1
|
Giroud J, Combémorel E, Pourtier A, Abbadie C, Pluquet O. Unraveling the functional and molecular interplay between cellular senescence and the unfolded protein response. Am J Physiol Cell Physiol 2025; 328:C1764-C1782. [PMID: 40257464 DOI: 10.1152/ajpcell.00091.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/12/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Senescence is a complex cellular state that can be considered as a stress response phenotype. A decade ago, we suggested the intricate connections between unfolded protein response (UPR) signaling and the development of the senescent phenotype. Over the past ten years, significant advances have been made in understanding the multifaceted role of the UPR in regulating cellular senescence, highlighting its contribution to biological processes such as oxidative stress and autophagy. In this updated review, we expand these interconnections with the benefit of new insights, and we suggest that targeting specific components of the UPR could provide novel therapeutic strategies to mitigate the deleterious effects of senescence, with significant implications for age-related pathologies and geroscience.
Collapse
Affiliation(s)
- Joëlle Giroud
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Emilie Combémorel
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Albin Pourtier
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Corinne Abbadie
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Olivier Pluquet
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| |
Collapse
|
2
|
Putri PHL, Alamudi SH, Dong X, Fu Y. Extracellular vesicles in age-related diseases: disease pathogenesis, intervention, and biomarker. Stem Cell Res Ther 2025; 16:263. [PMID: 40437603 PMCID: PMC12121224 DOI: 10.1186/s13287-025-04374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/02/2025] [Indexed: 06/01/2025] Open
Abstract
Aging is a multifactorial biological process characterized by the irreversible accumulation of molecular damage, leading to an increased risk of age-related diseases. With the global prominent rise in aging populations, elucidating the mechanisms underlying the aging process and developing strategies to combat age-related diseases have become a pressing priority. Extracellular vesicles (EVs) have gained significant attention due to their role in intercellular communication. EVs are known for their ability to deliver biocargoes, such as miRNA, proteins, and lipids, implicating their involvement in disease pathogenesis and intervention. In this review article, we explore the dual role of EVs in age-related diseases: contributing to the pathogenesis of diseases by transferring deleterious molecules, while also offering therapeutic ability by transferring beneficial molecules. We also highlight the application of EVs as biomarkers for early diagnosis of age-related diseases, paving the way for early intervention and precision medicine. Additionally, we discuss how analysing the composition of EVs cargo can provide insights into disease progression. Finally, we address the challenges and future perspectives of EV-based-therapy in clinical translation, including standardization of EVs isolation methods and improving cargo specificity.
Collapse
Affiliation(s)
- Puan Haliza Lintang Putri
- BGI Research, Hangzhou, 310030, China
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16242, Indonesia
| | - Samira Husen Alamudi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16242, Indonesia
| | - Xuan Dong
- BGI Research, Hangzhou, 310030, China
| | - Ying Fu
- BGI Research, Hangzhou, 310030, China.
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Jarzebska N, Bornstein SR, Tselmin S, Julius U, Cellini B, Siow R, Martin M, Mookerjee RP, Mangoni AA, Weiss N, Rodionov R. Asymmetric Dimethylarginine: A Never-Aging Story. Horm Metab Res 2025. [PMID: 40418971 DOI: 10.1055/a-2537-4692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Human aging is intrinsically associated with the onset and the progression of several disease states causing significant disability and poor quality of life. Although such association was traditionally considered immutable, recent advances have led to a better understanding of several critical biochemical pathways involved in the aging process. This, in turn, has stimulated a significant body of research to investigate whether reprogramming these pathways could delay the progression of human ageing and/or prevent relevant disease states, ultimately favoring healthier aging process. Cellular senescence is regarded as the principal causative factor implicated in biological and pathophysiological processes involved in aging. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase and an independent risk factor for several age-associated diseases. The selective extracorporeal removal of ADMA is emerging as a promising strategy to reduce the burden of age-associated disease states. This article discusses the current knowledge regarding the critical pathways involved in human aging and associated diseases and the possible role of ADMA as a target for therapies leading to healthier aging processes.
Collapse
Affiliation(s)
- Natalia Jarzebska
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Sergey Tselmin
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Ulrich Julius
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Richard Siow
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom of Great Britain and Northern Ireland
- Ageing Research at King's (ARK), King's College London, London, United Kingdom of Great Britain and Northern Ireland
- Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, United Kingdom of Great Britain and Northern Ireland
| | - Mike Martin
- Department of Psychology, University of Zurich, Zurich, Switzerland
- Healthy Longevity Center, University of Zurich, Zurich, Switzerland
| | - Rajeshwar P Mookerjee
- Institute of Liver and Digestive Health, University College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Norbert Weiss
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Roman Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| |
Collapse
|
4
|
Ida-Yonemochi H. Role of glucose metabolism in amelogenesis. J Oral Biosci 2025; 67:100667. [PMID: 40306383 DOI: 10.1016/j.job.2025.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/27/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Cell energy metabolism plays a pivotal role in organ development and function by regulating cell behavior in pathophysiological conditions. Glucose metabolism is the central cascade for obtaining energy in mammalian cells, and cells alter the glucose metabolic pathway depending on intra- and extracellular environments. Therefore, glucose metabolism is closely associated with cell differentiation stages, and cell energy metabolism plays a vital role not only in energy production but also in cell fate regulation in organogenesis. HIGHLIGHT During enamel formation, the timing of the expression of passive and active glucose transporters, glycogen synthesis, and glycogen degradation is strictly regulated according to the energy demand of ameloblast-lineage cells. These glucose metabolic reactions are particularly active in the maturation stage of ameloblasts. Furthermore, autophagy, a key regulator of cellular energy homeostasis that modulates glucose metabolism, occurs during both the secretory and maturation stages of ameloblasts. Disruption of glucose metabolism cascade and autophagy induces enamel hypoplasia, as demonstrated in both in vitro and in vivo models. CONCLUSION Adequate energy supply via glucose metabolism is essential for enamel matrix secretion and maturation. A thorough understanding of the precise regulation of energy metabolism in amelogenesis facilitates comprehension of the normal enamel formation process and pathological conditions affecting it. This review summarizes glucose metabolic processes during amelogenesis, focusing on glucose uptake, glycogenesis, and glycogenolysis.
Collapse
Affiliation(s)
- Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| |
Collapse
|
5
|
Radovic M, Gartzke LP, Wink SE, van der Kleij JA, Politiek FA, Krenning G. Targeting the Electron Transport System for Enhanced Longevity. Biomolecules 2025; 15:614. [PMID: 40427507 PMCID: PMC12109555 DOI: 10.3390/biom15050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/15/2025] [Accepted: 04/20/2025] [Indexed: 05/29/2025] Open
Abstract
Damage to mitochondrial DNA (mtDNA) results in defective electron transport system (ETS) complexes, initiating a cycle of impaired oxidative phosphorylation (OXPHOS), increased reactive oxygen species (ROS) production, and chronic low-grade inflammation (inflammaging). This culminates in energy failure, cellular senescence, and progressive tissue degeneration. Rapamycin and metformin are the most extensively studied longevity drugs. Rapamycin inhibits mTORC1, promoting mitophagy, enhancing mitochondrial biogenesis, and reducing inflammation. Metformin partially inhibits Complex I, lowering reverse electron transfer (RET)-induced ROS formation and activating AMPK to stimulate autophagy and mitochondrial turnover. Both compounds mimic caloric restriction, shift metabolism toward a catabolic state, and confer preclinical-and, in the case of metformin, clinical-longevity benefits. More recently, small molecules directly targeting mitochondrial membranes and ETS components have emerged. Compounds such as Elamipretide, Sonlicromanol, SUL-138, and others modulate metabolism and mitochondrial function while exhibiting similarities to metformin and rapamycin, highlighting their potential in promoting longevity. The key question moving forward is whether these interventions should be applied chronically to sustain mitochondrial health or intermittently during episodes of stress. A pragmatic strategy may combine chronic metformin use with targeted mitochondrial therapies during acute physiological stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Guido Krenning
- Department of Clinical Pharmacy and Pharmacology, Section of Experimental Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (AP50), 9713 GZ Groningen, The Netherlands; (M.R.); (J.A.v.d.K.); (F.A.P.)
| |
Collapse
|
6
|
Lyu D, Wang M, Qiu L, Deng R, Hu S, Zhang Y. Deletion of Nrf1α exacerbates oxidative stress-induced cellular senescence by disrupting cell homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119970. [PMID: 40280334 DOI: 10.1016/j.bbamcr.2025.119970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/07/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Cellular senescence is recognized as a fundamental hallmark contributing to ageing and various age-related diseases, with oxidative stress playing a critical initiating role in their pathological processes. However, the anti-senescence potential of the antioxidant nuclear factor erythroid-derived 2-like 1 (Nrf1, encoded by Nfe2l1) remains elusive, despite accumulating evidence demonstrating its role as an indispensable redox-determining transcription factor for maintaining cellular homeostasis and organ integrity. This study reveals that deletion of Nrf1α significantly elevates senescence characteristics in Nrf1α-/--deficient cells, as evidenced by two distinct experimental models. These cells exhibit heightened activity of senescence-associated β-galactosidase and progressive senescence-associated secretory phenotype (SASP), accompanied by decreased cell vitality and intensified cell cycle arrest. Further investigation uncovers that this acceleration of oxidative stress-induced senescence results from increased disturbance in cellular homeostasis. The Nrf1α-/- deficiency leads to STAG2- and SMC3-dependent chromosomal stability disruption and autophagy dysfunction, albeit being accompanied by excessive accumulation of Nrf2 (encoded by Nfe2l2). The aberrantly hyperactive Nrf2 cannot effectively counteract the escalating disturbance of cellular homeostasis caused by Nrf1α-/-. This study provides evidence supporting Nrf1α's essential cytoprotective function against stress-induced cellular senescence, highlighting its indispensable contribution to maintaining robust cell homeostasis during the senescence pathophysiological process.
Collapse
Affiliation(s)
- Da Lyu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Meng Wang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Lu Qiu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China; School of Life Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhongyuan District, Zhengzhou 450001, Henan, China
| | - Rongzhen Deng
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Shaofan Hu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Yiguo Zhang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China; School of Life and Health Sciences, Fuyao University of Science and Technology (FyUST), No. 104 Wisdom Avenue, Nanyu Town, Minhou High-Tech District, Fuzhou 350109, Fujian, China.
| |
Collapse
|
7
|
Zheng Q, Lin R, Li Z, Zheng Q, Xu W. Taurine is a potential therapy for rheumatoid arthritis via targeting FOXO3 through cellular senescence and autophagy. PLoS One 2025; 20:e0318311. [PMID: 40238799 PMCID: PMC12002484 DOI: 10.1371/journal.pone.0318311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/13/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease closely related to aging with unclear pathogenic mechanisms. This study aims to identify the biomarkers in RA, aging and autophagy using bioinformatics and machine learning and explore the binding stability of taurine to target utilizing computer-aided drug design (CADD). METHODS We identified differentially expressed genes (DEGs) for RA, then crossed with gene libraries for aging and autophagy to identify common genes (Co-genes). We performed Gene Ontology (GO), Kyoto Encyclopedia of the Genome (KEGG), and ClueGO analysis for Co-genes. The Co-genes were subjected to support vector machine-recursive feature elimination (SVM-RFE), Degree, and Betweenness algorithms to get hub genes, then verified by an artificial neural network (ANN). After continuing to perform least absolute shrinkage and selection operator (LASSO) and weighted gene co-expression network analysis (WGCNA) on Co-genes, the results were crossed with hub genes to obtain genes, which were imported into various validation sets for receiver operating characteristics (ROC) to identify key genes. We analyzed the microRNA/TF network, enriched pathways, and immune cell infiltration for key genes. The binding stability of taurine with the target protein was verified by CADD. Finally, we used Western blot for in vitro experimental verification. RESULTS We obtained 74 Co-genes enriched in RA, cellular senescence, and regulation of programmed cell death. The model prediction of hub genes works well in ANN. The key genes (MMP9, CXCL10, IL15, FOXO3) were tested in ROC with excellent efficacy. In RA, FOXO3 expression was down-regulated while MMP9, CXCL10, and IL15 expression were upregulated, and FOXO3 was negatively correlated with MMP9, CXCL10, and IL15. Two miRNAs (hsa-mir-21-5p, hsa-mir-129-2-3p) and four TFs (CTCF, KLF, FOXC1, TP53) were associated with key genes. The immune cells positively correlated with MMP9, CXCL10, and IL15 expression and negatively correlated with FOXO3 expression were Plasma cells, CD8 T cells, memory-activated CD4 T cells, and follicular helper T cells, aggregating in RA. The binding stability of taurine with FOXO3 was verified by molecular docking and molecular dynamics simulation. In vitro experiments have indicated that taurine can upregulate the expression of FOXO3 and treat RA through the FOXO3-Parkin signaling pathway. CONCLUSIONS MMP9, CXCL10, IL15, and FOXO3 are biomarkers of RA, cellular senescence, and autophagy. Taurine might be a promising drug against RA via targeting cellular senescence and autophagy through FOXO3.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhechen Li
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qingzhu Zheng
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Weihong Xu
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Xu L, Lyu X, Wang Y, Ni L, Li P, Zeng P, Wang Q, Chang Y, Pan C, Hu Q, Huang S, Dang N. Neddylation modification stabilizes LC3B by antagonizing its ubiquitin-mediated degradation and promoting autophagy in skin. Proc Natl Acad Sci U S A 2025; 122:e2411429122. [PMID: 40208944 PMCID: PMC12012473 DOI: 10.1073/pnas.2411429122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/26/2025] [Indexed: 04/12/2025] Open
Abstract
The Atg8-family proteins, including LC3B (microtubule-associated protein 1 light chain 3 beta), are pivotal for key steps in the autophagy process. Proper regulation of LC3B homeostasis is essential for its function. Although LC3B is modulated by various posttranslational modifications (PTMs), the impact of these modifications on LC3B protein homeostasis remains unclear. Neddylation, a recently identified ubiquitin-like modification, plays diverse biological roles. Here, we identify LC3B as a specific target for neddylation. This modification weakens LC3B's interaction with the ubiquitin E3 ligases VHL and BIRC6, thereby reducing LC3B ubiquitination. Depletion of ubiquitin-conjugating enzyme E2M (UBE2M), the primary E2 enzyme in the neddylation pathway, destabilizes LC3B and suppresses autophagy activity. Heterozygous Ube2m knockout (Ube2m+/-) mice exhibit pronounced aging-like phenotypes, with reduced LC3B expression and impaired autophagy in skin tissues. Our findings demonstrate that LC3B neddylation is vital for maintaining its stability and regulating autophagy flux, offering a potential therapeutic avenue to mitigate aging-related processes.
Collapse
Affiliation(s)
- Linlin Xu
- Department of Dermatology, Shandong Provincial Hospital, Shandong University, Jinan250021, Shandong, China
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, Shandong, China
| | - Xinxing Lyu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan250022, Shandong, China
- School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
| | - Yibo Wang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, Shandong, China
| | - Li Ni
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, Shandong, China
| | - Pin Li
- Department of Dermatology, Shandong Provincial Hospital, Shandong University, Jinan250021, Shandong, China
| | - Piao Zeng
- School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
| | - Qixia Wang
- School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
| | - Yunhao Chang
- School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
- Department of Geriatrics, Jiangsu Province Hospital, The First Clinical Medical College of Nanjing Medical University, Nanjing210029, Jiangsu, China
| | - Chenglong Pan
- School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
| | - Qingxia Hu
- School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
| | - Shuhong Huang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, Shandong, China
- School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital, Shandong University, Jinan250021, Shandong, China
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, Shandong, China
| |
Collapse
|
9
|
Shi M, Li H, Liang R, Lin H, Tang Q. The transcription factor STAT3 and aging: an intermediate medium. Biogerontology 2025; 26:55. [PMID: 39920354 DOI: 10.1007/s10522-025-10193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
Aging is a physiological/pathological process accompanied by progressive impairment of cellular function, leading to a variety of aging-related diseases. STAT3 is one of the core regulatory factors of aging. It is involved in body metabolism, development and senescence, cell apoptosis and so on. During the aging process, the changes of growth factors and cytokines will cause the activation of STAT3 to varying degrees, regulate the inflammatory pathways related to aging, regulate body inflammation, mitochondrial function, cell aging and autophagy to regulate and influence the aging process. Drugs targeting STAT3 can treat senescence related diseases. This review summarizes the role of STAT3 signaling factors in the pathogenesis of aging, including mitochondrial function, cellular senescence, autophagy, and chronic inflammation mediated by inflammatory pathways. Finally, the key regulatory role of STAT3 in senescence related diseases is emphasized. In summary, we reveal that drug development and clinical application targeting STAT3 is one of the key points in delaying aging and treating aging-related diseases in the future.
Collapse
Affiliation(s)
- Min Shi
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Honyu Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Haiyan Lin
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Qiang Tang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
10
|
Ungvari A, Gulej R, Patai R, Papp Z, Toth A, Szabó AÁ, Podesser BK, Sótonyi P, Benyó Z, Yabluchanskiy A, Tarantini S, Maier AB, Csiszar A, Ungvari Z. Sex-specific mechanisms in vascular aging: exploring cellular and molecular pathways in the pathogenesis of age-related cardiovascular and cerebrovascular diseases. GeroScience 2025; 47:301-337. [PMID: 39754010 PMCID: PMC11872871 DOI: 10.1007/s11357-024-01489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/17/2024] [Indexed: 03/04/2025] Open
Abstract
Aging remains the foremost risk factor for cardiovascular and cerebrovascular diseases, surpassing traditional factors in epidemiological significance. This review elucidates the cellular and molecular mechanisms underlying vascular aging, with an emphasis on sex differences that influence disease progression and clinical outcomes in older adults. We discuss the convergence of aging processes at the macro- and microvascular levels and their contributions to the pathogenesis of vascular diseases. Critical analysis of both preclinical and clinical studies reveals significant sex-specific variations in these mechanisms, which could be pivotal in understanding the disparity in disease morbidity and mortality between sexes. The review highlights key molecular pathways, including oxidative stress, inflammation, and autophagy, and their differential roles in the vascular aging of males and females. We argue that recognizing these sex-specific differences is crucial for developing targeted therapeutic strategies aimed at preventing and managing age-related vascular pathologies. The implications for personalized medicine and potential areas for future research are also explored, emphasizing the need for a nuanced approach to the study and treatment of vascular aging.
Collapse
Affiliation(s)
- Anna Ungvari
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Attila Á Szabó
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN , Semmelweis University, 1094, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
- Reynolds Section of Geriatrics and Palliative Medicine, Department of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andrea B Maier
- Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore
- @AgeSingapore, Healthy Longevity Program, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
11
|
Ungvari Z, Fekete M, Fekete JT, Grosso G, Ungvari A, Győrffy B. Adherence to the Mediterranean diet and its protective effects against colorectal cancer: a meta-analysis of 26 studies with 2,217,404 participants. GeroScience 2025; 47:1105-1121. [PMID: 39090501 PMCID: PMC11872821 DOI: 10.1007/s11357-024-01296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024] Open
Abstract
Colorectal cancer (CRC) is a major global health concern and represents a significant public health challenge in Hungary, where it exhibits some of the highest morbidity and mortality rates in the European Union. The Mediterranean diet has been suggested to reduce the incidence of CRC, but comprehensive evidence from diverse study designs is needed to substantiate this effect. A systematic literature search was conducted in PubMed, ClinicalTrials.gov, CENTRAL, and the Web of Science to identify randomized controlled trials and human clinical trials from 2008 to 2024 to identify relevant studies. Statistical analysis was performed using the https://metaanalysisonline.com web application using a random effects model to estimate the pooled hazard rates (HRs). Forest plots, funnel plots, and Z-score plots were utilized to visualize results. We identified 15 clinical trials and 9 case-control studies, encompassing a total of 2,217,404 subjects. The pooled analysis indicated that adherence to the Mediterranean diet significantly reduced the prevalence of CRC (HR = 0.84, 95% CI = 0.78-0.91, p < 0.01). This protective effect was consistent across sexes, with HRs of 0.85 (95% CI = 0.75-0.97, p = 0.01) for males and 0.88 (95% CI = 0.79-0.99, p = 0.03) for females. Case-control studies specifically showed a substantial effect (HR = 0.51, 95% CI = 0.38-0.68, p < 0.01). Notable heterogeneity was observed across studies, yet the a priori information size was substantially below the cumulative sample size, ensuring sufficient data for reliable conclusions. The findings from this meta-analysis reinforce the protective role of the Mediterranean diet against CRC. The results of this meta-analysis will inform dietary interventions designed to mitigate CRC risk, which are conducted within the framework of the Semmelweis Study, an ongoing comprehensive cohort study at Semmelweis University, designed to explore the multifaceted causes of unhealthy aging in Hungary. These interventions aim to explore the practical application of Mediterranean dietary patterns in reducing CRC incidence among the Hungarian population.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Mónika Fekete
- Institute of Preventive Medicine and Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - János Tibor Fekete
- Department of Bioinformatics, Semmelweis University, 1094, Budapest, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117, Budapest, Hungary
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, Catania, Italy
| | - Anna Ungvari
- Institute of Preventive Medicine and Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094, Budapest, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, H-7624, Pecs, Hungary
| |
Collapse
|
12
|
Zapatería B, Arias E. Aging, cancer, and autophagy: connections and therapeutic perspectives. Front Mol Biosci 2025; 11:1516789. [PMID: 39935707 PMCID: PMC11811537 DOI: 10.3389/fmolb.2024.1516789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/24/2024] [Indexed: 02/13/2025] Open
Abstract
Aging and cancer are intricately linked through shared molecular processes that influence both the onset of malignancy and the progression of age-related decline. As organisms age, cellular stress, genomic instability, and an accumulation of senescent cells create a pro-inflammatory environment conducive to cancer development. Autophagy, a cellular process responsible for degrading and recycling damaged components, plays a pivotal role in this relationship. While autophagy acts as a tumor-suppressive mechanism by preventing the accumulation of damaged organelles and proteins, cancer cells often exploit it to survive under conditions of metabolic stress and treatment resistance. The interplay between aging, cancer, and autophagy reveals key insights into tumorigenesis, cellular senescence, and proteostasis dysfunction. This review explores the molecular connections between these processes, emphasizing the potential for autophagy-targeted therapies as strategies that could be further explored in both aging and cancer treatment. Understanding the dual roles of autophagy in suppressing and promoting cancer offers promising avenues for therapeutic interventions aimed at improving outcomes for elderly cancer patients while addressing age-related deterioration.
Collapse
Affiliation(s)
- Begoña Zapatería
- Department of Medicine (Marion Bessin Liver Research Center), Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Esperanza Arias
- Department of Medicine (Marion Bessin Liver Research Center), Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Einstein Aging Research Center, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
13
|
Liu J, Zhang Q, He L, Hu H, Wang Y, Xie P. Pan-Cancer Analysis Identifies YKT6 as a Prognostic and Immunotherapy Biomarker, with an Emphasis on Cervical Cancer. Onco Targets Ther 2025; 18:107-127. [PMID: 39867862 PMCID: PMC11766309 DOI: 10.2147/ott.s491310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025] Open
Abstract
Background Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion is crucial for autophagy, making YKT6, a key modulator of cell membrane fusion, a potential target for cancer therapy. However, its oncogenic role across different cancers remains unclear. This study was to investigate the prognostic value and potential immunological functions of YKT6, including cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). Methods Multiple bioinformatics databases, including The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), and Genotype-Tissue Expression (GTEx) databases, were used to investigate the correlation of the YKT6 expression pattern with the pathological stage and survival rate across cancers. Furthermore, ImmuCellAI, the UCSC Xena platform, and the ESTIMATE algorithm were subsequently utilized to explore the potential relationship between YKT6 expression, the tumor microenvironment, and tumor immune infiltration. Profiling of YKT6 gene mutation and amplification, methylation, and copy number alteration (CNA) was performed on the basis of the TCGA database. Moreover, q-PCR, TMA staining, and siRNA assays were used to validate the cancer-promoting role of YKT6 in CESCs. Results Our results reveal that YKT6 is a potential prognostic and cancer immunity biomarker. Elevated YKT6 expression is correlated with poor overall survival (OS) and disease-free survival (DFS). Distinct gene mutation, methylation, and CNA patterns for YKT6 were found in certain types of cancers. The correlation of YKT6 expression with tumor-infiltrating immune cells was verified by analyzing the StromalScore, ESTIMATEScore, ImmuneScore, and tumor purity. In vitro analysis confirmed that YKT6 was highly expressed in advanced-grade CESCs and that the knockdown of YKT6 inhibited the proliferation of cervical cancer cells. Conclusion The SNARE protein YKT6 serves as a biomarker and candidate oncogene with actionable mutations. Moreover, YKT6 has the potential to be a prognostic indicator in CESCs. Targeting YKT6 could enhance autophagy regulation and improve therapeutic strategies for personalized cancer treatment.
Collapse
Affiliation(s)
- Jiamin Liu
- Department of Gynecology, Sichuan Provincial Hospital of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Qiang Zhang
- Department of Gynecology, Sichuan Provincial Hospital of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Ling He
- Department of Gynecology, Sichuan Provincial Hospital of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Huangyu Hu
- Department of Gynecology, Sichuan Provincial Hospital of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Yixuan Wang
- Department of Gynecology, Sichuan Provincial Hospital of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Ping Xie
- Department of Gynecology, Sichuan Provincial Hospital of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
14
|
Bondy SC, Wu M. The Critical Role of Autophagy and Phagocytosis in the Aging Brain. Int J Mol Sci 2024; 26:57. [PMID: 39795916 PMCID: PMC11720579 DOI: 10.3390/ijms26010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
As the organism ages, there is a decline in effective energy supply, and this retards the ability to elaborate new proteins. The consequences of this are especially marked in the gradual decline in brain function. The senescence of cells and their constituent organelles is ultimately the cause of aging of the entire nervous system. What is less immediately obvious is that brain aging is also accompanied by the failure of catabolic events that lead to the removal of non-functional cells and ineffective subcellular components. The removal of non-working cellular and subcellular elements within the brain is essential in order to allow the appearance of fresh cells and organelles with a full range of capacities. Thus, the maintenance of operative mechanisms for the dispersal of failed tissue components is important, and its diminished capacity with aging is a significant contributory factor to the onset and progression of age-related neurological disorder. This report discusses the mechanisms underlying autophagy and phagocytosis and how these can be adversely modulated as aging proceeds. The means by which the effective recycling of cellular components may be reinstated in the aged brain are considered.
Collapse
Affiliation(s)
- Stephen C. Bondy
- Department of Occupational and Environmental Health and Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Meixia Wu
- Evergreen World ADHC, Westminster, CA 92844, USA;
| |
Collapse
|
15
|
Xu W, Wang J, Cui L, Huang C, Xia N, Xie M, Liu D, Liao D. Il-1β Promotes Superficial Zone Cells Senescence in Articular Cartilage by Inhibiting Autophagy. Cartilage 2024; 15:428-439. [PMID: 37650417 PMCID: PMC11523166 DOI: 10.1177/19476035231194771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/15/2023] [Accepted: 07/29/2023] [Indexed: 09/01/2023] Open
Abstract
OBJECTIVE The superficial zone cells in articular cartilage (SFZCs) have been identified as stem/progenitor chondrocytes and promoted cell self-renewal in the osteoarthritis (OA). Several studies emphasized the involvement of senescence and autophagy in OA. Interleukin-1β (IL-1β) is one of the main inflammatory mediators of OA, and whether it induces senescence and autophagy in SFZCs remains unclear. The present study aimed to investigate autophagy flux, mitochondrial function, and intracellular reactive oxygen species (ROS) that resulted in senescence in SFZCs induced by IL-1β. METHODS Using western blotting, reverse transcription-quantitative PCR, immunofluorescence, intracellular ROS detection, mitochondrial staining, and determination of mitochondrial membrane potential, we tested senescence and autophagy markers in SFZCs induced by IL-1β in vitro. The consequences of mitochondrial function and ROS were also studied with IL-1β-induced senescence. RESULTS IL-1β treatment decreased SFZC proliferation, induced SFZC senescence, and reduced SFZCs' chondrogenic differentiation capacity. Moreover, IL-1β impaired autophagy flux, and the autophagy activator, rapamycin, attenuated the senescence of SFZCs. IL-1β-induced autophagy defect resulted in mitochondrial dysfunction and overproduction of ROS, and autophagy activation notably protected against mitochondrial dysfunction and reduced the levels of ROS. Moreover, antioxidant N-acetylcysteine reversed the senescence of IL-1β in SFZCs. CONCLUSION IL-1β promotes autophagy impairment and subsequently results in dysfunctional mitochondria and overproduction of ROS, which finally causes SFZC senescence.
Collapse
Affiliation(s)
- Wei Xu
- Trauma Center, General Hospital of Western Theater Command, People’s Liberation Army, Chengdu, China
| | - Juan Wang
- Department of Pain Treatment, General Hospital of Western Theater Command, People’s Liberation Army, Chengdu, China
| | - Lin Cui
- Trauma Center, General Hospital of Western Theater Command, People’s Liberation Army, Chengdu, China
| | - Chen Huang
- Trauma Center, General Hospital of Western Theater Command, People’s Liberation Army, Chengdu, China
| | - Ning Xia
- Department of Orthopedics, General Hospital of Western Theater Command, People’s Liberation Army, Chengdu, China
| | - Meiming Xie
- Trauma Center, General Hospital of Western Theater Command, People’s Liberation Army, Chengdu, China
| | - Da Liu
- Department of Orthopedics, General Hospital of Western Theater Command, People’s Liberation Army, Chengdu, China
| | - Dongfa Liao
- Trauma Center, General Hospital of Western Theater Command, People’s Liberation Army, Chengdu, China
| |
Collapse
|
16
|
Wei S, Xu Q, Pei S, Lv Y, Lei Y, Zhang S, Zhai H, Hu Y. Unraveling the antifungal and anti-aflatoxin B 1 mechanisms of piperitone on Aspergillus flavus. Food Microbiol 2024; 123:104588. [PMID: 39038893 DOI: 10.1016/j.fm.2024.104588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
Aspergillus flavus infects important crops and produces carcinogenic aflatoxins, posing a serious threat to food safety and human health. Biochemical analysis and RNA-seq were performed to investigate the effects and mechanisms of piperitone on A. flavus growth and aflatoxin B1 biosynthesis. Piperitone significantly inhibited the growth of A. flavus, AFB1 production, and its pathogenicity on peanuts and corn flour. Differentially expressed genes (DEGs) associated with the synthesis of chitin, glucan, and ergosterol were markedly down-regulated, and the ergosterol content was reduced, resulting in a disruption in the integrity of the cell wall and cell membrane. Moreover, antioxidant genes were down-regulated, the correspondingly activities of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase were reduced, and levels of superoxide anion and hydrogen peroxide were increased, leading to a burst of reactive oxygen species (ROS). Accompanied by ROS accumulation, DNA fragmentation and cell autophagy were observed, and 16 aflatoxin cluster genes were down-regulated. Overall, piperitone disrupts the integrity of the cell wall and cell membrane, triggers the accumulation of ROS, causes DNA fragmentation and cell autophagy, ultimately leading to defective growth and impaired AFB1 biosynthesis.
Collapse
Affiliation(s)
- Shan Wei
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Qianru Xu
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Shan Pei
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Yangyong Lv
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Yang Lei
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Shuaibing Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Huanchen Zhai
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Yuansen Hu
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, PR China; Food Laboratory of Zhongyuan, Henan University of Technology, Luohe, 462300, Henan, PR China.
| |
Collapse
|
17
|
Mundo Rivera VM, Tlacuahuac Juárez JR, Murillo Melo NM, Leyva Garcia N, Magaña JJ, Cordero Martínez J, Jiménez Gutierrez GE. Natural Autophagy Activators to Fight Age-Related Diseases. Cells 2024; 13:1611. [PMID: 39404375 PMCID: PMC11476028 DOI: 10.3390/cells13191611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
The constant increase in the elderly population presents significant challenges in addressing new social, economic, and health problems concerning this population. With respect to health, aging is a primary risk factor for age-related diseases, which are driven by interconnected molecular hallmarks that influence the development of these diseases. One of the main mechanisms that has attracted more attention to aging is autophagy, a catabolic process that removes and recycles damaged or dysfunctional cell components to preserve cell viability. The autophagy process can be induced or deregulated in response to a wide range of internal or external stimuli, such as starvation, oxidative stress, hypoxia, damaged organelles, infectious pathogens, and aging. Natural compounds that promote the stimulation of autophagy regulatory pathways, such as mTOR, FoxO1/3, AMPK, and Sirt1, lead to increased levels of essential proteins such as Beclin-1 and LC3, as well as a decrease in p62. These changes indicate the activation of autophagic flux, which is known to be decreased in cardiovascular diseases, neurodegeneration, and cataracts. The regulated administration of natural compounds offers an adjuvant therapeutic alternative in age-related diseases; however, more experimental evidence is needed to support and confirm these health benefits. Hence, this review aims to highlight the potential benefits of natural compounds in regulating autophagy pathways as an alternative approach to combating age-related diseases.
Collapse
Affiliation(s)
- Vianey M. Mundo Rivera
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
| | - José Roberto Tlacuahuac Juárez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Nadia Mireya Murillo Melo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Norberto Leyva Garcia
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Jonathan J. Magaña
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Joaquín Cordero Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | | |
Collapse
|
18
|
Maggiorani D, Santin Y, Formoso K, Drapé E, Martini H, Brun S, Cousin G, Lairez O, Lezoualc'h F, Parini A, Douin‐Echinard V, Mialet‐Perez J. Identification of Prominin-2 as a new player of cardiomyocyte senescence in the aging heart. Aging Cell 2024; 23:e14204. [PMID: 38757782 PMCID: PMC11488343 DOI: 10.1111/acel.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
The aging heart is characterized by a number of structural changes leading to ventricular stiffness, impaired resistance to stress and increased risk of developing heart failure (HF). Genetic or pharmacological removal of senescent cells has recently demonstrated the possibility to relieve some cardiac aging features such as hypertrophy and fibrosis. However, the contribution of the different cell types in cardiac aging remains fragmentary due to a lack of cell-specific markers. Cardiomyocytes undergo post-mitotic senescence in response to telomere damage, characterized by persistent DNA damage response and expression of the classical senescence markers p21 and p16, which are shared by many other cell types. In the present study, we used transcriptomic approaches to discover new markers specific for cardiomyocyte senescence. We identified Prominin2 (Prom2), encoding a transmembrane glycoprotein, as the most upregulated gene in cardiomyocytes of aged mice compared to young mice. We showed that Prom2 was upregulated by a p53-dependent pathway in stress-induced premature senescence. Prom2 expression correlated with cardiomyocyte hypertrophy in the hearts of aged mice and was increased in atrial samples of patients with HF with preserved ejection fraction. Consistently, Prom2 overexpression was sufficient to drive senescence, hypertrophy and resistance to cytotoxic stress while Prom2 shRNA silencing inhibited these features in doxorubicin-treated cardiac cells. In conclusion, we identified Prom2 as a new player of cardiac aging, linking cardiomyocyte hypertrophy to senescence. These results could provide a better understanding and targeting of cell-type specific senescence in age-associated cardiac diseases.
Collapse
Affiliation(s)
- D. Maggiorani
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
| | - Y. Santin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
| | - K. Formoso
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
| | - E. Drapé
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
| | - H. Martini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
- Rangueil Hospital, CHUToulouseFrance
| | - S. Brun
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
- Rangueil Hospital, CHUToulouseFrance
| | - G. Cousin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
- Rangueil Hospital, CHUToulouseFrance
| | - O. Lairez
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
- Rangueil Hospital, CHUToulouseFrance
| | - F. Lezoualc'h
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
| | - A. Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
| | - V. Douin‐Echinard
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
- RESTORE Research Center, UMR‐1301, INSERM, CNRS, EFSUniversity of ToulouseToulouseFrance
| | - J. Mialet‐Perez
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR‐1297 INSERM, University of ToulouseToulouseFrance
- Univ Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICATAngersFrance
| |
Collapse
|
19
|
Navakkode S, Kennedy BK. Neural ageing and synaptic plasticity: prioritizing brain health in healthy longevity. Front Aging Neurosci 2024; 16:1428244. [PMID: 39161341 PMCID: PMC11330810 DOI: 10.3389/fnagi.2024.1428244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Ageing is characterized by a gradual decline in the efficiency of physiological functions and increased vulnerability to diseases. Ageing affects the entire body, including physical, mental, and social well-being, but its impact on the brain and cognition can have a particularly significant effect on an individual's overall quality of life. Therefore, enhancing lifespan and physical health in longevity studies will be incomplete if cognitive ageing is over looked. Promoting successful cognitive ageing encompasses the objectives of mitigating cognitive decline, as well as simultaneously enhancing brain function and cognitive reserve. Studies in both humans and animal models indicate that cognitive decline related to normal ageing and age-associated brain disorders are more likely linked to changes in synaptic connections that form the basis of learning and memory. This activity-dependent synaptic plasticity reorganises the structure and function of neurons not only to adapt to new environments, but also to remain robust and stable over time. Therefore, understanding the neural mechanisms that are responsible for age-related cognitive decline becomes increasingly important. In this review, we explore the multifaceted aspects of healthy brain ageing with emphasis on synaptic plasticity, its adaptive mechanisms and the various factors affecting the decline in cognitive functions during ageing. We will also explore the dynamic brain and neuroplasticity, and the role of lifestyle in shaping neuronal plasticity.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Brian K. Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Buck Institute for Research on Ageing, Novato, CA, United States
| |
Collapse
|
20
|
Kumar A, Saha MK, Kumar V, Bhattacharya A, Barge S, Mukherjee AK, Kalita MC, Khan MR. Heat-killed probiotic Levilactobacillus brevis MKAK9 and its exopolysaccharide promote longevity by modulating aging hallmarks and enhancing immune responses in Caenorhabditis elegans. Immun Ageing 2024; 21:52. [PMID: 39095841 PMCID: PMC11295351 DOI: 10.1186/s12979-024-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Proteostasis is a critical aging hallmark responsible for removing damaged or misfolded proteins and their aggregates by improving proteasomal degradation through the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system (UPS). Research on the impact of heat-killed probiotic bacteria and their structural components on aging hallmarks and innate immune responses is scarce, yet enhancing these effects could potentially delay age-related diseases. RESULTS This study introduces a novel heat-killed Levilactobacillus brevis strain MKAK9 (HK MKAK9), along with its exopolysaccharide (EPS), demonstrating their ability to extend longevity by improving proteostasis and immune responses in wild-type Caenorhabditis elegans. We elucidate the underlying mechanisms through a comprehensive approach involving mRNA- and small RNA sequencing, proteomic analysis, lifespan assays on loss-of-function mutants, and quantitative RT-PCR. Mechanistically, HK MKAK9 and its EPS resulted in downregulation of the insulin-like signaling pathway in a DAF-16-dependent manner, enhancing protein ubiquitination and subsequent proteasomal degradation through activation of the ALP pathway, which is partially mediated by microRNA mir-243. Importantly, autophagosomes engulf ubiquitinylated proteins, as evidenced by increased expression of the autophagy receptor sqst-3, and subsequently fuse with lysosomes, facilitated by increased levels of the lysosome-associated membrane protein (LAMP) lmp-1, suggesting the formation of autolysosomes for degradation of the selected cargo. Moreover, HK MKAK9 and its EPS activated the p38 MAPK pathway and its downstream SKN-1 transcription factor, which are known to regulate genes involved in innate immune response (thn-1, ilys-1, cnc-2, spp-9, spp-21, clec-47, and clec-266) and antioxidation (sod-3 and gst-44), thereby reducing the accumulation of reactive oxygen species (ROS) at both cellular and mitochondrial levels. Notably, SOD-3 emerged as a transcriptional target of both DAF-16 and SKN-1 transcription factors. CONCLUSION Our research sets a benchmark for future investigations by demonstrating that heat-killed probiotic and its specific cellular component, EPS, can downregulate the insulin-signaling pathway, potentially improving the autophagy-lysosome pathway (ALP) for degrading ubiquitinylated proteins and promoting organismal longevity. Additionally, we discovered that increased expression of microRNA mir-243 regulates insulin-like signaling and its downstream ALP pathway. Our findings also indicate that postbiotic treatment may bolster antioxidative and innate immune responses, offering a promising avenue for interventions in aging-related diseases.
Collapse
Affiliation(s)
- Arun Kumar
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | | | - Vipin Kumar
- Application Specialist, Research Business Cytiva, Gurugram, Haryana, India
| | - Anupam Bhattacharya
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | - Sagar Barge
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | - Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India
| | - Mohan C Kalita
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India.
| |
Collapse
|
21
|
Jakubek P, Pakula B, Rossmeisl M, Pinton P, Rimessi A, Wieckowski MR. Autophagy alterations in obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease: the evidence from human studies. Intern Emerg Med 2024; 19:1473-1491. [PMID: 38971910 PMCID: PMC11364608 DOI: 10.1007/s11739-024-03700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
Autophagy is an evolutionarily conserved process that plays a pivotal role in the maintenance of cellular homeostasis and its impairment has been implicated in the pathogenesis of various metabolic diseases including obesity, type 2 diabetes (T2D), and metabolic dysfunction-associated steatotic liver disease (MASLD). This review synthesizes the current evidence from human studies on autophagy alterations under these metabolic conditions. In obesity, most data point to autophagy upregulation during the initiation phase of autophagosome formation, potentially in response to proinflammatory conditions in the adipose tissue. Autophagosome formation appears to be enhanced under hyperglycemic or insulin-resistant conditions in patients with T2D, possibly acting as a compensatory mechanism to eliminate damaged organelles and proteins. Other studies have proposed that prolonged hyperglycemia and disrupted insulin signaling hinder autophagic flux, resulting in the accumulation of dysfunctional cellular components that can contribute to β-cell dysfunction. Evidence from patients with MASLD supports autophagy inhibition in disease progression. Nevertheless, given the available data, it is difficult to ascertain whether autophagy is enhanced or suppressed in these conditions because the levels of autophagy markers depend on the overall metabolism of specific organs, tissues, experimental conditions, or disease duration. Owing to these constraints, determining whether the observed shifts in autophagic activity precede or result from metabolic diseases remains challenging. Additionally, autophagy-modulating strategies are shortly discussed. To conclude, more studies investigating autophagy impairment are required to gain a more comprehensive understanding of its role in the pathogenesis of obesity, T2D, and MASLD and to unveil novel therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Patrycja Jakubek
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Barbara Pakula
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121, Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121, Ferrara, Italy
| | - Mariusz Roman Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| |
Collapse
|
22
|
Wang X, Zhang C, Su J, Ren S, Wang X, Zhang Y, Yuan Z, He X, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Wang X, Sun Y, Shen J, Ji H, Hou Y, Xiao Z. Rejuvenation Strategy for Inducing and Enhancing Autoimmune Response to Eliminate Senescent Cells. Aging Dis 2024:AD.2024.0579. [PMID: 39122450 DOI: 10.14336/ad.2024.0579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
The process of aging, which involves progressive changes in the body over time, is closely associated with the development of age-related diseases. Cellular senescence is a pivotal hallmark and mechanism of the aging process. The accumulation of senescent cells can significantly contribute to the onset of age-related diseases, thereby compromising overall health. Conversely, the elimination of senescent cells enhances the body's regenerative and reparative capacity, thereby retarding the aging process. Here, we present a brief overview of 12 Hallmarks of aging and subsequently emphasize the potential of immune checkpoint blockade, innate immune cell therapy (including T cells, iNKT cells, macrophages, and NK cells), as well as CAR-T cell therapy for inducing and augmenting immune responses aimed at eliminating senescent cells. In addition to CAR-T cells, we also explore the possibility of engineered immune cells such as CAR-NK and CAR-M cells to eliminate senescent cells. In summary, immunotherapy, as an emerging strategy for the treatment of aging, offers new prospects for age-related research.
Collapse
Affiliation(s)
- Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chengyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siqi Ren
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xiaodong Wang
- Department of Hepatobiliary Disease, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Huijiao Ji
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yunqing Hou
- LongmaTan District People's Hospital of Luzhou City, Luzhou 646600, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang 621000, China
| |
Collapse
|
23
|
Fu X, Wang H, Gai M, Dai Y, Chang J, Zhang H. Integrating network pharmacology with experimental validation to investigate the mechanism of Wuwei Zishen formula in improving perimenopausal syndrome. Am J Transl Res 2024; 16:2190-2211. [PMID: 39006282 PMCID: PMC11236650 DOI: 10.62347/rqhy5963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/22/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVES To investigate the role of the Wuwei Zishen formula (WWZSF) in treating and preventing perimenopausal syndrome (PMS) and to understand its mechanism. METHODS Network pharmacology and molecular docking was used to predict active compounds, potential targets, and pathways for PMS treatment using WWZSF. Female Sprague-Dawley (SD) rats were induced with D-galactose (D-gal) to establish a PMS model and treated with Kunbao pill (KBP) and WWZSF. Estrus cycles were observed using vaginal smears. Serum sex hormones were measured using the enzyme-linked immunosorbent assay (ELISA). Histological changes in the uterus and ovaries were evaluated using hematoxylin-eosin staining (HE). Western blot was used to assess the protein expression levels of Cleaved Caspase-3, p62, BAX/Bcl-2, p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR in the uterus and ovaries. RESULTS A total of 70 active compounds and 440 potential targets were screened out. Important targets and pathways, including AKT1, Bcl-2, Caspase-3, mTOR, and the PI3K/AKT/mTOR pathways, and molecular docking verified their high affinities to key WWZSF components. In vivo experiments showed that WWZSF can ameliorate the morphological abnormalities of the uterus and ovaries, increase sex hormone levels and organ index, and restore the estrus cycles in PMS rats. Moreover, the western blot results showed decreased Cleaved Caspase-3 and BAX/Bcl-2 protein levels in the ovarian and uterine tissues after WWZSF therapy. Concurrently, there was an increase in the expression of p62 and the ratios of p-AKT/AKT, p-mTOR/mTOR, and p-PI3K/PI3K. CONCLUSION The PI3K/AKT/mTOR signaling pathway-mediated apoptosis and autophagy pathways may be how WWZSF efficiently reduces PMS.
Collapse
Affiliation(s)
- Xuewen Fu
- Changchun University of Chinese MedicineChangchun 130117, Jilin, China
| | - Hui Wang
- The Affiliated Hospital to Changchun University of Chinese MedicineChangchun 130021, Jilin, China
| | - Meichen Gai
- Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing 100053, China
| | - Yuanhua Dai
- Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing 100053, China
| | - Jun Chang
- Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing 100053, China
| | - Hong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing 100053, China
| |
Collapse
|
24
|
Hao Z, Liu X, He H, Wei Z, Shu X, Wang J, Sun B, Zhou H, Wang J, Niu Y, Hu Z, Hu S, Liu Y, Fu Z. CYP2E1 deficit mediates cholic acid-induced malignant growth in hepatocellular carcinoma cells. Mol Med 2024; 30:79. [PMID: 38844847 PMCID: PMC11157842 DOI: 10.1186/s10020-024-00844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Increased level of serum cholic acid (CA) is often accompanied with decreased CYP2E1 expression in hepatocellular carcinoma (HCC) patients. However, the roles of CA and CYP2E1 in hepatocarcinogenesis have not been elucidated. This study aimed to investigate the roles and the underlying mechanisms of CYP2E1 and CA in HCC cell growth. METHODS The proteomic analysis of liver tumors from DEN-induced male SD rats with CA administration was used to reveal the changes of protein expression in the CA treated group. The growth of CA-treated HCC cells was examined by colony formation assays. Autophagic flux was assessed with immunofluorescence and confocal microscopy. Western blot analysis was used to examine the expression of CYP2E1, mTOR, AKT, p62, and LC3II/I. A xenograft tumor model in nude mice was used to examine the role of CYP2E1 in CA-induced hepatocellular carcinogenesis. The samples from HCC patients were used to evaluate the clinical value of CYP2E1 expression. RESULTS CA treatment significantly increased the growth of HCC cells and promoted xenograft tumors accompanied by a decrease of CYP2E1 expression. Further studies revealed that both in vitro and in vivo, upregulated CYP2E1 expression inhibited the growth of HCC cells, blocked autophagic flux, decreased AKT phosphorylation, and increased mTOR phosphorylation. CYP2E1 was involved in CA-activated autophagy through the AKT/mTOR signaling. Finally, decreased CYP2E1 expression was observed in the tumor tissues of HCC patients and its expression level in tumors was negatively correlated with the serum level of total bile acids (TBA) and gamma-glutamyltransferase (GGT). CONCLUSIONS CYP2E1 downregulation contributes to CA-induced HCC development presumably through autophagy regulation. Thus, CYP2E1 may serve as a potential target for HCC drug development.
Collapse
Affiliation(s)
- Zhiwei Hao
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Xuemin Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Huanhuan He
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Zhixuan Wei
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Xiji Shu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Jianzhi Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Binlian Sun
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Hongyan Zhou
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Jiucheng Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Ying Niu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Zhiyong Hu
- Department of Pathology, Renmin Hospital of Huangpi District of Jianghan University, Wuhan, 430399, China
| | - Shaobo Hu
- Liver transplant center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yuchen Liu
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China.
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Liver transplant center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
25
|
Ling Q, Zhang YF, Chang W, Liu ST, Zhu HL, Wang H. NBR1-dependent autophagy activation protects against environmental cadmium-evoked placental trophoblast senescence. CHEMOSPHERE 2024; 358:142138. [PMID: 38670504 DOI: 10.1016/j.chemosphere.2024.142138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Cadmium (Cd), a well-established developmental toxicant, accumulates in the placentae and disrupts its structure and function. Population study found adverse pregnancy outcomes caused by environmental Cd exposure associated with cell senescence. However, the role of autophagy activation in Cd-induced placental cell senescence and its reciprocal mechanisms are unknown. In this study, we employed animal experiments, cell culture, and case-control study to investigate the above mentioned. We have demonstrated that exposure to Cd during gestation induces placental senescence and activates autophagy. Pharmacological and genetic interventions further exacerbated placental senescence induced by Cd through the suppression of autophagy. Conversely, activation of autophagy ameliorated Cd-induced placental senescence. Knockdown of NBR1 exacerbated senescence in human placental trophoblast cells. Further investigations revealed that NBR1 facilitated the degradation of p21 via LC3B. Our case-control study has demonstrated a positive correlation between placental senescence and autophagy activation in all-cause fetal growth restriction (FGR). These findings offer a novel perspective for mitigating placental aging and placental-origin developmental diseases induced by environmental toxicants.
Collapse
Affiliation(s)
- Qing Ling
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medica University, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Si-Ting Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
26
|
Ortega MA, Fraile-Martinez O, de Leon-Oliva D, Boaru DL, Lopez-Gonzalez L, García-Montero C, Alvarez-Mon MA, Guijarro LG, Torres-Carranza D, Saez MA, Diaz-Pedrero R, Albillos A, Alvarez-Mon M. Autophagy in Its (Proper) Context: Molecular Basis, Biological Relevance, Pharmacological Modulation, and Lifestyle Medicine. Int J Biol Sci 2024; 20:2532-2554. [PMID: 38725847 PMCID: PMC11077378 DOI: 10.7150/ijbs.95122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego de Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), Príncipe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
27
|
Zheng LY, Da YX, Luo X, Zhang X, Sun ZJ, Dong DL. Sorafenib extends the lifespan of C. elegans through mitochondrial uncoupling mechanism. Free Radic Biol Med 2024; 214:101-113. [PMID: 38360276 DOI: 10.1016/j.freeradbiomed.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Sorafenib is a targeted anticancer drug in clinic. Low-dose sorafenib has been reported to activate AMPK through inducing mitochondrial uncoupling without detectable toxicities. AMPK activation has been the approach for extending lifespan, therefore, we investigated the effect of sorafenib on lifespan and physical activity of C. elegans and the underlying mechanisms. In the present study, we found that the effect of sorafenib on C. elegans lifespan was typically hermetic. Sorafenib treatment at higher concentrations (100 μM) was toxic but at lower concentrations (1, 2.5, 5 μM) was beneficial to C. elegans. Sorafenib (1 μM) treatment for whole-life period extended C. elegans lifespan and improved C. elegans physical activity as manifested by increasing pharyngeal pumping and body movement, preserving intestinal barrier integrity, muscle fibers organization and mitochondrial morphology. In addition, sorafenib (1 μM) treatment enhanced C. elegans stress resistance. Sorafenib activated AMPK through inducing mitochondrial uncoupling in C. elegans. Sorafenib treatment activated DAF-16, SKN-1, and increased SOD-3, HSP-16.2, GST-4 expression in C. elegans. Sorafenib treatment induced AMPK-dependent autophagy in C. elegans. We conclude that low-dose sorafenib protects C. elegans against aging through activating AMPK/DAF-16 dependent anti-oxidant pathways and stimulating autophagy responses. Low-dose sorafenib could be a strategy for treating aging and aging-related diseases.
Collapse
Affiliation(s)
- Lu-Yao Zheng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yan-Xin Da
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiu Luo
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiao Zhang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - De-Li Dong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
28
|
Fekete M, Major D, Feher A, Fazekas-Pongor V, Lehoczki A. Geroscience and pathology: a new frontier in understanding age-related diseases. Pathol Oncol Res 2024; 30:1611623. [PMID: 38463143 PMCID: PMC10922957 DOI: 10.3389/pore.2024.1611623] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Geroscience, a burgeoning discipline at the intersection of aging and disease, aims to unravel the intricate relationship between the aging process and pathogenesis of age-related diseases. This paper explores the pivotal role played by geroscience in reshaping our understanding of pathology, with a particular focus on age-related diseases. These diseases, spanning cardiovascular and cerebrovascular disorders, malignancies, and neurodegenerative conditions, significantly contribute to the morbidity and mortality of older individuals. We delve into the fundamental cellular and molecular mechanisms underpinning aging, including mitochondrial dysfunction and cellular senescence, and elucidate their profound implications for the pathogenesis of various age-related diseases. Emphasis is placed on the importance of assessing key biomarkers of aging and biological age within the realm of pathology. We also scrutinize the interplay between cellular senescence and cancer biology as a central area of focus, underscoring its paramount significance in contemporary pathological research. Moreover, we shed light on the integration of anti-aging interventions that target fundamental aging processes, such as senolytics, mitochondria-targeted treatments, and interventions that influence epigenetic regulation within the domain of pathology research. In conclusion, the integration of geroscience concepts into pathological research heralds a transformative paradigm shift in our understanding of disease pathogenesis and promises breakthroughs in disease prevention and treatment.
Collapse
Affiliation(s)
- Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Agnes Feher
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | | | - Andrea Lehoczki
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Departments of Hematology and Stem Cell Transplantation, South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Saint Ladislaus Campus, Budapest, Hungary
| |
Collapse
|
29
|
Alfatah M, Zhang Y, Naaz A, Cheng TYN, Eisenhaber F. PICLS with human cells is the first high throughput screening method for identifying novel compounds that extend lifespan. Biol Direct 2024; 19:8. [PMID: 38254217 PMCID: PMC10804585 DOI: 10.1186/s13062-024-00455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024] Open
Abstract
Gerontology research on anti-aging interventions with drugs could be an answer to age-related diseases, aiming at closing the gap between lifespan and healthspan. Here, we present two methods for assaying chronological lifespan in human cells: (1) a version of the classical outgrowth assay with quantitative assessment of surviving cells and (2) a version of the PICLS method (propidium iodide fluorescent-based measurement of cell death). Both methods are fast, simple to conduct, cost-effective, produce quantitative data for further analysis and can be used with diverse human cell lines. Whereas the first method is ideal for validation and testing the post-intervention reproductive potential of surviving cells, the second method has true high-throughput screening potential. The new technologies were validated with known anti-aging compounds (2,5-anhydro-D-mannitol and rapamycin). Using the high-throughput screening method, we screened a library of 162 chemical entities and identified three compounds that extend the longevity of human cells.
Collapse
Affiliation(s)
- Mohammad Alfatah
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore, 138671, Republic of Singapore.
| | - Yizhong Zhang
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore, 138671, Republic of Singapore
| | - Arshia Naaz
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, 138672, Republic of Singapore
| | - Trishia Yi Ning Cheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore, 138671, Republic of Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore, 138671, Republic of Singapore
- LASA - Lausitz Advanced Scientific Applications gGmbH, Straße der Einheit 2-24, 02943, Weißwasser, Federal Republic of Germany
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore, 637551, Republic of Singapore
| |
Collapse
|
30
|
Fujimori S, Ohigashi I. The role of thymic epithelium in thymus development and age-related thymic involution. THE JOURNAL OF MEDICAL INVESTIGATION 2024; 71:29-39. [PMID: 38735722 DOI: 10.2152/jmi.71.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The establishment of an adaptive immune system is critical for protecting our bodies from neoplastic cancers and invading pathogens such as viruses and bacteria. As a primary lymphoid organ, the thymus generates lymphoid T cells that play a major role in the adaptive immune system. T cell generation in the thymus is controlled by interactions between thymocytes and other thymic cells, primarily thymic epithelial cells. Thus, the normal development and function of thymic epithelial cells are important for the generation of immunocompetent and self-tolerant T cells. On the other hand, the degeneration of the thymic epithelium due to thymic aging causes thymic involution, which is associated with the decline of adaptive immune function. Herein we summarize basic and current knowledge of the development and function of thymic epithelial cells and the mechanism of thymic involution. J. Med. Invest. 71 : 29-39, February, 2024.
Collapse
Affiliation(s)
- Sayumi Fujimori
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
31
|
Franconi F, Capobianco G, Diana G, Lodde V, De Donno A, Idda ML, Montella A, Campesi I. Sex Influence on Autophagy Markers and miRNAs in Basal and Angiotensin II-Treated Human Umbilical Vein Endothelial Cells. Int J Mol Sci 2023; 24:14929. [PMID: 37834376 PMCID: PMC10573886 DOI: 10.3390/ijms241914929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Cardiovascular diseases (CVD) display many sex and gender differences, and endothelial dysfunction, angiotensin II (Ang II), and autophagy represent key factors in the autophagic process Therefore, we studied whether Ang II modulates the mentioned processes in a sex-specific way in HUVECs obtained from healthy male and female newborns. In basal HUVECs, the Parkin gene and protein were higher in FHUVECs than in MHUVECs, while the Beclin-1 protein was more expressed in MHUVECs, and no other significant differences were detected. Ang II significantly increases LAMP-1 and p62 protein expression and decreases the expression of Parkin protein in comparison to basal in MHUVECs. In FHUVECs, Ang II significantly increases the expression of Beclin-1 gene and protein, and Parkin gene. The LC3 II/I ratio and LAMP-1 protein were significantly higher in MHUVECs than in FHUVECs, while Parkin protein was significantly more expressed in Ang II-treated FHUVECs than in male cells. Ang II affects the single miRNA levels: miR-126-3p and miR-133a-3p are downregulated and upregulated in MHUVECs and FHUVECs, respectively. MiR-223 is downregulated in MHUVEC and FHUVECs. Finally, miR-29b-3p and miR-133b are not affected by Ang II. Ang II effects and the relationship between miRNAs and organelles-specific autophagy is sex-dependent in HUVECs. This could lead to a better understanding of the mechanisms underlying sex differences in endothelial dysfunction, providing useful indications for innovative biomarkers and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Flavia Franconi
- Laboratory of Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy;
| | - Giampiero Capobianco
- Department of Medicine, Surgery and Pharmacy, Gynecologic and Obstetric Clinic, University of Sassari, 07100 Sassari, Italy; (G.C.); (A.D.D.)
| | - Giuseppe Diana
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (V.L.)
| | - Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (V.L.)
| | - Alberto De Donno
- Department of Medicine, Surgery and Pharmacy, Gynecologic and Obstetric Clinic, University of Sassari, 07100 Sassari, Italy; (G.C.); (A.D.D.)
| | - Maria Laura Idda
- Institute of Genetics and Biomedical Research, National Research Council, 07100 Sassari, Italy;
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (V.L.)
| | - Ilaria Campesi
- Laboratory of Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (V.L.)
| |
Collapse
|
32
|
Bae CY, Kim BS, Jee SH, Lee JH, Nguyen ND. A Study on Survival Analysis Methods Using Neural Network to Prevent Cancers. Cancers (Basel) 2023; 15:4757. [PMID: 37835451 PMCID: PMC10571885 DOI: 10.3390/cancers15194757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Background: Cancer is one of the main global health threats. Early personalized prediction of cancer incidence is crucial for the population at risk. This study introduces a novel cancer prediction model based on modern recurrent survival deep learning algorithms. Methods: The study includes 160,407 participants from the blood-based cohort of the Korea Cancer Prevention Research-II Biobank, which has been ongoing since 2004. Data linkages were designed to ensure anonymity, and data collection was carried out through nationwide medical examinations. Predictive performance on ten cancer sites, evaluated using the concordance index (c-index), was compared among nDeep and its multitask variation, Cox proportional hazard (PH) regression, DeepSurv, and DeepHit. Results: Our models consistently achieved a c-index of over 0.8 for all ten cancers, with a peak of 0.8922 for lung cancer. They outperformed Cox PH regression and other survival deep neural networks. Conclusion: This study presents a survival deep learning model that demonstrates the highest predictive performance on censored health dataset, to the best of our knowledge. In the future, we plan to investigate the causal relationship between explanatory variables and cancer to reduce cancer incidence and mortality.
Collapse
Affiliation(s)
- Chul-Young Bae
- Mediage Research Center, Seongnam-si 13449, Republic of Korea
| | - Bo-Seon Kim
- Mediage Research Center, Seongnam-si 13449, Republic of Korea
| | - Sun-Ha Jee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hoon Lee
- Moadata AI Labs, Seongnam-si 13449, Republic of Korea
| | | |
Collapse
|
33
|
Khan SA, Reed L, Schoolcraft WB, Yuan Y, Krisher RL. Control of mitochondrial integrity influences oocyte quality during reproductive aging. Mol Hum Reprod 2023; 29:gaad028. [PMID: 37594790 DOI: 10.1093/molehr/gaad028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/07/2023] [Indexed: 08/19/2023] Open
Abstract
Reduced quality in oocytes from women of advanced maternal age (AMA) is associated with dysfunctional mitochondria. The objective of this study was to investigate the mechanisms controlling mitochondrial quality during maternal aging in mouse and human oocytes. We first evaluated the expression of proteins involved in the mitochondrial unfolded protein response (UPRmt) and mitophagy in in vivo matured metaphase II (MII) oocytes collected from young and aged mice. Expression of UPRmt proteins, HSPD1 and LONP1, and mitophagy proteins, total-PRKN and phosphorylated-PRKN, was significantly decreased in aged compared to young oocytes. Treatment of aged oocytes during in vitro maturation with the mitochondrially targeted antioxidant mitoquinone (MQ) specifically restored total-PRKN and phosphorylated-PRKN expression to levels seen in young oocytes. We next investigated whether maturing young oocytes under a high-oxygen environment would mimic the effects observed in oocytes from aged females. Phosphorylated-PRKN expression in oxidatively stressed young oocytes was reduced compared to that in oocytes matured under normal oxygen levels, and the mitochondrial DNA (mtDNA) copy number was increased. Treating oxidatively challenged young oocytes with MQ restored the phosphorylated-PRKN expression and mtDNA copy numbers. Treatment of oxidatively challenged oocytes with MQ also increased the co-localization of mitochondria and lysosomes, suggesting increased mitophagy. These data correlated with the developmental potential of the oocytes, as blastocyst development and hatching of oxidatively stressed oocytes were reduced, while treatment with MQ resulted in a significant increase in blastocyst development and hatching, and in the percentage of inner cell mass. Consistent with our results in mice, MII oocytes from women of AMA exhibited a significant decrease in phosphorylated-PKRN and total-PRKN compared to those of young women. Our findings suggest that the protein machinery to control the health of the mitochondria via UPRmt and mitophagy may be compromised in oocytes from aged females, which may result in inefficient clearance of dysfunctional mitochondria and reduced oocyte quality.
Collapse
Affiliation(s)
- Shaihla A Khan
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
- Genus plc, DeForest, WI, USA
| | - Laura Reed
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
| | | | - Ye Yuan
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
| | - Rebecca L Krisher
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
- Genus plc, DeForest, WI, USA
| |
Collapse
|
34
|
Brackhan M, Arribas-Blazquez M, Lastres-Becker I. Aging, NRF2, and TAU: A Perfect Match for Neurodegeneration? Antioxidants (Basel) 2023; 12:1564. [PMID: 37627559 PMCID: PMC10451380 DOI: 10.3390/antiox12081564] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Although the trigger for the neurodegenerative disease process is unknown, the relevance of aging stands out as a major risk for the development of neurodegeneration. In this review, we highlighted the relationship between the different cellular mechanisms that occur as a consequence of aging and transcription factor nuclear factor erythroid-2-related factor 2 (NRF2) and the connection with the TAU protein. We focused on the relevance of NRF2 in the main processes involved in neurodegeneration and associated with aging, such as genomic instability, protein degradation systems (proteasomes/autophagy), cellular senescence, and stem cell exhaustion, as well as inflammation. We also analyzed the effect of aging on TAU protein levels and its aggregation and spread process. Finally, we investigated the interconnection between NRF2 and TAU and the relevance of alterations in the NRF2 signaling pathway in both primary and secondary tauopathies. All these points highlight NRF2 as a possible therapeutic target for tauopathies.
Collapse
Affiliation(s)
- Mirjam Brackhan
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, c/Arturo Duperier 4, 28029 Madrid, Spain
| | - Marina Arribas-Blazquez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain;
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Isabel Lastres-Becker
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, c/Arturo Duperier 4, 28029 Madrid, Spain
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| |
Collapse
|
35
|
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab 2023; 74:101755. [PMID: 37329949 PMCID: PMC10359950 DOI: 10.1016/j.molmet.2023.101755] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of particular interest to the current geroscience research. SCOPE OF REVIEW This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven hallmarks of aging. Extra discussion is dedicated to the hallmark of "altered nutrient sensing," given the scope of Molecular Metabolism. The deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling, leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark, thereby driving the progression of aging and age-related diseases. MAIN CONCLUSIONS The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging, drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with aging.
Collapse
Affiliation(s)
- Jordan J Baechle
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA
| | - Nan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Priya Makhijani
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David Furman
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
36
|
Sharebiani H, Keramat S, Chavoshan A, Fazeli B, Stanek A. The Influence of Antioxidants on Oxidative Stress-Induced Vascular Aging in Obesity. Antioxidants (Basel) 2023; 12:1295. [PMID: 37372025 PMCID: PMC10295268 DOI: 10.3390/antiox12061295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is a worldwide trend that is growing in incidence very fast. Adipose tissue dysfunction caused by obesity is associated with the generation of oxidative stress. Obesity-induced oxidative stress and inflammation play a key role in the pathogenesis of vascular diseases. Vascular aging is one of the main pathogenesis mechanisms. The aim of this study is to review the effect of antioxidants on vascular aging caused by oxidative stress in obesity. In order to achieve this aim, this paper is designed to review obesity-caused adipose tissue remodeling, vascular aging generated by high levels of oxidative stress, and the effects of antioxidants on obesity, redox balance, and vascular aging. It seems that vascular diseases in obese individuals are complex networks of pathological mechanisms. In order to develop a proper therapeutic tool, first, there is a need for a better understanding of interactions between obesity, oxidative stress, and aging. Based on these interactions, this review suggests different lines of strategies that include change in lifestyle to prevent and control obesity, strategies for adipose tissue remodelling, oxidant-antioxidant balance, inflammation suppression, and strategies against vascular aging. Some antioxidants support different lines of these strategies, making them appropriate for complex conditions such as oxidative stress-induced vascular diseases in obese individuals.
Collapse
Affiliation(s)
- Hiva Sharebiani
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Shayan Keramat
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Abdolali Chavoshan
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Bahar Fazeli
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Agata Stanek
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland
| |
Collapse
|
37
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
38
|
Su WP, Li CJ, Lin LT, Lin PH, Wen ZH, Sheu JJC, Tsui KH. Boosting mitochondrial function and metabolism in aging female germ cells with dual ROCK/ROS inhibition. Biomed Pharmacother 2023; 163:114888. [PMID: 37196543 DOI: 10.1016/j.biopha.2023.114888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
The decline in oocyte quality with age is an irreversible process that results in low fertility. Reproductive aging causes an increase in oocyte aneuploidy leading to a decrease in embryo quality and an increase in the incidence of miscarriage and congenital defects. Here, we show that the dysfunction associated with aging is not limited to the oocyte, as oocyte granulosa cells also show a range of defects related to mitochondrial activity. The addition of Y-27632 and Vitamin C combination drugs to aging germ cells was effective in enhancing the quality of aging cells. We observed that supplement treatment significantly decreased the production of reactive oxygen species (ROS) and restored the balance of mitochondrial membrane potential. Supplementation treatment reduces excessive mitochondrial fragmentation in aging cells by upregulating mitochondrial fusion. Moreover, it regulated the energy metabolism within cells, favoring oxygen respiration and reducing anaerobic respiration, thereby increasing cellular ATP production. In an experiment with aged mice, supplement treatment improved the maturation of oocytes in vitro and prevented the buildup of ROS in aging oocytes in culture. Additionally, this treatment resulted in an increased concentration of anti-mullerian hormone (AMH) in the culture medium. By improving mitochondrial metabolism in aging females, supplement treatment has the potential to increase quality of oocytes during in vitro fertilization.
Collapse
Affiliation(s)
- Wan-Ping Su
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Li-Te Lin
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei 112, Taiwan
| | - Pei-Hsuan Lin
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei 112, Taiwan; Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan; Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County 907, Taiwan; Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
39
|
Tao T, Zhang P, Zeng Z, Wang M. Advances in autophagy modulation of natural products in cervical cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116575. [PMID: 37142142 DOI: 10.1016/j.jep.2023.116575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural products play a critical role in drug development and is emerging as a potential source of biologically active metabolites for therapeutic intervention, especially in cancer therapy. In recent years, there is increasing evidence that many natural products may modulate autophagy through various signaling pathways in cervical cancer. Understanding the mechanisms of these natural products helps to develop medications for cervical cancer treatments. AIM OF THE STUDY In recent years, there is increasing evidence that many natural products may modulate autophagy through various signaling pathways in cervical cancer. In this review, we briefly introduce autophagy and systematically describe several classes of natural products implicated in autophagy modulation in cervical cancer, hoping to provide valuable information for the development of cervical cancer treatments based on autophagy. MATERIALS AND METHODS We searched for studies on natural products and autophagy in cervical cancer on the online database and summarized the relationship between natural products and autophagy modulation in cervical cancer. RESULTS Autophagy is a lysosome-mediated catabolic process in eukaryotic cells that plays an important role in a variety of physiological and pathological processes, including cervical cancer. Abnormal expression of cellular autophagy and autophagy-related proteins has been implicated in cervical carcinogenesis, and human papillomavirus infection can affect autophagic activity. Flavonoids, alkaloids, polyphenols, terpenoids, quinones, and other compounds are important sources of natural products that act as anticancer agents. In cervical cancer, natural products exert the anticancer function mainly through the induction of protective autophagy. CONCLUSIONS The regulation of cervical cancer autophagy by natural products has significant advantages in inducing apoptosis, inhibiting proliferation, and reducing drug resistance in cervical cancer.
Collapse
Affiliation(s)
- Tao Tao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, Shenyang Women's and Children's Hospital, Shenyang, Liaoning Province, China
| | - Zhi Zeng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
40
|
Gallizioli M, Arbaizar-Rovirosa M, Brea D, Planas AM. Differences in the post-stroke innate immune response between young and old. Semin Immunopathol 2023:10.1007/s00281-023-00990-8. [PMID: 37045990 DOI: 10.1007/s00281-023-00990-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023]
Abstract
Aging is associated to progressive changes impairing fundamental cellular and tissue functions, and the relationships amongst them through the vascular and immune systems. Aging factors are key to understanding the pathophysiology of stroke since they increase its risk and worsen its functional outcome. Most currently recognised hallmarks of aging are also involved in the cerebral responses to stroke. Notably, age-associated chronic low-grade inflammation is related to innate immune responses highlighted by induction of type-I interferon. The interferon program is prominent in microglia where it interrelates cell damage, danger signals, and phagocytosis with immunometabolic disturbances and inflammation. Microglia engulfment of damaged myelin and cell debris may overwhelm the cellular capacity for waste removal inducing intracellular lipid accumulation. Acute inflammation and interferon-stimulated gene expression are also typical features of acute stroke, where danger signal recognition by microglia trigger immunometabolic alterations underscored by lipid droplet biogenesis. Aging reduces the capacity to control these responses causing increased and persistent inflammation, metabolic dysregulation, and impaired cellular waste disposal. In turn, chronic peripheral inflammation during aging induces immunosenescence further worsening stroke-induced immunodepression, thus increasing the risk of post-stroke infection. Aging also alters gut microbiota composition inducing dysbiosis. These changes are enhanced by age-related diseases, such as atherosclerosis and type-II diabetes, that further promote vascular aging, predispose to stroke, and exacerbate brain inflammation after stroke. Current advances in aging research suggest that some age-associated alterations may be reversed. Future work will unravel whether such evolving anti-aging research may enable designing strategies to improve stroke outcome in the elderly.
Collapse
Affiliation(s)
- Mattia Gallizioli
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), S Rosselló 161, planta 6, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 153, 08036, Barcelona, Spain
| | - Maria Arbaizar-Rovirosa
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), S Rosselló 161, planta 6, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 153, 08036, Barcelona, Spain
| | - David Brea
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), S Rosselló 161, planta 6, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 153, 08036, Barcelona, Spain
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), S Rosselló 161, planta 6, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 153, 08036, Barcelona, Spain.
| |
Collapse
|
41
|
Danics L, Abbas AA, Kis B, Pircs K. Fountain of youth—Targeting autophagy in aging. Front Aging Neurosci 2023; 15:1125739. [PMID: 37065462 PMCID: PMC10090449 DOI: 10.3389/fnagi.2023.1125739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
As our society ages inexorably, geroscience and research focusing on healthy aging is becoming increasingly urgent. Macroautophagy (referred to as autophagy), a highly conserved process of cellular clearance and rejuvenation has attracted much attention due to its universal role in organismal life and death. Growing evidence points to autophagy process as being one of the key players in the determination of lifespan and health. Autophagy inducing interventions show significant improvement in organismal lifespan demonstrated in several experimental models. In line with this, preclinical models of age-related neurodegenerative diseases demonstrate pathology modulating effect of autophagy induction, implicating its potential to treat such disorders. In humans this specific process seems to be more complex. Recent clinical trials of drugs targeting autophagy point out some beneficial effects for clinical use, although with limited effectiveness, while others fail to show any significant improvement. We propose that using more human-relevant preclinical models for testing drug efficacy would significantly improve clinical trial outcomes. Lastly, the review discusses the available cellular reprogramming techniques used to model neuronal autophagy and neurodegeneration while exploring the existing evidence of autophagy’s role in aging and pathogenesis in human-derived in vitro models such as embryonic stem cells (ESCs), induced pluripotent stem cell derived neurons (iPSC-neurons) or induced neurons (iNs).
Collapse
Affiliation(s)
- Lea Danics
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SU), Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Anna Anoir Abbas
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
| | - Balázs Kis
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
| | - Karolina Pircs
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- *Correspondence: Karolina Pircs,
| |
Collapse
|