1
|
Key J, Almaguer-Mederos LE, Kandi AR, Sen NE, Gispert S, Köpf G, Meierhofer D, Auburger G. ATXN2L primarily interacts with NUFIP2, the absence of ATXN2L results in NUFIP2 depletion, and the ATXN2-polyQ expansion triggers NUFIP2 accumulation. Neurobiol Dis 2025; 209:106903. [PMID: 40220918 DOI: 10.1016/j.nbd.2025.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
The cytoplasmic Ataxin-2 (ATXN2) protein associates with TDP-43 in stress granules (SG) where RNA quality control occurs. Mutations in this pathway underlie Spinocerebellar Ataxia type 2 (SCA2) and Amyotrophic Lateral Sclerosis. In contrast, Ataxin-2-like (ATXN2L) is predominantly perinuclear, more abundant, and essential for embryonic life. Its sequestration into ATXN2 aggregates may contribute to disease. In this study, we utilized two approaches to clarify the roles of ATXN2L. First, we identified interactors through co-immunoprecipitation in both wild-type and ATXN2L-null murine embryonic fibroblasts. Second, we assessed the proteome profile effects using mass spectrometry in these cells. Additionally, we examined the accumulation of ATXN2L interactors in the SCA2 mouse model, Atxn2-CAG100-KnockIn (KIN). We observed that RNA-binding proteins, including PABPN1, NUFIP2, MCRIP2, RBMS1, LARP1, PTBP1, FMR1, RPS20, FUBP3, MBNL2, ZMAT3, SFPQ, CSDE1, HNRNPK, and HNRNPDL, exhibit a stronger association with ATXN2L compared to established interactors like ATXN2, PABPC1, LSM12, and G3BP2. Additionally, ATXN2L interacted with components of the actin complex, such as SYNE2, LMOD1, ACTA2, FYB, and GOLGA3. We noted that oxidative stress increased HNRNPK but decreased SYNE2 association, which likely reflects the relocalization of SG. Proteome profiling revealed that NUFIP2 and SYNE2 are depleted in ATXN2L-null fibroblasts. Furthermore, NUFIP2 homodimers and SYNE1 accumulate during the ATXN2 aggregation process in KIN 14-month-old spinal cord tissues. The functions of ATXN2L and its interactors are therefore critical in RNA granule trafficking and surveillance, particularly for the maintenance of differentiated neurons.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Gabriele Köpf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany; Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Fachbereich Medizin, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Podraza-Farhanieh A, Spinelli R, Zatterale F, Nerstedt A, Gogg S, Blüher M, Smith U. Physical training reduces cell senescence and associated insulin resistance in skeletal muscle. Mol Metab 2025; 95:102130. [PMID: 40127780 PMCID: PMC11994356 DOI: 10.1016/j.molmet.2025.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Cell senescence (CS) is a key aging process that leads to irreversible cell cycle arrest and an altered secretory phenotype. In skeletal muscle (SkM), the accumulation of senescent cells contributes to sarcopenia. Despite exercise being a known intervention for maintaining SkM function and metabolic health, its effects on CS remain poorly understood. OBJECTIVES This study aimed to investigate the impact of exercise on CS in human SkM by analyzing muscle biopsies from young, normal-weight individuals and middle-aged individuals with obesity, both before and after exercise intervention. METHODS Muscle biopsies were collected from both groups before and after an exercise intervention. CS markers, insulin sensitivity (measured with euglycemic clamp), and satellite cell markers were analyzed. Additionally, in vitro experiments were conducted to evaluate the effects of cellular senescence on human satellite cells, focusing on key regulatory genes and insulin signaling. RESULTS Individuals with obesity showed significantly elevated CS markers, along with reduced expression of GLUT4 and PAX7, indicating impaired insulin action and regenerative potential. Exercise improved insulin sensitivity, reduced CS markers, and activated satellite cell response in both groups. In vitro experiments revealed that senescence downregulated key regulatory genes in satellite cells and impaired insulin signaling by reducing the Insulin Receptor β-subunit. CONCLUSIONS These findings highlight the role of CS in regulating insulin sensitivity in SkM and underscore the therapeutic potential of exercise in mitigating age- and obesity-related muscle dysfunction. Targeting CS through exercise or senolytic agents could offer a promising strategy for improving metabolic health and combating sarcopenia, particularly in at-risk populations.
Collapse
Affiliation(s)
- Agnieszka Podraza-Farhanieh
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
| | - Rosa Spinelli
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden; Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy
| | - Federica Zatterale
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden; Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy
| | - Annika Nerstedt
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
| | - Silvia Gogg
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden.
| |
Collapse
|
3
|
Zhao Y, Yue R. White adipose tissue in type 2 diabetes and the effect of antidiabetic drugs. Diabetol Metab Syndr 2025; 17:116. [PMID: 40186308 PMCID: PMC11969724 DOI: 10.1186/s13098-025-01678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
White adipose tissue (WAT) is highly flexible and was previously considered a passive location for energy storage. Its endocrine function has been established for several years, earning it the title of an "endocrine organ" due to its ability to secrete many adipokines that regulate metabolism. WAT is one of the core tissues that influence insulin sensitivity. Its dysfunction enhances insulin resistance and type 2 diabetes (T2D) progression. However, T2D may cause WAT dysfunction, including changes in distribution, metabolism, adipocyte hypertrophy, inflammation, aging, and adipokines and free fatty acid levels, which may exacerbate insulin resistance. This review used PubMed to search WAT dysfunction in T2D and the effects of these changes on insulin resistance. Additionally, we described and discussed the effects of antidiabetic drugs, including insulin therapy, sulfonylureas, metformin, glucose-like peptide-1 receptor agonists, thiazolidinediones, and sodium-dependent glucose transporters-2 inhibitors, on WAT parameters under T2D conditions.
Collapse
Affiliation(s)
- Yixuan Zhao
- Chengdu University of Traditional Chinese Medicine, Hospital of Chengdu, University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan Province, 610072, P. R. China
| | - Rensong Yue
- Chengdu University of Traditional Chinese Medicine, Hospital of Chengdu, University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan Province, 610072, P. R. China.
| |
Collapse
|
4
|
Balamurli G, Liew AQX, Tee WW, Pervaiz S. Interplay between epigenetics, senescence and cellular redox metabolism in cancer and its therapeutic implications. Redox Biol 2024; 78:103441. [PMID: 39612910 PMCID: PMC11629570 DOI: 10.1016/j.redox.2024.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
There is accumulating evidence indicating a close crosstalk between key molecular events regulating cell growth and proliferation, which could profoundly impact carcinogenesis and its progression. Here we focus on reviewing observations highlighting the interplay between epigenetic modifications, irreversible cell cycle arrest or senescence, and cellular redox metabolism. Epigenetic alterations, such as DNA methylation and histone modifications, dynamically influence tumour transcriptome, thereby impacting tumour phenotype, survival, growth and spread. Interestingly, the acquisition of senescent phenotype can be triggered by epigenetic changes, acting as a double-edged sword via its ability to suppress tumorigenesis or by facilitating an inflammatory milieu conducive for cancer progression. Concurrently, an aberrant redox metabolism, which is a function of the balance between reactive oxygen species (ROS) generation and intracellular anti-oxidant defences, influences signalling cascades and genomic stability in cancer cells by serving as a critical link between epigenetics and senescence. Recognizing this intricate interconnection offers a nuanced perspective for therapeutic intervention by simultaneously targeting specific epigenetic modifications, modulating senescence dynamics, and restoring redox homeostasis.
Collapse
Affiliation(s)
- Geoffrey Balamurli
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Angeline Qiu Xia Liew
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore
| | - Wee Wei Tee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore; NUS Medicine Healthy Longevity Program, NUS, Singapore; National University Cancer Institute, National University Health System, Singapore.
| |
Collapse
|
5
|
Alur V, Vastrad B, Raju V, Vastrad C, Kotturshetti S. The identification of key genes and pathways in polycystic ovary syndrome by bioinformatics analysis of next-generation sequencing data. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2024; 29:53. [DOI: 10.1186/s43043-024-00212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025] Open
Abstract
Abstract
Background
Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder. The specific molecular mechanism of PCOS remains unclear. The aim of this study was to apply a bioinformatics approach to reveal related pathways or genes involved in the development of PCOS.
Methods
The next-generation sequencing (NGS) dataset GSE199225 was downloaded from the gene expression omnibus (GEO) database and NGS dataset analyzed is obtained from in vitro culture of PCOS patients’ muscle cells and muscle cells of healthy lean control women. Differentially expressed gene (DEG) analysis was performed using DESeq2. The g:Profiler was utilized to analyze the gene ontology (GO) and REACTOME pathways of the differentially expressed genes. A protein–protein interaction (PPI) network was constructed and module analysis was performed using HiPPIE and cytoscape. The miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed. The hub genes were validated by using receiver operating characteristic (ROC) curve analysis.
Results
We have identified 957 DEG in total, including 478 upregulated genes and 479 downregulated gene. GO terms and REACTOME pathways illustrated that DEG were significantly enriched in regulation of molecular function, developmental process, interferon signaling and platelet activation, signaling, and aggregation. The top 5 upregulated hub genes including HSPA5, PLK1, RIN3, DBN1, and CCDC85B and top 5 downregulated hub genes including DISC1, AR, MTUS2, LYN, and TCF4 might be associated with PCOS. The hub gens of HSPA5 and KMT2A, together with corresponding predicted miRNAs (e.g., hsa-mir-34b-5p and hsa-mir-378a-5p), and HSPA5 and TCF4 together with corresponding predicted TF (e.g., RCOR3 and TEAD4) were found to be significantly correlated with PCOS.
Conclusions
These study uses of bioinformatics analysis of NGS data to obtain hub genes and key signaling pathways related to PCOS and its associated complications. Also provides novel ideas for finding biomarkers and treatment methods for PCOS and its associated complications.
Collapse
|
6
|
Desiderio A, Pastorino M, Campitelli M, Prevenzano I, De Palma FDE, Spinelli R, Parrillo L, Longo M, Milone M, Miele C, Raciti GA, Beguinot F. Hypomethylation at PANDAR promoter progressively induces senescence in adipocyte precursor cells in subjects with obesity and type 2 diabetes. FASEB J 2024; 38:e70093. [PMID: 39373976 DOI: 10.1096/fj.202401470r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
The risk of developing type 2 diabetes (T2D) is heterogeneous among individuals with obesity. Functional decline of adipocyte precursor cells (APCs) and accumulation of senescent cells in the subcutaneous adipose tissue contributes to the progression toward T2D. LncRNAs regulate cell senescence and may be implicated in determining this abnormality in APCs. Here, we report that APCs from individuals with obesity show a gradual increase in multiple senescence markers, which worsens in parallel with the progression from normal glucose tolerance (NGT) to impaired glucose tolerance (IGT) or T2D. Transcriptomic analysis identified PANDAR as the top-ranked lncRNA differentially expressed in APCs from individuals with obesity and T2D and non-obese subjects. Q-PCR confirmed PANDAR up-regulation in APCs from individuals with obesity, at progressively increased levels in those who developed, respectively, IGT and T2D. Bisulfite sequencing and luciferase assays revealed that, in parallel with glucose tolerance deterioration, the -1317 CpG at the PANDAR promoter became hypo-methylated in obesity, resulting in enhanced PANDAR induction by p53. PANDAR silencing in senescent APCs from individuals with obesity and T2D caused repression of senescence programs and cell cycle re-entry. PANDAR transcription in white blood cells (WBCs) mirrored that in APCs. Also, individuals with obesity exhibited rescue of PANDAR transcription in WBCs following bariatric surgery, accompanied by enhanced methylation at the regulatory PANDAR -1317 CpG. In conclusion, PANDAR dysregulation is a newly identified mechanism determining the early senescence of APCs from individuals with obesity, which worsens along the progression toward T2D. In the future, PANDAR targeting may represent a valuable strategy to delay this progression.
Collapse
Affiliation(s)
- Antonella Desiderio
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Monica Pastorino
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
- Department of Molecular Medicine and Biotechnology, Federico II University of Naples, Naples, Italy
| | - Michele Campitelli
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Immacolata Prevenzano
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | | | - Rosa Spinelli
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Luca Parrillo
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Michele Longo
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Marco Milone
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Claudia Miele
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Gregory Alexander Raciti
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| |
Collapse
|
7
|
Williams ZJ, Chow L, Dow S, Pezzanite LM. The potential for senotherapy as a novel approach to extend life quality in veterinary medicine. Front Vet Sci 2024; 11:1369153. [PMID: 38812556 PMCID: PMC11133588 DOI: 10.3389/fvets.2024.1369153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Cellular senescence, a condition where cells undergo arrest and can assume an inflammatory phenotype, has been associated with initiation and perpetuation of inflammation driving multiple disease processes in rodent models and humans. Senescent cells secrete inflammatory cytokines, proteins, and matrix metalloproteinases, termed the senescence associated secretory phenotype (SASP), which accelerates the aging processes. In preclinical models, drug interventions termed "senotherapeutics" selectively clear senescent cells and represent a promising strategy to prevent or treat multiple age-related conditions in humans and veterinary species. In this review, we summarize the current available literature describing in vitro evidence for senotheraputic activity, preclinical models of disease, ongoing human clinical trials, and potential clinical applications in veterinary medicine. These promising data to date provide further justification for future studies identifying the most active senotherapeutic combinations, dosages, and routes of administration for use in veterinary medicine.
Collapse
Affiliation(s)
- Zoë J. Williams
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lynn M. Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
8
|
Šiklová M, Šrámková V, Koc M, Krauzová E, Čížková T, Ondrůjová B, Wilhelm M, Varaliová Z, Kuda O, Neubert J, Lambert L, Elkalaf M, Gojda J, Rossmeislová L. The role of adipogenic capacity and dysfunctional subcutaneous adipose tissue in the inheritance of type 2 diabetes mellitus: cross-sectional study. Obesity (Silver Spring) 2024; 32:547-559. [PMID: 38221680 DOI: 10.1002/oby.23969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVE This study tested the hypothesis that limited subcutaneous adipose tissue (SAT) expansion represents a primary predisposition to the development of type 2 diabetes mellitus (T2DM), independent of obesity, and identified novel markers of SAT dysfunction in the inheritance of T2DM. METHODS First-degree relatives (FDR) of T2DM patients (n = 19) and control individuals (n = 19) without obesity (fat mass < 25%) were cross-sectionally compared. Body composition (bioimpedance, computed tomography) and insulin sensitivity (IS; oral glucose tolerance test, clamp) were measured. SAT obtained by needle biopsy was used to analyze adipocyte size, lipidome, mRNA expression, and inflammatory markers. Primary cultures of adipose precursors were analyzed for adipogenic capacity and metabolism. RESULTS Compared with control individuals, FDR individuals had lower IS and a higher amount of visceral fat. However, SAT-derived adipose precursors did not differ in their ability to proliferate and differentiate or in metabolic parameters (lipolysis, mitochondrial oxidation). In SAT of FDR individuals, lipidomic and mRNA expression analysis revealed accumulation of triglycerides containing polyunsaturated fatty acids and increased mRNA expression of lysyl oxidase (LOX). These parameters correlated with IS, visceral fat accumulation, and mRNA expression of inflammatory and cellular stress genes. CONCLUSIONS The intrinsic adipogenic potential of SAT is not affected by a family history of T2DM. However, alterations in LOX mRNA and polyunsaturated fatty acids in triacylglycerols are likely related to the risk of developing T2DM independent of obesity.
Collapse
Affiliation(s)
- Michaela Šiklová
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Šrámková
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Koc
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Krauzová
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Internal Medicine, Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Terezie Čížková
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Ondrůjová
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marek Wilhelm
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zuzana Varaliová
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Neubert
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lukáš Lambert
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Moustafa Elkalaf
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Gojda
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Internal Medicine, Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Lenka Rossmeislová
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
9
|
He W, Tang M, Gu R, Wu X, Mu X, Nie X. The Role of p53 in Regulating Chronic Inflammation and PANoptosis in Diabetic Wounds. Aging Dis 2024; 16:AD.2024.0212. [PMID: 38377027 PMCID: PMC11745441 DOI: 10.14336/ad.2024.0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
Diabetic wounds represent a formidable challenge in the clinical management of diabetes mellitus, markedly diminishing the patient's quality of life. These wounds arise from a multifaceted etiology, with the pathophysiological underpinnings remaining elusive and complex. Diabetes precipitates neuropathies and vasculopathies in the lower extremities, culminating in infections, ulcerations, and extensive tissue damage. The hallmarks of non-healing diabetic wounds include senescence, persistent inflammation, heightened apoptosis, and attenuated cellular proliferation. The TP53 gene, a pivotal tumor suppressor frequently silenced in human malignancies, orchestrates cellular proliferation, senescence, DNA repair, and apoptosis. While p53 is integral in cell cycle regulation, its role in initial tissue repair appears to be deleterious. In typical cutaneous wounds, p53 levels transiently dip, swiftly reverting to baseline. Yet in diabetic wounds, protracted p53 activation impedes healing via two distinct pathways: i) activating the p53-p21-Retinoblastoma (RB) axis, which halts the cell cycle, and ii) upregulating the cGAS-STING and nuclear factor-kappaB (NF-κB) cascades, instigating ferroptosis and pyroptosis. Furthermore, p53 intersects with various metabolic pathways, including glycolysis, gluconeogenesis, oxidative phosphorylation, and autophagy. In diabetic wounds, p53 may drive metabolic reprogramming, thus potentially derailing macrophage polarization. This review synthesizes case studies investigating the therapeutic modulation of p53 in diabetic wounds care. In summation, p53 modulates chronic inflammation and cellular aging within diabetic cutaneous wounds and is implicated in a novel cell death modality, encompassing ferroptosis and pyroptosis, which hinders the reparative process.
Collapse
Affiliation(s)
- Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Ming Tang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis 38105, USA.
| | - Rifang Gu
- School Medical Office, Zunyi Medical University, Zunyi 563006, China.
| | - Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xinrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
10
|
Wu Z, Qu J, Zhang W, Liu GH. Stress, epigenetics, and aging: Unraveling the intricate crosstalk. Mol Cell 2024; 84:34-54. [PMID: 37963471 DOI: 10.1016/j.molcel.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023]
Abstract
Aging, as a complex process involving multiple cellular and molecular pathways, is known to be exacerbated by various stresses. Because responses to these stresses, such as oxidative stress and genotoxic stress, are known to interplay with the epigenome and thereby contribute to the development of age-related diseases, investigations into how such epigenetic mechanisms alter gene expression and maintenance of cellular homeostasis is an active research area. In this review, we highlight recent studies investigating the intricate relationship between stress and aging, including its underlying epigenetic basis; describe different types of stresses that originate from both internal and external stimuli; and discuss potential interventions aimed at alleviating stress and restoring epigenetic patterns to combat aging or age-related diseases. Additionally, we address the challenges currently limiting advancement in this burgeoning field.
Collapse
Affiliation(s)
- Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
11
|
Longo M, Zatterale F, Spinelli R, Naderi J, Parrillo L, Florese P, Nigro C, Leone A, Moccia A, Desiderio A, Raciti GA, Miele C, Smith U, Beguinot F. Altered H3K4me3 profile at the TFAM promoter causes mitochondrial alterations in preadipocytes from first-degree relatives of type 2 diabetics. Clin Epigenetics 2023; 15:144. [PMID: 37679776 PMCID: PMC10486065 DOI: 10.1186/s13148-023-01556-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND First-degree relatives of type 2 diabetics (FDR) exhibit a high risk of developing type 2 diabetes (T2D) and feature subcutaneous adipocyte hypertrophy, independent of obesity. In FDR, adipose cell abnormalities contribute to early insulin-resistance and are determined by adipocyte precursor cells (APCs) early senescence and impaired recruitment into the adipogenic pathway. Epigenetic mechanisms signal adipocyte differentiation, leading us to hypothesize that abnormal epigenetic modifications cause adipocyte dysfunction and enhance T2D risk. To test this hypothesis, we examined the genome-wide histone profile in APCs from the subcutaneous adipose tissue of healthy FDR. RESULTS Sequencing-data analysis revealed 2644 regions differentially enriched in lysine 4 tri-methylated H3-histone (H3K4me3) in FDR compared to controls (CTRL) with significant enrichment in mitochondrial-related genes. These included TFAM, which regulates mitochondrial DNA (mtDNA) content and stability. In FDR APCs, a significant reduction in H3K4me3 abundance at the TFAM promoter was accompanied by a reduction in TFAM mRNA and protein levels. FDR APCs also exhibited reduced mtDNA content and mitochondrial-genome transcription. In parallel, FDR APCs exhibited impaired differentiation and TFAM induction during adipogenesis. In CTRL APCs, TFAM-siRNA reduced mtDNA content, mitochondrial transcription and adipocyte differentiation in parallel with upregulation of the CDKN1A and ZMAT3 senescence genes. Furthermore, TFAM-siRNA significantly expanded hydrogen peroxide (H2O2)-induced senescence, while H2O2 did not affect TFAM expression. CONCLUSIONS Histone modifications regulate APCs ability to differentiate in mature cells, at least in part by modulating TFAM expression and affecting mitochondrial function. Reduced H3K4me3 enrichment at the TFAM promoter renders human APCs senescent and dysfunctional, increasing T2D risk.
Collapse
Affiliation(s)
- Michele Longo
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Federica Zatterale
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Rosa Spinelli
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Jamal Naderi
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Luca Parrillo
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Pasqualina Florese
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Cecilia Nigro
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Alessia Leone
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Augusta Moccia
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Antonella Desiderio
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Gregory A Raciti
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy.
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.
| | - Claudia Miele
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy.
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.
| |
Collapse
|
12
|
Nerstedt A, Smith U. The impact of cellular senescence in human adipose tissue. J Cell Commun Signal 2023; 17:563-573. [PMID: 37195383 PMCID: PMC10409694 DOI: 10.1007/s12079-023-00769-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/07/2023] [Indexed: 05/18/2023] Open
Abstract
In the last decades the prevalence of obesity has increased dramatically, and the worldwide epidemic of obesity and related metabolic diseases has contributed to an increased interest for the adipose tissue (AT), the primary site for storage of lipids, as a metabolically dynamic and endocrine organ. Subcutaneous AT is the depot with the largest capacity to store excess energy and when its limit for storage is reached hypertrophic obesity, local inflammation, insulin resistance and ultimately type 2 diabetes (T2D) will develop. Hypertrophic AT is also associated with a dysfunctional adipogenesis, depending on the inability to recruit and differentiate new mature adipose cells. Lately, cellular senescence (CS), an aging mechanism defined as an irreversible growth arrest that occurs in response to various cellular stressors, such as telomere shortening, DNA damage and oxidative stress, has gained a lot of attention as a regulator of metabolic tissues and aging-associated conditions. The abundance of senescent cells increases not only with aging but also in hypertrophic obesity independent of age. Senescent AT is characterized by dysfunctional cells, increased inflammation, decreased insulin sensitivity and lipid storage. AT resident cells, such as progenitor cells (APC), non-proliferating mature cells and microvascular endothelial cells are affected with an increased senescence burden. Dysfunctional APC have both an impaired adipogenic and proliferative capacity. Interestingly, human mature adipose cells from obese hyperinsulinemic individuals have been shown to re-enter the cell cycle and senesce, which indicates an increased endoreplication. CS was also found to be more pronounced in mature cells from T2D individuals, compared to matched non-diabetic individuals, with decreased insulin sensitivity and adipogenic capacity. Factors associated with cellular senescence in human adipose tissue.
Collapse
Affiliation(s)
- Annika Nerstedt
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 5, SE-413 45, Gothenburg, Sweden
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 5, SE-413 45, Gothenburg, Sweden.
| |
Collapse
|
13
|
Wang M, Cheng L, Gao Z, Li J, Ding Y, Shi R, Xiang Q, Chen X. Investigation of the shared molecular mechanisms and hub genes between myocardial infarction and depression. Front Cardiovasc Med 2023; 10:1203168. [PMID: 37547246 PMCID: PMC10401437 DOI: 10.3389/fcvm.2023.1203168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Background The pathogenesis of myocardial infarction complicating depression is still not fully understood. Bioinformatics is an effective method to study the shared pathogenesis of multiple diseases and has important application value in myocardial infarction complicating depression. Methods The differentially expressed genes (DEGs) between control group and myocardial infarction group (M-DEGs), control group and depression group (D-DEGs) were identified in the training set. M-DEGs and D-DEGs were intersected to obtain DEGs shared by the two diseases (S-DEGs). The GO, KEGG, GSEA and correlation analysis were conducted to analyze the function of DEGs. The biological function differences of myocardial infarction and depression were analyzed by GSVA and immune cell infiltration analysis. Four machine learning methods, nomogram, ROC analysis, calibration curve and decision curve were conducted to identify hub S-DEGs and predict depression risk. The unsupervised cluster analysis was constructed to identify myocardial infarction molecular subtype clusters based on hub S-DEGs. Finally, the value of these genes was verified in the validation set, and blood samples were collected for RT-qPCR experiments to further verify the changes in expression levels of these genes in myocardial infarction and depression. Results A total of 803 M-DEGs, 214 D-DEGs, 13 S-DEGs and 6 hub S-DEGs (CD24, CSTA, EXTL3, RPS7, SLC25A5 and ZMAT3) were obtained in the training set and they were all involved in immune inflammatory response. The GSVA and immune cell infiltration analysis results also suggested that immune inflammation may be the shared pathogenesis of myocardial infarction and depression. The diagnostic models based on 6 hub S-DEGs found that these genes showed satisfactory combined diagnostic performance for depression. Then, two molecular subtypes clusters of myocardial infarction were identified, many differences in immune inflammation related-biological functions were found between them, and the hub S-DEGs had satisfactory molecular subtypes identification performance. Finally, the analysis results of the validation set further confirmed the value of these hub genes, and the RT-qPCR results of blood samples further confirmed the expression levels of these hub genes in myocardial infarction and depression. Conclusion Immune inflammation may be the shared pathogenesis of myocardial infarction and depression. Meanwhile, hub S-DEGs may be potential biomarkers for the diagnosis and molecular subtype identification of myocardial infarction and depression.
Collapse
Affiliation(s)
- Mengxi Wang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liying Cheng
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ziwei Gao
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianghong Li
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuhan Ding
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruijie Shi
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Xiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohu Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Kasho AKA, Nahand JS, Salmaninejad A, Mirzaei H, Moghoofei M, Bazmani A, Aghbash PS, Rasizadeh R, Farsad-Akhtar N, Baghi HB. PBMC MicroRNAs: Promising Biomarkers for the Differential Diagnosis of COVID-19 Patients with Abnormal Coagulation Indices. Curr Microbiol 2023; 80:248. [PMID: 37341794 DOI: 10.1007/s00284-023-03365-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
MicroRNAs, or miRNAs, may involve in coagulation and inflammation pathways caused by severe Coronavirus disease (COVID-19). Accordingly, this attempt was made to explore the behavior of peripheral blood mononuclear cells (PBMCs) miRNAs as effective biomarkers to diagnose COVID-19 patients with normal and abnormal coagulation indices. We selected the targeted miRNAs (miR-19a-3p, miR-223-3p, miR-143-5p, miR-494-3p and miR-301a-5p) according to previous reports, whose PBMC levels were then determined by real-time PCR. Receiver operating characteristic (ROC) curve was obtained to clarify the diagnostic potency of studied miRNAs. The differentially expressed miRNA profiles and corresponding biological activities were predicted in accordance with bioinformatics data. Targeted miRNAs' expression profiles displayed a significant difference between COVID-19 subjects with normal and abnormal coagulation indices. Moreover, the average miR-223-3p level expressed in COVID-19 cases with normal coagulation indices was significantly lower than that in healthy controls. Based on data from ROC analysis, miR-223-3p and miR-494-3p are promising biomarkers to distinguish the COVID-19 cases with normal or abnormal coagulation indices. Bioinformatics data highlighted the prominent role of selected miRNAs in the inflammation and TGF-beta signaling pathway. The differences existed in the expression profiles of selected miRNAs between the groups introduced miR-494-3p and miR-223-3p as potent biomarkers to prognosis the incidence of COVID-19.
Collapse
Affiliation(s)
- Ammar Khalo Abass Kasho
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Iraqi Ministry of Higher Education and Scientific Research, Tal Afar University, Tal Afar, Iraq
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
| | - Arash Salmaninejad
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Medical Genetics, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Moghoofei
- Infectious Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reyhaneh Rasizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad-Akhtar
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Spinelli R, Baboota RK, Gogg S, Beguinot F, Blüher M, Nerstedt A, Smith U. Increased cell senescence in human metabolic disorders. J Clin Invest 2023; 133:e169922. [PMID: 37317964 DOI: 10.1172/jci169922] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Cell senescence (CS) is at the nexus between aging and associated chronic disorders, and aging increases the burden of CS in all major metabolic tissues. However, CS is also increased in adult obesity, type 2 diabetes (T2D), and nonalcoholic fatty liver disease independent of aging. Senescent tissues are characterized by dysfunctional cells and increased inflammation, and both progenitor cells and mature, fully differentiated and nonproliferating cells are afflicted. Recent studies have shown that hyperinsulinemia and associated insulin resistance (IR) promote CS in both human adipose and liver cells. Similarly, increased CS promotes cellular IR, showing their interdependence. Furthermore, the increased adipose CS in T2D is independent of age, BMI, and degree of hyperinsulinemia, suggesting premature aging. These results suggest that senomorphic/senolytic therapy may become important for treating these common metabolic disorders.
Collapse
Affiliation(s)
- Rosa Spinelli
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Ritesh Kumar Baboota
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Evotec International GmbH, Göttingen, Germany
| | - Silvia Gogg
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Francesco Beguinot
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Annika Nerstedt
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Muñoz VR, Gaspar RC, Mancini MCS, de Lima RD, Vieira RFL, Crisol BM, Antunes GC, Trombeta JCS, Bonfante ILP, Simabuco FM, da Silva ASR, Cavaglieri CR, Ropelle ER, Cintra DE, Pauli JR. Short-term physical exercise controls age-related hyperinsulinemia and improves hepatic metabolism in aged rodents. J Endocrinol Invest 2023; 46:815-827. [PMID: 36318449 DOI: 10.1007/s40618-022-01947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/19/2022] [Indexed: 03/18/2023]
Abstract
PURPOSE Aging is associated with changes in glucose homeostasis related to both decreased insulin secretion and/or impaired insulin action, contributing to the high prevalence of type 2 diabetes (T2D) in the elderly population. Additionally, studies are showing that chronically high levels of circulating insulin can also lead to insulin resistance. In contrast, physical exercise has been a strategy used to improve insulin sensitivity and metabolic health. However, the molecular alterations resulting from the effects of physical exercise in the liver on age-related hyperinsulinemia conditions are not yet fully established. This study aimed to investigate the effects of 7 days of aerobic exercise on hepatic metabolism in aged hyperinsulinemic rats (i.e., Wistar and F344) and in Slc2a4+/- mice (hyperglycemic and hyperinsulinemic mice). RESULTS Both aged models showed alterations in insulin and glucose tolerance, which were associated with essential changes in hepatic fat metabolism (lipogenesis, gluconeogenesis, and inflammation). In contrast, 7 days of physical exercise was efficient in improving whole-body glucose and insulin sensitivity, and hepatic metabolism. The Slc2a4+/- mice presented significant metabolic impairments (insulin resistance and hepatic fat accumulation) that were improved by short-term exercise training. In this scenario, high circulating insulin may be an important contributor to age-related insulin resistance and hepatic disarrangements in some specific conditions. CONCLUSION In conclusion, our data demonstrated that short-term aerobic exercise was able to control mechanisms related to hepatic fat accumulation and insulin sensitivity in aged rodents. These effects could contribute to late-life metabolic health and prevent the development/progression of age-related T2D.
Collapse
Affiliation(s)
- V R Muñoz
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - R C Gaspar
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - M C S Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - R D de Lima
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - R F L Vieira
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - B M Crisol
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - G C Antunes
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - J C S Trombeta
- Exercise Physiology Laboratory (FISEX), Faculty of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil
| | - I L P Bonfante
- Exercise Physiology Laboratory (FISEX), Faculty of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil
| | - F M Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - A S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - C R Cavaglieri
- Exercise Physiology Laboratory (FISEX), Faculty of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil
| | - E R Ropelle
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- OCRC-Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- National Institute of Science and Technology of Obesity and Diabetes, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - D E Cintra
- OCRC-Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Laboratory of Nutritional Genomics, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - J R Pauli
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
- OCRC-Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
- National Institute of Science and Technology of Obesity and Diabetes, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
17
|
Manni E, Jeffery N, Chambers D, Slade L, Etheridge T, Harries LW. An evaluation of the role of miR-361-5p in senescence and systemic ageing. Exp Gerontol 2023; 174:112127. [PMID: 36804517 DOI: 10.1016/j.exger.2023.112127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Senescent cells are key regulators of ageing and age-associated disease. MicroRNAs (miRs) are a key component of the molecular machinery governing cellular senescence, with several known to regulate important genes associated with this process. We sought to identify miRs associated with both senescence and reversal by pinpointing those showing opposing directionality of effect in senescence and in response to senotherapy. Cellular senescence phenotypes were assessed in primary human endothelial cells following targeted manipulation of emergent miRNAs. Finally, the effect of conserved target gene knockdown on lifespan and healthspan was assessed in a C. elegans system in vivo. Three miRNAs (miR-5787, miR-3665 and miR-361-5p) demonstrated associations with both senescence and rejuvenation, but miR-361-5p alone demonstrated opposing effects in senescence and rescue. Treatment of late passage human endothelial cells with a miR-361-5p mimic caused a 14 % decrease in the senescent load of the culture. RNAi gene knockdown of conserved miR-361-5p target genes in a C. elegans model however resulted in adverse effects on healthspan and/or lifespan. Although miR-361-5p may attenuate aspects of the senescence phenotype in human primary endothelial cells, many of its validated target genes also play essential roles in the regulation or formation of the cytoskeletal network, or its interaction with the extracellular matrix. These processes are essential for cell survival and cell function. Targeting miR-361-5p alone may not represent a promising target for future senotherapy; more sophisticated approaches to attenuate its interaction with specific targets without roles in essential cell processes would be required.
Collapse
Affiliation(s)
- Emad Manni
- University of Exeter Medical School, Faculty of Health and Life Sciences, Barrack Road, Exeter EX2 5DW, UK
| | - Nicola Jeffery
- University of Exeter Medical School, Faculty of Health and Life Sciences, Barrack Road, Exeter EX2 5DW, UK
| | - David Chambers
- Wolfson Centre for Age-Related Diseases, King's College London, London WC2R 2LS, UK
| | - Luke Slade
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Lorna W Harries
- University of Exeter Medical School, Faculty of Health and Life Sciences, Barrack Road, Exeter EX2 5DW, UK.
| |
Collapse
|
18
|
A Wrong Fate Decision in Adipose Stem Cells upon Obesity. Cells 2023; 12:cells12040662. [PMID: 36831329 PMCID: PMC9954614 DOI: 10.3390/cells12040662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Progress has been made in identifying stem cell aging as a pathological manifestation of a variety of diseases, including obesity. Adipose stem cells (ASCs) play a core role in adipocyte turnover, which maintains tissue homeostasis. Given aberrant lineage determination as a feature of stem cell aging, failure in adipogenesis is a culprit of adipose hypertrophy, resulting in adiposopathy and related complications. In this review, we elucidate how ASC fails in entering adipogenic lineage, with a specific focus on extracellular signaling pathways, epigenetic drift, metabolic reprogramming, and mechanical stretch. Nonetheless, such detrimental alternations can be reversed by guiding ASCs towards adipogenesis. Considering the pathological role of ASC aging in obesity, targeting adipogenesis as an anti-obesity treatment will be a key area of future research, and a strategy to rejuvenate tissue stem cell will be capable of alleviating metabolic syndrome.
Collapse
|
19
|
Wang K, Liu H, Hu Q, Wang L, Liu J, Zheng Z, Zhang W, Ren J, Zhu F, Liu GH. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther 2022; 7:374. [PMID: 36336680 PMCID: PMC9637765 DOI: 10.1038/s41392-022-01211-8] [Citation(s) in RCA: 227] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Aging is accompanied by the decline of organismal functions and a series of prominent hallmarks, including genetic and epigenetic alterations. These aging-associated epigenetic changes include DNA methylation, histone modification, chromatin remodeling, non-coding RNA (ncRNA) regulation, and RNA modification, all of which participate in the regulation of the aging process, and hence contribute to aging-related diseases. Therefore, understanding the epigenetic mechanisms in aging will provide new avenues to develop strategies to delay aging. Indeed, aging interventions based on manipulating epigenetic mechanisms have led to the alleviation of aging or the extension of the lifespan in animal models. Small molecule-based therapies and reprogramming strategies that enable epigenetic rejuvenation have been developed for ameliorating or reversing aging-related conditions. In addition, adopting health-promoting activities, such as caloric restriction, exercise, and calibrating circadian rhythm, has been demonstrated to delay aging. Furthermore, various clinical trials for aging intervention are ongoing, providing more evidence of the safety and efficacy of these therapies. Here, we review recent work on the epigenetic regulation of aging and outline the advances in intervention strategies for aging and age-associated diseases. A better understanding of the critical roles of epigenetics in the aging process will lead to more clinical advances in the prevention of human aging and therapy of aging-related diseases.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Hospital of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Zikai Zheng
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jie Ren
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
| |
Collapse
|
20
|
Gustafson B, Nerstedt A, Spinelli R, Beguinot F, Smith U. Type 2 Diabetes, Independent of Obesity and Age, Is Characterized by Senescent and Dysfunctional Mature Human Adipose Cells. Diabetes 2022; 71:2372-2383. [PMID: 36006465 DOI: 10.2337/db22-0003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022]
Abstract
Obesity with dysfunctional adipose cells is the major cause of the current epidemic of type 2 diabetes (T2D). We examined senescence in human adipose tissue cells from age- and BMI-matched individuals who were lean, obese, and obese with T2D. In obese individuals and, more pronounced, those with T2D, we found mature and fully differentiated adipose cells to exhibit increased senescence similar to what we previously have shown in the progenitor cells. The degree of adipose cell senescence was positively correlated with whole-body insulin resistance and adipose cell size. Adipose cell protein analysis revealed dysfunctional cells in T2D with increased senescence markers reduced PPAR-γ, GLUT4, and pS473AKT. Consistent with a recent study, we found the cell cycle regulator cyclin D1 to be increased in obese cells and further elevated in T2D cells, closely correlating with senescence markers, ambient donor glucose, and, more inconsistently, plasma insulin levels. Furthermore, fully differentiated adipose cells were susceptible to experimentally induced senescence and to conditioned medium increasing cyclin D1 and responsive to senolytic agents. Thus, fully mature human adipose cells from obese individuals, particularly those with T2D become senescent, and SASP secretion by senescent progenitor cells can play an important role in addition to donor hyperinsulinemia.
Collapse
Affiliation(s)
- Birgit Gustafson
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Annika Nerstedt
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Rosa Spinelli
- Department of Translational Medical Sciences, Federico II University of Naples, and URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medical Sciences, Federico II University of Naples, and URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Ulf Smith
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. Nat Med 2022; 28:1556-1568. [PMID: 35953721 PMCID: PMC9599677 DOI: 10.1038/s41591-022-01923-y] [Citation(s) in RCA: 491] [Impact Index Per Article: 163.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/28/2022] [Indexed: 01/10/2023]
Abstract
Interlinked and fundamental aging processes appear to be a root-cause contributor to many disorders and diseases. One such process is cellular senescence, which entails a state of cell cycle arrest in response to damaging stimuli. Senescent cells can arise throughout the lifespan and, if persistent, can have deleterious effects on tissue function due to the many proteins they secrete. In preclinical models, interventions targeting those senescent cells that are persistent and cause tissue damage have been shown to delay, prevent or alleviate multiple disorders. In line with this, the discovery of small-molecule senolytic drugs that selectively clear senescent cells has led to promising strategies for preventing or treating multiple diseases and age-related conditions in humans. In this Review, we outline the rationale for senescent cells as a therapeutic target for disorders across the lifespan and discuss the most promising strategies-including recent and ongoing clinical trials-for translating small-molecule senolytics and other senescence-targeting interventions into clinical use.
Collapse
Affiliation(s)
- Selim Chaib
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
22
|
Baboota RK, Spinelli R, Erlandsson MC, Brandao BB, Lino M, Yang H, Mardinoglu A, Bokarewa MI, Boucher J, Kahn CR, Smith U. Chronic hyperinsulinemia promotes human hepatocyte senescence. Mol Metab 2022; 64:101558. [PMID: 35872305 PMCID: PMC9364104 DOI: 10.1016/j.molmet.2022.101558] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Cellular senescence, an irreversible proliferative cell arrest, is caused by excessive intracellular or extracellular stress/damage. Increased senescent cells have been identified in multiple tissues in different metabolic and other aging-related diseases. Recently, several human and mouse studies emphasized the involvement of senescence in development and progression of NAFLD. Hyperinsulinemia, seen in obesity, metabolic syndrome, and other conditions of insulin resistance, has been linked to senescence in adipocytes and neurons. Here, we investigate the possible direct role of chronic hyperinsulinemia in the development of senescence in human hepatocytes. METHODS Using fluorescence microscopy, immunoblotting, and gene expression, we tested senescence markers in human hepatocytes subjected to chronic hyperinsulinemia in vitro and validated the data in vivo by using liver-specific insulin receptor knockout (LIRKO) mice. The consequences of hyperinsulinemia were also studied in senescent hepatocytes following doxorubicin as a model of stress-induced senescence. Furthermore, the effects of senolytic agents in insulin- and doxorubicin-treated cells were analyzed. RESULTS Results showed that exposing the hepatocytes to prolonged hyperinsulinemia promotes the onset of senescence by increasing the expression of p53 and p21. It also further enhanced the senescent phenotype in already senescent hepatocytes. Addition of insulin signaling pathway inhibitors prevented the increase in cell senescence, supporting the direct contribution of insulin. Furthermore, LIRKO mice, in which insulin signaling in the liver is abolished due to deletion of the insulin receptor gene, showed no differences in senescence compared to their wild-type counterparts despite having marked hyperinsulinemia indicating these are receptor-mediated effects. In contrast, the persistent hyperinsulinemia in LIRKO mice enhanced senescence in white adipose tissue. In vitro, senolytic agents dasatinib and quercetin reduced the prosenescent effects of hyperinsulinemia in hepatocytes. CONCLUSION Our findings demonstrate a direct link between chronic hyperinsulinemia and hepatocyte senescence. This effect can be blocked by reducing the levels of insulin receptors or administration of senolytic drugs, such as dasatinib and quercetin.
Collapse
Affiliation(s)
- Ritesh K. Baboota
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rosa Spinelli
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy,URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Malin C. Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden,Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bruna B. Brandao
- Joslin Diabetes Center and Harvard Medical School, One Joslin Place, Boston, MA, USA
| | - Marsel Lino
- Joslin Diabetes Center and Harvard Medical School, One Joslin Place, Boston, MA, USA
| | - Hong Yang
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Maria I. Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden,Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jeremie Boucher
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Metabolic Disease, Evotec International GmbH, Göttingen, Germany
| | - C. Ronald Kahn
- Joslin Diabetes Center and Harvard Medical School, One Joslin Place, Boston, MA, USA
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Corresponding author. The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Blå Stråket 5, SE-413 45, Gothenburg, Sweden.
| |
Collapse
|
23
|
Zatterale F, Raciti GA, Prevenzano I, Leone A, Campitelli M, De Rosa V, Beguinot F, Parrillo L. Epigenetic Reprogramming of the Inflammatory Response in Obesity and Type 2 Diabetes. Biomolecules 2022; 12:biom12070982. [PMID: 35883538 PMCID: PMC9313117 DOI: 10.3390/biom12070982] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
For the past several decades, the prevalence of obesity and type 2 diabetes (T2D) has continued to rise on a global level. The risk contributing to this pandemic implicates both genetic and environmental factors, which are functionally integrated by epigenetic mechanisms. While these conditions are accompanied by major abnormalities in fuel metabolism, evidence indicates that altered immune cell functions also play an important role in shaping of obesity and T2D phenotypes. Interestingly, these events have been shown to be determined by epigenetic mechanisms. Consistently, recent epigenome-wide association studies have demonstrated that immune cells from obese and T2D individuals feature specific epigenetic profiles when compared to those from healthy subjects. In this work, we have reviewed recent literature reporting epigenetic changes affecting the immune cell phenotype and function in obesity and T2D. We will further discuss therapeutic strategies targeting epigenetic marks for treating obesity and T2D-associated inflammation.
Collapse
Affiliation(s)
- Federica Zatterale
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Gregory Alexander Raciti
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Immacolata Prevenzano
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Alessia Leone
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Michele Campitelli
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Veronica De Rosa
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Francesco Beguinot
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
- Correspondence: (F.B.); (L.P.); Tel.: +39-081-746-3248 (F.B.); +39-081-746-3045 (L.P.)
| | - Luca Parrillo
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
- Correspondence: (F.B.); (L.P.); Tel.: +39-081-746-3248 (F.B.); +39-081-746-3045 (L.P.)
| |
Collapse
|
24
|
Prevenzano I, Leone A, Longo M, Nicolò A, Cabaro S, Collina F, Panarese I, Botti G, Formisano P, Napoli R, Beguinot F, Miele C, Nigro C. Glyoxalase 1 knockdown induces age-related β-cell dysfunction and glucose intolerance in mice. EMBO Rep 2022; 23:e52990. [PMID: 35620868 PMCID: PMC9253754 DOI: 10.15252/embr.202152990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 09/09/2023] Open
Abstract
Tight control of glycemia is a major treatment goal for type 2 diabetes mellitus (T2DM). Clinical studies indicated that factors other than poor glycemic control may be important in fostering T2DM progression. Increased levels of methylglyoxal (MGO) associate with complications development, but its role in the early steps of T2DM pathogenesis has not been defined. Here, we show that MGO accumulation induces an age-dependent impairment of glucose tolerance and glucose-stimulated insulin secretion in mice knockdown for glyoxalase 1 (Glo1KD). This metabolic alteration associates with the presence of insular inflammatory infiltration (F4/80-positive staining), the islet expression of senescence markers, and higher levels of cytokines (MCP-1 and TNF-α), part of the senescence-activated secretory profile, in the pancreas from 10-month-old Glo1KD mice, compared with their WT littermates. In vitro exposure of INS832/13 β-cells to MGO confirms its casual role on β-cell dysfunction, which can be reverted by senolytic treatment. These data indicate that MGO is capable to induce early phenotypes typical of T2D progression, paving the way for novel prevention approaches to T2DM.
Collapse
Affiliation(s)
- Immacolata Prevenzano
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Alessia Leone
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Michele Longo
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Antonella Nicolò
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Serena Cabaro
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Francesca Collina
- Pathology UnitIstituto Nazionale Tumori‐IRCCS‐Fondazione G.PascaleNaplesItaly
| | - Iacopo Panarese
- Unità di Anatomia PatologicaDipartimento di Salute Mentale e Fisica e Medicina PreventivaUniversità degli Studi della Campania "L. Vanvitelli"NaplesItaly
| | - Gerardo Botti
- Scientific DirectionIstituto Nazionale Tumori‐IRCCS‐Fondazione G.PascaleNaplesItaly
| | - Pietro Formisano
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Raffaele Napoli
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Francesco Beguinot
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Claudia Miele
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Cecilia Nigro
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| |
Collapse
|