia
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
18
|
Krafczyk N, Klotz LO. FOXO transcription factors in antioxidant defense. IUBMB Life 2021; 74:53-61. [PMID: 34423888 DOI: 10.1002/iub.2542] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/30/2021] [Indexed: 01/15/2023]
Abstract
Forkhead box, class O (FOXO) family proteins are widely expressed and highly conserved transcriptional regulators that modulate cellular fuel metabolism, stress resistance and cell death. FOXO target genes include genes encoding antioxidant proteins, thus likely contributing to the key role FOXOs play in the cellular response to oxidative stress and supporting the cellular strategies of antioxidant defense, that is, prevention (of the formation of reactive oxygen species), interception (of reactive species prior to their reaction with cellular components), repair (of damaged biomolecules), and adaptation (i.e., the stimulation of signaling pathways allowing for the expression of protective proteins). FOXOs themselves are regulated by redox processes at several levels, including expression of FOXO genes and enzymatic as well as nonenzymatic posttranslational modifications of FOXO proteins. The latter include modifications of FOXO cysteine residues. Here, an overview is provided on (i) the contribution of FOXO target genes to cellular antioxidative strategies, and (ii) on the impact of thiol homeostasis and thiol modification on FOXO activity.
Collapse
Affiliation(s)
- Niklas Krafczyk
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Lars-Oliver Klotz
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
19
|
Forkhead Transcription Factors in Health and Disease. Trends Genet 2021; 37:460-475. [DOI: 10.1016/j.tig.2020.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
|
20
|
Zhang G, Shi W, Jia E, Zhang L, Han Y, Rodriguez R, Ma T. FOXO3A Expression in Upper Tract Urothelial Carcinoma. Front Oncol 2021; 11:603681. [PMID: 33959492 PMCID: PMC8093621 DOI: 10.3389/fonc.2021.603681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Background Epidemiological studies have reported various results regarding whether FOXO3A is related to various carcinomas. However, the prognostic significance of FOXO3A in upper tract urothelial carcinoma (UTUC) remains unclear. The purpose of this study was to validate the correlation between FOXO3A expression and oncological outcomes in UTUC. Methods The expression levels of FOXO3A in 107 UTUC patients were examined by immunohistochemistry (IHC). We examined the prognostic role of FOXO3A by using the Cox proportional hazard model. Results The results indicated that FOXO3A expression was notably decreased in UTUC tissue compared with control tissue. Decreased expression of FOXO3A was also related to advanced pathologic stage (P = 0.026), lymph node metastasis (P = 0.040), lymphovascular invasion (P < 0.001), and adjuvant therapy (P = 0.048). In addition, UTUC patients with low FOXO3A expression had a significantly shorter survival time, including both overall survival (OS) [hazard ratio (HR) 2.382, P = 0.004] and recurrence-free survival (RFS) (HR 2.385, P = 0.004), than those with high expression. Multivariate analyses showed that FOXO3A was a significant predictor for OS (HR 2.145, P = 0.014) and RFS (HR 2.227, P = 0.010) in UTUC patients. Conclusion Our results indicate that FOXO3A may be involved in the recurrence of UTUC and that it has certain clinical value in the therapeutic targeting and prognostic evaluation of UTUC.
Collapse
Affiliation(s)
- Guoyao Zhang
- Department of Oncology, Luohe Central Hospital, The First Affiliated Hospital of Luohe Medical College, Luohe, China
| | - Wanping Shi
- Department of Oncology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Enzhao Jia
- Department of Pathology, Luohe Central Hospital, The First Affiliated Hospital of Luohe Medical College, Luohe, China
| | - Lei Zhang
- Department of Oncology, Luohe Central Hospital, The First Affiliated Hospital of Luohe Medical College, Luohe, China
| | - Yongsheng Han
- Department of General Surgery, School of Medicine, Qinghai University, Xining, China
| | - Ronald Rodriguez
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - Tianjiang Ma
- Department of Oncology, Luohe Central Hospital, The First Affiliated Hospital of Luohe Medical College, Luohe, China
| |
Collapse
|
21
|
White RR, Maslov AY, Lee M, Wilner SE, Levy M, Vijg J. FOXO3a acts to suppress DNA double-strand break-induced mutations. Aging Cell 2020; 19:e13184. [PMID: 32720744 PMCID: PMC7511859 DOI: 10.1111/acel.13184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 04/24/2020] [Accepted: 06/06/2020] [Indexed: 11/27/2022] Open
Abstract
Genomic instability is one of the hallmarks of aging, and both DNA damage and mutations have been found to accumulate with age in different species. Certain gene families, such as sirtuins and the FoxO family of transcription factors, have been shown to play a role in lifespan extension. However, the mechanism(s) underlying the increased longevity associated with these genes remains largely unknown and may involve the regulation of responses to cellular stressors, such as DNA damage. Here, we report that FOXO3a reduces genomic instability in cultured mouse embryonic fibroblasts (MEFs) treated with agents that induce DNA double-strand breaks (DSBs), that is, clastogens. We show that DSB treatment of both primary human and mouse fibroblasts upregulates FOXO3a expression. FOXO3a ablation in MEFs harboring the mutational reporter gene lacZ resulted in an increase in genome rearrangements after bleomycin treatment; conversely, overexpression of human FOXO3a was found to suppress mutation accumulation in response to bleomycin. We also show that overexpression of FOXO3a in human primary fibroblasts decreases DSB-induced γH2AX foci. Knocking out FOXO3a in mES cells increased the frequency of homologous recombination and non-homologous end-joining events. These results provide the first direct evidence that FOXO3a plays a role in suppressing genome instability, possibly by suppressing genome rearrangements.
Collapse
Affiliation(s)
- Ryan R. White
- Department of GeneticsAlbert Einstein College of MedicineBronxNew YorkUSA
| | | | - Moonsook Lee
- Department of GeneticsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Samantha E. Wilner
- Department of BiochemistryAlbert Einstein College of MedicineBronxNew YorkUSA
- Present address:
Chemistry DepartmentUrsinus CollegeCollegevillePennsylvaniaUSA
| | - Matthew Levy
- Department of BiochemistryAlbert Einstein College of MedicineBronxNew YorkUSA
- Present address:
Vitrisa TherapeuticsDurhamNorth CarolinaUSA
| | - Jan Vijg
- Department of GeneticsAlbert Einstein College of MedicineBronxNew YorkUSA
- Center for Single‐Cell Omics in Aging and DiseaseSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|