1
|
Eshrati S, Nikbakhtzadeh M, Arezoomandan R, Fattahi A. Efficacy of minocycline in substance use disorder: A systematic review of preclinical and clinical studies. Pharmacol Biochem Behav 2025; 250:173982. [PMID: 39993507 DOI: 10.1016/j.pbb.2025.173982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Addiction is a serious condition that leads to negative changes in the central nervous system. Although there have been significant advancements in medication treatments for substance use disorders (SUDs), it is clear that there is a need to implement these developments in clinical settings to explore new therapeutic approaches for helping individuals with SUDs. Minocycline, a semi-synthetic second-generation tetracycline, possesses neuroprotective and anti-inflammatory properties. Recent studies have shown promising results when using this drug for the treatment of substance misuse. This study aimed to review the pre-clinical and clinical studies assessing the therapeutic efficacy of minocycline on drug-related outcomes, including reward, tolerance, withdrawal, impairments, and toxicity. We conducted a systematic review to assess the effectiveness of minocycline in ameliorating drug-induced outcomes per the PRISMA guidelines. Electronic medical databases Web of Science, PubMed/Medline, Scopus, and Google Scholar were searched from databases from their inception date until December 2023. 56 of the 623 articles met the eligible criteria for analysis. Of the 56 articles reviewed, 51 were conducted on animals, while 5 involved human subjects. Our study indicates that the majority of animal studies have primarily focused on morphine and alcohol, with no research found to date on the effects of cannabis. This review highlights minocycline's potential in addiction treatment through its effects on anti-inflammatory mechanisms, neuroprotection, regulation of synaptic plasticity. Results of this study suggest that although minocycline shows promise in experiments, its effectiveness in humans may be limited by dosage, individual variability, and addiction's complexity. Further clinical studies are required to clarify the optimal dose, duration of administration, and delivery route and focus on identifying specific conditions where it may be most effective.
Collapse
Affiliation(s)
- Sahar Eshrati
- Addiction Department, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Reza Arezoomandan
- Addiction Department, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Azin Fattahi
- Addiction Department, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Schrank S, Sevigny JP, Yunus NI, Vetter KR, Aguilar OD, Ily V, Valchinova M, Keinath AT, Sparta DR. Binge ethanol consumption can be attenuated by systemic administration of minocycline and is associated with enhanced neuroinflammation in the central amygdala. Neuropharmacology 2025; 262:110174. [PMID: 39369848 DOI: 10.1016/j.neuropharm.2024.110174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/10/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
Alcohol use disorder (AUD) has a complicated pathophysiology. Binge ethanol intoxication may produce long-lasting changes throughout extended amygdala neurocircuitry including neuroinflammation, often leading to relapse. Therefore, understanding the role of binge drinking induced neuroinflammation on extended amygdala neurocircuitry is critically important for treatment. We sought to understand the role of neuroinflammation in a naturalized form of rodent binge ethanol drinking (Drinking in the Dark (DID)). In a 5-week DID paradigm, we demonstrate that acute intraperitoneal (IP) injection of the anti-inflammatory drug minocycline significantly reduced binge drinking repeatedly in male and female Cx3CR1-GFP and C57BL/6J mice. Importantly, IP administration transiently decreased intermittent access sucrose consumption, was not observed on the second IP injection, but did not significantly alter food or water consumption, suggesting that minocycline may produce initial acute aversive effects and may not alter long-term consumption of natural rewards. Examination of rodent behaviors post ethanol binge drinking reveals no lasting effects of minocycline treatment on locomotion or anxiety-like behavior. To assess neuroinflammation, we developed a novel analysis method using a Matlab image analysis script, which allows for non-biased skeletonization and evaluation of microglia morphology to determine a possible activation state in Cx3CR1-GFP knock-in mice after repeated DID. We observed significant morphological changes of microglia within the CeA, but no differences in the BLA. Taken together, this study demonstrates repeated binge ethanol consumption can produce significant levels of microglia morphology changes within the CeA, and that immunomodulatory therapies may be an intriguing pharmacological candidate for the treatment of AUD.
Collapse
Affiliation(s)
| | - Joshua P Sevigny
- Department of Psychology, USA; Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | | | | - Alexandra T Keinath
- Department of Psychology, USA; Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dennis R Sparta
- Department of Psychology, USA; Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
3
|
Heilig M, Witkiewitz K, Ray LA, Leggio L. Novel medications for problematic alcohol use. J Clin Invest 2024; 134:e172889. [PMID: 38828724 PMCID: PMC11142745 DOI: 10.1172/jci172889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Alcohol-related harm, a major cause of disease burden globally, affects people along a spectrum of use. When a harmful pattern of drinking is present in the absence of significant behavioral pathology, low-intensity brief interventions that provide information about health consequences of continued use provide large health benefits. At the other end of the spectrum, profound behavioral pathology, including continued use despite knowledge of potentially fatal consequences, warrants a medical diagnosis, and treatment is strongly indicated. Available behavioral and pharmacological treatments are supported by scientific evidence but are vastly underutilized. Discovery of additional medications, with a favorable balance of efficacy versus safety and tolerability can improve clinical uptake of treatment, allow personalized treatment, and improve outcomes. Here, we delineate the clinical conditions when pharmacotherapy should be considered in relation to the main diagnostic systems in use and discuss clinical endpoints that represent meaningful clinical benefits. We then review specific developments in three categories of targets that show promise for expanding the treatment toolkit. GPCRs remain the largest category of successful drug targets across contemporary medicine, and several GPCR targets are currently pursued for alcohol-related indications. Endocrine systems are another established category, and several promising targets have emerged for alcohol indications. Finally, immune modulators have revolutionized treatment of multiple medical conditions, and they may also hold potential to produce benefits in patients with alcohol problems.
Collapse
Affiliation(s)
- Markus Heilig
- Center for Social and Affective Neuroscience, Linköping University, and Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| | - Katie Witkiewitz
- Department of Psychology and Center on Alcohol, Substance Use and Addictions, University of New Mexico, Albuquerque, New Mexico, USA
| | - Lara A. Ray
- Department of Psychology, UCLA, Los Angeles, California, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, NIH, Baltimore and Bethesda, Maryland, USA
| |
Collapse
|
4
|
Liu X, Panthagani P, Gutierrez AG, Vega A, Shaik AA, Aguilera MG, Sanchez JN, Willms JO, Backus B, Blough B, Pauli E, Reid TW, Benton T, Bailoo JD, Bergeson SE. A Pilot Study: Treatment of High Alcohol Consumption in a Novel Minipig Model of Alcohol Use Disorder. ALCOHOLISM TREATMENT QUARTERLY 2024; 42:393-403. [PMID: 39386887 PMCID: PMC11463722 DOI: 10.1080/07347324.2024.2355931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Three medications are FDA approved in the US for treatment of Alcohol Use Disorder (AUD), and a few others are used off-label. Patient compliance and efficacy in the broader population are major hurdles for current AUD medications. As a consequence, there is an urgent need for improved pharmacotherapeutics to complement behavioral approaches. Here, we report pilot testing of a minocycline analog, 10-butylether minocycline (BEM, 10 mg/kg p.o.), in two female minipigs with free-choice drinking to intoxication for nearly two and a half years. Each pig met DSM-5 criteria for diagnosis of severe AUD, and BEM reduced both alcohol intake and preference. BEM is currently undergoing testing for approval as an Investigational New Drug by the FDA for AUD treatment.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Praneetha Panthagani
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Ana G. Gutierrez
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Arlette Vega
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Abdul A. Shaik
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Monica G. Aguilera
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Jordan N. Sanchez
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Joshua O. Willms
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Brittany Backus
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Bruce Blough
- RTI International, Research Triangle Park, North Carolina, USA
| | - Elliott Pauli
- RTI International, Research Triangle Park, North Carolina, USA
| | - Ted W. Reid
- Department of Ophthalmology & Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Thomas Benton
- RTI International, Research Triangle Park, North Carolina, USA
| | - Jeremy D. Bailoo
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Susan E. Bergeson
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
5
|
Cruz B, Borgonetti V, Bajo M, Roberto M. Sex-dependent factors of alcohol and neuroimmune mechanisms. Neurobiol Stress 2023; 26:100562. [PMID: 37601537 PMCID: PMC10432974 DOI: 10.1016/j.ynstr.2023.100562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Excessive alcohol use disrupts neuroimmune signaling across various cell types, including neurons, microglia, and astrocytes. The present review focuses on recent, albeit limited, evidence of sex differences in biological factors that mediate neuroimmune responses to alcohol and underlying neuroimmune systems that may influence alcohol drinking behaviors. Females are more vulnerable than males to the neurotoxic and negative consequences of chronic alcohol drinking, reflected by elevations of pro-inflammatory cytokines and inflammatory mediators. Differences in cytokine, microglial, astrocytic, genomic, and transcriptomic evidence suggest females are more reactive than males to neuroinflammatory changes after chronic alcohol exposure. The growing body of evidence supports that innate immune factors modulate synaptic transmission, providing a mechanistic framework to examine sex differences across neurocircuitry. Targeting neuroimmune signaling may be a viable strategy for treating AUD, but more research is needed to understand sex-specific differences in alcohol drinking and neuroimmune mechanisms.
Collapse
Affiliation(s)
- Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| |
Collapse
|
6
|
Vilca SJ, Margetts AV, Pollock TA, Tuesta LM. Transcriptional and epigenetic regulation of microglia in substance use disorders. Mol Cell Neurosci 2023; 125:103838. [PMID: 36893849 PMCID: PMC10247513 DOI: 10.1016/j.mcn.2023.103838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Microglia are widely known for their role in immune surveillance and for their ability to refine neurocircuitry during development, but a growing body of evidence suggests that microglia may also play a complementary role to neurons in regulating the behavioral aspects of substance use disorders. While many of these efforts have focused on changes in microglial gene expression associated with drug-taking, epigenetic regulation of these changes has yet to be fully understood. This review provides recent evidence supporting the role of microglia in various aspects of substance use disorder, with particular focus on changes to the microglial transcriptome and the potential epigenetic mechanisms driving these changes. Further, this review discusses the latest technical advances in low-input chromatin profiling and highlights the current challenges for studying these novel molecular mechanisms in microglia.
Collapse
Affiliation(s)
- Samara J Vilca
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - Alexander V Margetts
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - Tate A Pollock
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - Luis M Tuesta
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America.
| |
Collapse
|
7
|
Age-related differences in the effect of chronic alcohol on cognition and the brain: a systematic review. Transl Psychiatry 2022; 12:345. [PMID: 36008381 PMCID: PMC9411553 DOI: 10.1038/s41398-022-02100-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/21/2022] [Accepted: 07/28/2022] [Indexed: 12/09/2022] Open
Abstract
Adolescence is an important developmental period associated with increased risk for excessive alcohol use, but also high rates of recovery from alcohol use-related problems, suggesting potential resilience to long-term effects compared to adults. The aim of this systematic review is to evaluate the current evidence for a moderating role of age on the impact of chronic alcohol exposure on the brain and cognition. We searched Medline, PsycInfo, and Cochrane Library databases up to February 3, 2021. All human and animal studies that directly tested whether the relationship between chronic alcohol exposure and neurocognitive outcomes differs between adolescents and adults were included. Study characteristics and results of age-related analyses were extracted into reference tables and results were separately narratively synthesized for each cognitive and brain-related outcome. The evidence strength for age-related differences varies across outcomes. Human evidence is largely missing, but animal research provides limited but consistent evidence of heightened adolescent sensitivity to chronic alcohol's effects on several outcomes, including conditioned aversion, dopaminergic transmission in reward-related regions, neurodegeneration, and neurogenesis. At the same time, there is limited evidence for adolescent resilience to chronic alcohol-induced impairments in the domain of cognitive flexibility, warranting future studies investigating the potential mechanisms underlying adolescent risk and resilience to the effects of alcohol. The available evidence from mostly animal studies indicates adolescents are both more vulnerable and potentially more resilient to chronic alcohol effects on specific brain and cognitive outcomes. More human research directly comparing adolescents and adults is needed despite the methodological constraints. Parallel translational animal models can aid in the causal interpretation of observed effects. To improve their translational value, future animal studies should aim to use voluntary self-administration paradigms and incorporate individual differences and environmental context to better model human drinking behavior.
Collapse
|
8
|
Mineur YS, Garcia-Rivas V, Thomas MA, Soares AR, McKee SA, Picciotto MR. Sex differences in stress-induced alcohol intake: a review of preclinical studies focused on amygdala and inflammatory pathways. Psychopharmacology (Berl) 2022; 239:2041-2061. [PMID: 35359158 PMCID: PMC9704113 DOI: 10.1007/s00213-022-06120-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023]
Abstract
Clinical studies suggest that women are more likely than men to relapse to alcohol drinking in response to stress; however, the mechanisms underlying this sex difference are not well understood. A number of preclinical behavioral models have been used to study stress-induced alcohol intake. Here, we review paradigms used to study effects of stress on alcohol intake in rodents, focusing on findings relevant to sex differences. To date, studies of sex differences in stress-induced alcohol drinking have been somewhat limited; however, there is evidence that amygdala-centered circuits contribute to effects of stress on alcohol seeking. In addition, we present an overview of inflammatory pathways leading to microglial activation that may contribute to alcohol-dependent behaviors. We propose that sex differences in neuronal function and inflammatory signaling in circuits centered on the amygdala are involved in sex-dependent effects on stress-induced alcohol seeking and suggest that this is an important area for future studies.
Collapse
Affiliation(s)
- Yann S Mineur
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Vernon Garcia-Rivas
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Merrilee A Thomas
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Alexa R Soares
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
- Yale Interdepartmental Neuroscience Program, New Haven, CT, USA
| | - Sherry A McKee
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA.
- Yale Interdepartmental Neuroscience Program, New Haven, CT, USA.
| |
Collapse
|
9
|
Hitzemann R, Bergeson SE, Berman AE, Bubier JA, Chesler EJ, Finn DA, Hein M, Hoffman P, Holmes A, Kisby BR, Lockwood D, Lodowski KH, McManus M, Owen JA, Ozburn AR, Panthagani P, Ponomarev I, Saba L, Tabakoff B, Walchale A, Williams RW, Phillips TJ. Sex Differences in the Brain Transcriptome Related to Alcohol Effects and Alcohol Use Disorder. Biol Psychiatry 2022; 91:43-52. [PMID: 34274109 PMCID: PMC8558111 DOI: 10.1016/j.biopsych.2021.04.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 01/03/2023]
Abstract
There is compelling evidence that sex and gender have crucial roles in excessive alcohol (ethanol) consumption. Here, we review some of the data from the perspective of brain transcriptional differences between males and females, focusing on rodent animal models. A key emerging transcriptional feature is the role of neuroimmune processes. Microglia are the resident neuroimmune cells in the brain and exhibit substantial functional differences between males and females. Selective breeding for binge ethanol consumption and the impacts of chronic ethanol consumption and withdrawal from chronic ethanol exposure all demonstrate sex-dependent neuroimmune signatures. A focus is on resolving sex-dependent differences in transcriptional responses to ethanol at the neurocircuitry level. Sex-dependent transcriptional differences are found in the extended amygdala and the nucleus accumbens. Telescoping of ethanol consumption is found in some, but not all, studies to be more prevalent in females. Recent transcriptional studies suggest that some sex differences may be due to female-dependent remodeling of the primary cilium. An interesting theme appears to be developing: at least from the animal model perspective, even when males and females are phenotypically similar, they differ significantly at the level of the transcriptome.
Collapse
Affiliation(s)
- Robert Hitzemann
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon
| | - Susan E Bergeson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | | | | | | | - Deborah A Finn
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon; Veterans Affairs Portland Health Care System, Portland, Oregon
| | - Matthew Hein
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Paula Hoffman
- Department of Pharmacology, University of Colorado, Aurora, Colorado
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Brent R Kisby
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Denesa Lockwood
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon.
| | - Kerrie H Lodowski
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Michelle McManus
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Julie A Owen
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Angela R Ozburn
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon; Veterans Affairs Portland Health Care System, Portland, Oregon
| | - Praneetha Panthagani
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aashlesha Walchale
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, Tennessee
| | - Tamara J Phillips
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon; Veterans Affairs Portland Health Care System, Portland, Oregon
| |
Collapse
|
10
|
Meredith LR, Burnette EM, Grodin EN, Irwin MR, Ray LA. Immune treatments for alcohol use disorder: A translational framework. Brain Behav Immun 2021; 97:349-364. [PMID: 34343618 PMCID: PMC9044974 DOI: 10.1016/j.bbi.2021.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/10/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
While the immune system is essential for survival, an excessive or prolonged inflammatory response, such as that resulting from sustained heavy alcohol use, can damage the host and contribute to psychiatric disorders. A growing body of literature indicates that the immune system plays a critical role in the development and maintenance of alcohol use disorder (AUD). As such, there is enthusiasm for treatments that can restore healthy levels of inflammation as a mechanism to reduce drinking and promote recovery. In this qualitative literature review, we provide a conceptual rationale for immune therapies and discuss progress in medications development for AUD focused on the immune system as a treatment target. This review is organized into sections based on primary signaling pathways targeted by the candidate therapies, namely: (a) toll-like receptors, (b) phosphodiesterase inhibitors, (c) peroxisome proliferator-activated receptors, (d) microglia and astrocytes, (e) other immune pharmacotherapies, and (f) behavioral therapies. As relevant within each section, we examine the basic biological mechanisms of each class of therapy and evaluate preclinical research testing the role of the therapy on mitigating alcohol-related behaviors in animal models. To the extent available, translational findings are reviewed with discussion of completed and ongoing randomized clinical trials and their findings to date. An applied and clinically focused approach is taken to identify the potential clinical applications of the various treatments reviewed. We conclude by delineating the most promising candidate treatments and discussing future directions by considering opportunities for immune treatment development and personalized medicine for AUD.
Collapse
Affiliation(s)
- Lindsay R Meredith
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elizabeth M Burnette
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Erica N Grodin
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael R Irwin
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA; Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA; Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lara A Ray
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Kisby BR, Farris SP, McManus MM, Varodayan FP, Roberto M, Harris RA, Ponomarev I. Alcohol Dependence in Rats Is Associated with Global Changes in Gene Expression in the Central Amygdala. Brain Sci 2021; 11:1149. [PMID: 34573170 PMCID: PMC8468792 DOI: 10.3390/brainsci11091149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/06/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol dependence is associated with adverse consequences of alcohol (ethanol) use and is evident in most severe cases of alcohol use disorder (AUD). The central nucleus of the amygdala (CeA) plays a critical role in the development of alcohol dependence and escalation of alcohol consumption in dependent subjects. Molecular mechanisms underlying the CeA-driven behavioral changes are not well understood. Here, we examined the effects of alcohol on global gene expression in the CeA using a chronic intermittent ethanol (CIE) vapor model in rats and RNA sequencing (RNA-Seq). The CIE procedure resulted in robust changes in CeA gene expression during intoxication, as the number of differentially expressed genes (DEGs) was significantly greater than those expected by chance. Over-representation analysis of cell types, functional groups and molecular pathways revealed biological categories potentially important for the development of alcohol dependence in our model. Genes specific for astrocytes, myelinating oligodendrocytes, and endothelial cells were over-represented in the DEG category, suggesting that these cell types were particularly affected by the CIE procedure. The majority of the over-represented functional groups and molecular pathways were directly related to the functions of glial and endothelial cells, including extracellular matrix (ECM) organization, myelination, and the regulation of innate immune response. A coordinated regulation of several ECM metalloproteinases (e.g., Mmp2; Mmp14), their substrates (e.g., multiple collagen genes and myelin basic protein; Mbp), and a metalloproteinase inhibitor, Reck, suggests a specific mechanism for ECM re-organization in response to chronic alcohol, which may modulate neuronal activity and result in behavioral changes, such as an escalation of alcohol drinking. Our results highlight the importance of glial and endothelial cells in the effects of chronic alcohol exposure on the CeA, and demonstrate further insight into the molecular mechanisms of alcohol dependence in rats. These molecular targets may be used in future studies to develop therapeutics to treat AUD.
Collapse
Affiliation(s)
- Brent R. Kisby
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| | - Sean P. Farris
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78715, USA; (S.P.F.); (R.A.H.)
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Michelle M. McManus
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| | - Florence P. Varodayan
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902, USA;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - R. Adron Harris
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78715, USA; (S.P.F.); (R.A.H.)
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78741, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| |
Collapse
|
12
|
Crabbe JC, Ozburn AR, Hitzemann RJ, Spence SE, Hack WR, Schlumbohm JP, Metten P. Tetracycline derivatives reduce binge alcohol consumption in High Drinking in the Dark mice. Brain Behav Immun Health 2020; 4:100061. [PMID: 34589846 PMCID: PMC8474687 DOI: 10.1016/j.bbih.2020.100061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/28/2023] Open
Abstract
Alcohol use disorders (AUDs) are prevalent, and are characterized by binge-like drinking, defined by patterns of focused drinking where dosages ingested in 2-4 h reach intoxicating blood alcohol levels (BALs). Current medications are few and compliance with the relatively rare prescribed usage is low. Hence, novel and more effective medications are needed. We developed a mouse model of genetic risk for binge drinking (HDID: High Drinking in the Dark mice) by selectively breeding for high BALs after binge drinking. A transcriptional analysis of HDID brain tissue with RNA-Seq implicated neuroinflammatory mechanisms, and, more specifically extracellular matrix genes, including those encoding matrix metalloproteinases (MMPs). Prior experiments from other groups have shown that the tetracycline derivatives doxycycline, minocycline, and tigecycline, reduce binge drinking in inbred C57BL/6J mice. We tested these three compounds in female and male HDID mice and found that all three reduced DID and BAL. They had drug-specific effects on intake of water or saccharin in the DID assay. Thus, our results show that the effectiveness of synthetic tetracycline derivatives as potential therapeutic agents for AUDs is not limited to the single C57BL/6J genotype previously targeted, but extends to a mouse model of a population at high risk for AUDs.
Collapse
Affiliation(s)
- John C. Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and Portland VA Health Care System (R&D 12), 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Angela R. Ozburn
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and Portland VA Health Care System (R&D 12), 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Robert J. Hitzemann
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and Portland VA Health Care System (R&D 12), 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Stephanie E. Spence
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and Portland VA Health Care System (R&D 12), 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Wyatt R. Hack
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and Portland VA Health Care System (R&D 12), 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Jason P. Schlumbohm
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and Portland VA Health Care System (R&D 12), 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Pamela Metten
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and Portland VA Health Care System (R&D 12), 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| |
Collapse
|
13
|
Morrow AL, Boero G, Porcu P. A Rationale for Allopregnanolone Treatment of Alcohol Use Disorders: Basic and Clinical Studies. Alcohol Clin Exp Res 2020; 44:320-339. [PMID: 31782169 PMCID: PMC7018555 DOI: 10.1111/acer.14253] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
For many years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone or 3α,5α-THP) may have therapeutic potential for treatment of various symptoms of alcohol use disorders (AUDs). In this critical review, we systematically address all the evidence that supports such a suggestion, delineate the etiologies of AUDs that are addressed by treatment with allopregnanolone or its precursor pregnenolone, and the rationale for treatment of various components of the disease based on basic science and clinical evidence. This review presents a theoretical framework for understanding how endogenous steroids that regulate the effects of stress, alcohol, and the innate immune system could play a key role in both the prevention and the treatment of AUDs. We further discuss cautions and limitations of allopregnanolone or pregnenolone therapy with suggestions regarding the management of risk and the potential for helping millions who suffer from AUDs.
Collapse
Affiliation(s)
- A. Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Giorgia Boero
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
14
|
Erickson EK, Grantham EK, Warden AS, Harris RA. Neuroimmune signaling in alcohol use disorder. Pharmacol Biochem Behav 2018; 177:34-60. [PMID: 30590091 DOI: 10.1016/j.pbb.2018.12.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder (AUD) is a widespread disease with limited treatment options. Targeting the neuroimmune system is a new avenue for developing or repurposing effective pharmacotherapies. Alcohol modulates innate immune signaling in different cell types in the brain by altering gene expression and the molecular pathways that regulate neuroinflammation. Chronic alcohol abuse may cause an imbalance in neuroimmune function, resulting in prolonged perturbations in brain function. Likewise, manipulating the neuroimmune system may change alcohol-related behaviors. Psychiatric disorders that are comorbid with AUD, such as post-traumatic stress disorder, major depressive disorder, and other substance use disorders, may also have underlying neuroimmune mechanisms; current evidence suggests that convergent immune pathways may be involved in AUD and in these comorbid disorders. In this review, we provide an overview of major neuroimmune cell-types and pathways involved in mediating alcohol behaviors, discuss potential mechanisms of alcohol-induced neuroimmune activation, and present recent clinical evidence for candidate immune-related drugs to treat AUD.
Collapse
Affiliation(s)
- Emma K Erickson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA.
| | - Emily K Grantham
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| | - Anna S Warden
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| |
Collapse
|
15
|
Finn DA, Hashimoto JG, Cozzoli DK, Helms ML, Nipper MA, Kaufman MN, Wiren KM, Guizzetti M. Binge Ethanol Drinking Produces Sexually Divergent and Distinct Changes in Nucleus Accumbens Signaling Cascades and Pathways in Adult C57BL/6J Mice. Front Genet 2018; 9:325. [PMID: 30250478 PMCID: PMC6139464 DOI: 10.3389/fgene.2018.00325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
We previously determined that repeated binge ethanol drinking produced sex differences in the regulation of signaling downstream of Group 1 metabotropic glutamate receptors in the nucleus accumbens (NAc) of adult C57BL/6J mice. The purpose of the present study was to characterize RNA expression differences in the NAc of adult male and female C57BL/6J mice following 7 binge ethanol drinking sessions, when compared with controls consuming water. This binge drinking procedure produced high intakes (average >2.2 g/kg/30 min) and blood ethanol concentrations (average >1.3 mg/ml). Mice were euthanized at 24 h after the 7th binge session, and focused qPCR array analysis was employed on NAc tissue to quantify expression levels of 384 genes in a customized Mouse Mood Disorder array, with a focus on glutamatergic signaling (3 arrays/group). We identified significant regulation of 50 genes in male mice and 70 genes in female mice after 7 ethanol binges. Notably, 14 genes were regulated in both males and females, representing common targets to binge ethanol drinking. However, expression of 10 of these 14 genes was strongly dimorphic (e.g., opposite regulation for genes such as Crhr2, Fos, Nos1, and Star), and only 4 of the 14 genes were regulated in the same direction (Drd5, Grm4, Ranbp9, and Reln). Interestingly, the top 30 regulated genes by binge ethanol drinking for each sex differed markedly in the male and female mice, and this divergent neuroadaptive response in the NAc could result in dysregulation of distinct biological pathways between the sexes. Characterization of the expression differences with Ingenuity Pathway Analysis was used to identify Canonical Pathways, Upstream Regulators, and significant Biological Functions. Expression differences suggested that hormone signaling and immune function were altered by binge drinking in female mice, whereas neurotransmitter metabolism was a central target of binge ethanol drinking in male mice. Thus, these results indicate that the transcriptional response to repeated binge ethanol drinking was strongly influenced by sex, and they emphasize the importance of considering sex in the development of potential pharmacotherapeutic targets for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Debra K Cozzoli
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Melinda L Helms
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Moriah N Kaufman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kristine M Wiren
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
16
|
Harper KM, Knapp DJ, Park MA, Breese GR. Differential effects of single versus repeated minocycline administration-Lack of significant interaction with chronic alcohol history. Pharmacol Biochem Behav 2018; 168:33-42. [PMID: 29572015 DOI: 10.1016/j.pbb.2018.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/16/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
Neuroimmune cytokines are increased with alcohol withdrawal and may mediate clinical responses associated with alcoholism. Because minocycline regulates the level of cytokines, it has been suggested as a therapeutic for disorders associated with alcohol. Male Wistar rats were exposed to chronic intermittent alcohol (CIA) comprising three 5-day cycles of ethanol liquid diet separated by 2 days of withdrawal. Rats were tested on social interaction, a measure of anxiety-like behavior, followed immediately by collection of amygdala tissue to measure CCL2 and TNFα or collection of the blood to measure corticosterone (CORT). One group received a single minocycline injection 3 h into the final CIA withdrawal and was tested 2 h later. A second group received injections during each of the three withdrawals and was similarly tested during the final acute withdrawal. A third group received a single injection at 23 h into withdrawal (extended withdrawal) and was tested 6 h later. Results showed that CIA withdrawal increased anxiety-like behavior. A single injection of minocycline during the final acute withdrawal increased anxiety-like behavior in rats that consumed liquid diet with or without alcohol, but this effect disappeared with repeated injections of minocycline. Differences in alcohol intake, blood alcohol level, and plasma CORT levels did not explain results. Only repeated injections of minocycline decreased TNFα mRNA levels in rats that consumed liquid diet with or without alcohol. When a single injection of minocycline was given during extended withdrawal, it decreased CCL2 mRNA levels, but did not reverse the elevation of CCL2 protein. These results suggest that minocycline has actions in brain and on behavior, but minocycline does not significantly impact these actions in relation to alcohol withdrawal.
Collapse
Affiliation(s)
- Kathryn M Harper
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Darin J Knapp
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA; Department of Psychiatry, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA.
| | - Meredith A Park
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - George R Breese
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA; Department of Psychiatry, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Lainiola M, Linden AM. Alcohol intake in two different mouse drinking models after recovery from the lipopolysaccharide-induced sickness reaction. Alcohol 2017; 65:1-10. [PMID: 29084623 DOI: 10.1016/j.alcohol.2017.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/19/2017] [Accepted: 06/12/2017] [Indexed: 12/19/2022]
Abstract
Neuroinflammation may play an important role in the development of alcohol addiction. Recent preclinical reports suggest that enhanced innate immune system signaling increases consumption of alcohol. Our aim was to study whether consequences of lipopolysaccharide (LPS)-induced sickness reaction increase long-term alcohol intake. Adult male C57BL/6J mice, housed in individually ventilated cages, were injected with LPS intraperitoneally (i.p.) and allowed to recover from an acute sickness reaction for 1 week before analysis of their alcohol intake in two different drinking models. Effects of LPS challenge were tested in a continuous two-bottle free choice test with increasing concentrations of alcohol and in a drinking in the dark (DID) binge model. In addition, the effect of repeatedly administered LPS during abstinence periods between binge drinking was analyzed in the DID model. In addition, the DID model was used to study the effects of the microglia inhibitor minocycline (50 mg/kg/day, 4 days) and purinergic P2X7 receptor antagonist Brilliant Blue G (75 mg/kg/day, 7 days) on alcohol intake. In contrast to previous findings, pretreatment with a 1-mg/kg dose of LPS did not significantly increase ethanol consumption in the continuous two-bottle choice test. As a novel finding, we report that increasing the LPS dose to 1.5 mg/kg reduced consumption of 18 and 21% (v/v) ethanol. In the DID model, pretreatment with LPS (0.2-1.5 mg/kg) did not significantly alter 15% or 20% ethanol consumption. Neither did repeated LPS injections affect binge alcohol drinking. Minocycline reduced alcohol, but also water, intake regardless of LPS pretreatment. No data on effects of P2X7 antagonists on alcohol consumption have been previously published; therefore, we report here that subchronic Brilliant Blue G had no effect on alcohol intake in the DID model. As a conclusion, further studies are needed to validate this LPS model of the interaction between immune system activation and alcohol consumption.
Collapse
|
18
|
Montesinos J, Gil A, Guerri C. Nalmefene Prevents Alcohol-Induced Neuroinflammation and Alcohol Drinking Preference in Adolescent Female Mice: Role of TLR4. Alcohol Clin Exp Res 2017; 41:1257-1270. [DOI: 10.1111/acer.13416] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/04/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Jorge Montesinos
- Department of Molecular and Cellular Pathology of Alcohol; Príncipe Felipe Research Center; Valencia Spain
| | - Anabel Gil
- Department of Molecular and Cellular Pathology of Alcohol; Príncipe Felipe Research Center; Valencia Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol; Príncipe Felipe Research Center; Valencia Spain
| |
Collapse
|
19
|
Oliveros A, Choi DS. Repurposing Tigecycline for the Treatment of Alcohol Use Disorder. Alcohol Clin Exp Res 2017; 41:497-500. [PMID: 28133753 DOI: 10.1111/acer.13312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Alfredo Oliveros
- Department of Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Psychiatry and Psychology , Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
20
|
Warden A, Erickson E, Robinson G, Harris RA, Mayfield RD. The neuroimmune transcriptome and alcohol dependence: potential for targeted therapies. Pharmacogenomics 2016; 17:2081-2096. [PMID: 27918243 DOI: 10.2217/pgs-2016-0062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transcriptome profiling enables discovery of gene networks that are altered in alcoholic brains. This technique has revealed involvement of the brain's neuroimmune system in regulating alcohol abuse and dependence, and has provided potential therapeutic targets. In this review, we discuss Toll-like-receptor pathways, hypothesized to be key players in many stages of the alcohol addiction cycle. The growing appreciation of the neuroimmune system's involvement in alcoholism has also led to consideration of crucial roles for glial cells, including astrocytes and microglia, in the brain's response to alcohol abuse. We discuss current knowledge and hypotheses on the roles that specific neuroimmune cell types may play in addiction. Current strategies for repurposing US FDA-approved drugs for the treatment of alcohol use disorders are also discussed.
Collapse
Affiliation(s)
- Anna Warden
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| | - Emma Erickson
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| | - Gizelle Robinson
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| | - R Adron Harris
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| | - R Dayne Mayfield
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| |
Collapse
|
21
|
Syapin PJ, Martinez JM, Curtis DC, Marquardt PC, Allison CL, Groot JA, Baby C, Al-Hasan YM, Segura I, Scheible MJ, Nicholson KT, Redondo JL, Trotter DRM, Edwards DS, Bergeson SE. Effective Reduction in High Ethanol Drinking by Semisynthetic Tetracycline Derivatives. Alcohol Clin Exp Res 2016; 40:2482-2490. [PMID: 27859416 DOI: 10.1111/acer.13253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND New pharmacotherapies to treat alcohol use disorders (AUD) are needed. Given the complex nature of AUD, there likely exist multiple novel drug targets. We, and others, have shown that the tetracycline drugs, minocycline and doxycycline, reduced ethanol (EtOH) drinking in mice. To test the hypothesis that suppression of high EtOH consumption is a general property of tetracyclines, we screened several derivatives for antidrinking activity using the Drinking-In-the-Dark (DID) paradigm. Active drugs were studied further using the dose-response relationship. METHODS Adult female and male C57BL/6J mice were singly housed and the DID paradigm was performed using 20% EtOH over a 4-day period. Mice were administered a tetracycline or its vehicle 20 hours prior to drinking. Water and EtOH consumption was measured daily. Body weight was measured at the start of drug injections and after the final day of the experiment. Blood was collected for EtOH content measurement immediately following the final bout of drinking. RESULTS Seven tetracyclines were tested at a 50 mg/kg dose. Only minocycline and tigecycline significantly reduced EtOH drinking, and doxycycline showed a strong effect size trend toward reduced drinking. Subsequent studies with these 3 drugs revealed a dose-dependent decrease in EtOH consumption for both female and male mice, with sex differences in efficacy. Minocycline and doxycycline reduced water intake at higher doses, although to a lesser degree than their effects on EtOH drinking. Tigecycline did not negatively affect water intake. The rank order of potency for reduction in EtOH consumption was minocycline > doxycycline > tigecycline, indicating efficacy was not strictly related to their partition coefficients or distribution constants. CONCLUSIONS Due to its effectiveness in reducing high EtOH consumption coupled without an effect on water intake, tigecycline was found to be the most promising lead tetracycline compound for further study toward the development of a new pharmacotherapy for the treatment of AUD.
Collapse
Affiliation(s)
- Peter J Syapin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Joseph M Martinez
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - David C Curtis
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Patrick C Marquardt
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Clayton L Allison
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Jessica A Groot
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Carol Baby
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Yazan M Al-Hasan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Ismael Segura
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Matthew J Scheible
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Pharmacology, University of Houston, Houston, Texas
| | - Katy T Nicholson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Jose Luis Redondo
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - David R M Trotter
- Department of Family Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - David S Edwards
- Department of Family Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Susan E Bergeson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
22
|
Martinez JM, Groot JA, Curtis DC, Allison CL, Marquardt PC, Holmes AN, Edwards DS, Trotter DRM, Syapin PJ, Finn DA, Bergeson SE. Effective Reduction of Acute Ethanol Withdrawal by the Tetracycline Derivative, Tigecycline, in Female and Male DBA/2J Mice. Alcohol Clin Exp Res 2016; 40:2499-2505. [PMID: 27862011 DOI: 10.1111/acer.13259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a spectrum disorder characterized by mild to severe symptoms, including potential withdrawal signs upon cessation of consumption. Approximately five hundred thousand patients with AUD undergo clinically relevant episodes of withdrawal annually (New Engl J Med, 2003, 348, 1786). Recent evidence indicates potential for drugs that alter neuroimmune pathways as new AUD therapies. We have previously shown the immunomodulatory drugs, minocycline and tigecycline, were effective in reducing ethanol (EtOH) consumption in both the 2-bottle choice and drinking-in-the-dark paradigms. Here, we test the hypothesis that tigecycline, a tetracycline derivative, will reduce the severity of EtOH withdrawal symptoms in a common acute model of alcohol withdrawal (AWD) using a single anesthetic dose of EtOH in seizure sensitive DBA/2J (DBA) mice. METHODS Naïve adult female and male DBA mice were given separate injections of 4 g/kg i.p. EtOH with vehicle or tigecycline (0, 20, 40, or 80 mg/kg i.p.). The 80 mg/kg dose was tested at 3 time points (0, 4, and 7 hours) post EtOH treatment. Handling-induced convulsions (HICs) were measured before and then over 12 hours following EtOH injection. HIC scores and areas under the curve were tabulated. In separate mice, blood EtOH concentrations (BECs) were measured at 2, 4, and 7 hours postinjection of 4 g/kg i.p. EtOH in mice treated with 0 and 80 mg/kg i.p. tigecycline. RESULTS AWD symptom onset, peak magnitude, and overall HIC severity were reduced by tigecycline drug treatment compared to controls. Tigecycline treatment was effective regardless of timing throughout AWD, with earlier treatment showing greater efficacy. Tigecycline showed a dose-responsive reduction in acute AWD convulsions, with no sex differences in efficacy. Importantly, tigecycline did not affect BECs over a time course of elimination. CONCLUSIONS Tigecycline effectively reduced AWD symptoms in DBA mice at all times and dosages tested, making it a promising lead compound for development of a novel pharmacotherapy for AWD. Further studies are needed to determine the mechanism of tigecycline action.
Collapse
Affiliation(s)
- Joseph M Martinez
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Jessica A Groot
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - David C Curtis
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Clayton L Allison
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Patrick C Marquardt
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Ashley N Holmes
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - David S Edwards
- Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - David R M Trotter
- Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Peter J Syapin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.,Department of Research, Portland VA Health Care System, Portland, Oregon
| | - Susan E Bergeson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
23
|
Bergeson SE, Nipper MA, Jensen J, Helms ML, Finn DA. Tigecycline Reduces Ethanol Intake in Dependent and Nondependent Male and Female C57BL/6J Mice. Alcohol Clin Exp Res 2016; 40:2491-2498. [PMID: 27859429 DOI: 10.1111/acer.13251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/21/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND The chronic intermittent ethanol (CIE) paradigm is valuable for screening compounds for efficacy to reduce drinking traits related to alcohol use disorder (AUD), as it measures alcohol consumption and preference under physical dependence conditions. Air control-treated animals allow simultaneous testing of similarly treated, nondependent animals. As a consequence, we used CIE to test the hypothesis that tigecycline, a semisynthetic tetracycline similar to minocycline and doxycycline, would reduce alcohol consumption regardless of dependence status. METHODS Adult C57BL/6J female and male mice were tested for tigecycline efficacy to reduce ethanol (EtOH) consumption using a standard CIE paradigm. The ability of tigecycline to decrease 2-bottle choice of 15% EtOH (15E) versus water intake in dependent (CIE vapor) and nondependent (air-treated) male and female mice was tested after 4 cycles of CIE vapor or air exposure using a within-subjects design and a dose-response. Drug doses of 0, 40, 60, 80, and 100 mg/kg in saline were administered intraperitoneally (0.01 ml/g body weight) and in random order, with a 1-hour pretreatment time. Baseline 15E intake was re-established prior to administration of subsequent injections, with a maximum of 2 drug injections tested per week. RESULTS Tigecycline was found to effectively reduce high alcohol consumption in both dependent and nondependent female and male mice. CONCLUSIONS Our data suggest that tigecycline may be a promising drug with novel pharmacotherapeutic characteristics for the treatment of mild-to-severe AUD in both sexes.
Collapse
Affiliation(s)
- Susan E Bergeson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Jeremiah Jensen
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Melinda L Helms
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.,Department of Research, Portland VA Health Care System, Portland, Oregon
| |
Collapse
|
24
|
Bergeson SE, Blanton H, Martinez JM, Curtis DC, Sherfey C, Seegmiller B, Marquardt PC, Groot JA, Allison CL, Bezboruah C, Guindon J. Binge Ethanol Consumption Increases Inflammatory Pain Responses and Mechanical and Cold Sensitivity: Tigecycline Treatment Efficacy Shows Sex Differences. Alcohol Clin Exp Res 2016; 40:2506-2515. [PMID: 27862022 PMCID: PMC5133157 DOI: 10.1111/acer.13252] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/21/2016] [Indexed: 11/29/2022]
Abstract
Background Physicians have long reported that patients with chronic pain show higher tendencies for alcohol use disorder (AUD), and AUD patients appear to have higher pain sensitivities. The goal of this study was to test 2 hypotheses: (i) binge alcohol consumption increases inflammatory pain and mechanical and cold sensitivities; and (ii) tigecycline is an effective treatment for alcohol‐mediated‐increased pain behaviors and sensitivities. Both female and male mice were used to test the additional hypothesis that important sex differences in the ethanol (EtOH)‐related traits would be seen. Methods “Drinking in the Dark” (DID) alcohol consuming and nondrinking control, female and male, adult C57BL/6J mice were evaluated for inflammatory pain behaviors and for the presence of mechanical and cold sensitivities. Inflammatory pain was produced by intraplantar injection of formalin (10 μl, 2.5% in saline). For cold sensation, a 20 μl acetone drop was used. Mechanical withdrawal threshold was measured by an electronic von Frey anesthesiometer. Efficacy of tigecycline (80 mg/kg i.p.) to reduce DID‐related pain responses and sensitivity was tested. Results DID EtOH consumption increased inflammatory pain behavior, while it also produced sustained mechanical and cold sensitivities in both females and males. Tigecycline produced antinociceptive effects in males; a pro‐nociceptive effect was seen in females in the formalin test. Likewise, the drug reduced both mechanical and cold sensitivities in males, but females showed an increase in sensitivity in both tests. Conclusions Our results demonstrated that binge drinking increases pain, touch, and thermal sensations in both sexes. In addition, we have identified sex‐specific effects of tigecycline on inflammatory pain, as well as mechanical and cold sensitivities. The development of tigecycline as an AUD pharmacotherapy may need consideration of its pro‐nociceptive action in females. Further studies are needed to investigate the mechanism underlying the sex‐specific differences in nociception.
Collapse
Affiliation(s)
- Susan E Bergeson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Henry Blanton
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Joseph M Martinez
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - David C Curtis
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Caitlyn Sherfey
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Brandon Seegmiller
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Patrick C Marquardt
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Jessica A Groot
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Clayton L Allison
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Christian Bezboruah
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
25
|
PACAP Protects the Adolescent and Adult Mice Brain from Ethanol Toxicity and Modulates Distinct Sets of Genes Regulating Similar Networks. Mol Neurobiol 2016; 54:7534-7548. [PMID: 27826748 DOI: 10.1007/s12035-016-0204-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/11/2016] [Indexed: 12/30/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid neuropeptide which has been shown to exert various neuroprotective actions in vitro and in vivo; however, the ability of endogenous PACAP to prevent cell death in vivo remains to be elucidated. To explore the capacity of endogenous PACAP to prevent ethanol toxicity, adolescent and adult PACAP knockout (KO) mice were injected with ethanol in a binge drinking-like manner. Biochemical analyses revealed that ethanol administration induced an increase in the production of reactive oxygen species and the activity of caspase-3 in PACAP KO mice in an age-independent manner. In order to characterize the mechanisms underlying the sensitivity of PACAP KO mice, a whole-genome microarray analysis was performed to compare gene regulations induced by ethanol in adolescent and adult wild-type and PACAP KO mice. Gene expression substantially differed between adolescent and adult wild-type mice, suggesting distinct effects of ethanol according to the state of brain maturation. Interestingly, in adolescent and adult PACAP KO mice, the set of genes regulated were also markedly different but seemed to inhibit some similar regulatory network processes associated in particular with DNA repair and cell cycle. These data imply that ethanol induces serious DNA damages and cell cycle alteration in PACAP KO mice. This hypothesis, based on the transcriptomic data, could be confirmed by functional studies which showed that cell proliferation decreased in adolescent and adult PACAP KO mice treated with ethanol but recovered after a 30-day withdrawal period. These data, obtained with PACAP KO animals, demonstrate that endogenous PACAP protects the brain of adolescent and adult mice from alcohol toxicity and modulates distinct sets of genes according to the maturation status of the brain.
Collapse
|
26
|
Inhibition of IKKβ Reduces Ethanol Consumption in C57BL/6J Mice. eNeuro 2016; 3:eN-NWR-0256-16. [PMID: 27822501 PMCID: PMC5086799 DOI: 10.1523/eneuro.0256-16.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/01/2022] Open
Abstract
Proinflammatory pathways in neuronal and non-neuronal cells are implicated in the acute and chronic effects of alcohol exposure in animal models and humans. The nuclear factor-κB (NF-κB) family of DNA transcription factors plays important roles in inflammatory diseases. The kinase IKKβ mediates the phosphorylation and subsequent proteasomal degradation of cytosolic protein inhibitors of NF-κB, leading to activation of NF-κB. The role of IKKβ as a potential regulator of excessive alcohol drinking had not previously been investigated. Based on previous findings that the overactivation of innate immune/inflammatory signaling promotes ethanol consumption, we hypothesized that inhibiting IKKβ would limit/decrease drinking by preventing the activation of NF-κB. We studied the systemic effects of two pharmacological inhibitors of IKKβ, TPCA-1 and sulfasalazine, on ethanol intake using continuous- and limited-access, two-bottle choice drinking tests in C57BL/6J mice. In both tests, TPCA-1 and sulfasalazine reduced ethanol intake and preference without changing total fluid intake or sweet taste preference. A virus expressing Cre recombinase was injected into the nucleus accumbens and central amygdala to selectively knock down IKKβ in mice genetically engineered with a conditional Ikkb deletion (IkkbF/F). Although IKKβ was inhibited to some extent in astrocytes and microglia, neurons were a primary cellular target. Deletion of IKKβ in either brain region reduced ethanol intake and preference in the continuous access two-bottle choice test without altering the preference for sucrose. Pharmacological and genetic inhibition of IKKβ decreased voluntary ethanol consumption, providing initial support for IKKβ as a potential therapeutic target for alcohol abuse.
Collapse
|
27
|
Kane CJM, Drew PD. Inflammatory responses to alcohol in the CNS: nuclear receptors as potential therapeutics for alcohol-induced neuropathologies. J Leukoc Biol 2016; 100:951-959. [PMID: 27462100 DOI: 10.1189/jlb.3mr0416-171r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/11/2016] [Indexed: 01/14/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD), which results from ethanol exposure during pregnancy, and alcohol use disorder (AUD), which includes both binge and chronic alcohol abuse, are strikingly common and costly at personal and societal levels. These disorders are associated with significant pathology, including that observed in the CNS. It is now appreciated in both humans and animal models that ethanol can induce inflammation in the CNS. Neuroinflammation is hypothesized to contribute to the neuropathologic and behavioral consequences in FASD and AUD. In this review, we: 1) summarize the evidence of alcohol-induced CNS inflammation, 2) outline cellular and molecular mechanisms that may underlie alcohol induction of CNS inflammation, and 3) discuss the potential of nuclear receptor agonists for prevention or treatment of neuropathologies associated with FASD and AUD.
Collapse
Affiliation(s)
- Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
28
|
Gerace E, Landucci E, Totti A, Bani D, Guasti D, Baronti R, Moroni F, Mannaioni G, Pellegrini-Giampietro DE. Ethanol Toxicity During Brain Development: Alterations of Excitatory Synaptic Transmission in Immature Organotypic Hippocampal Slice Cultures. Alcohol Clin Exp Res 2016; 40:706-16. [DOI: 10.1111/acer.13006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/08/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Elisabetta Gerace
- Department of Health Sciences; Section of Clinical Pharmacology and Oncology; University of Florence; Florence Italy
| | - Elisa Landucci
- Department of Health Sciences; Section of Clinical Pharmacology and Oncology; University of Florence; Florence Italy
| | - Arianna Totti
- Department of Health Sciences; Section of Clinical Pharmacology and Oncology; University of Florence; Florence Italy
| | - Daniele Bani
- Department of Experimental & Clinical Medicine; Section of Anatomy & Histology; Research Unit of Histology & Embryology; University of Florence; Florence Italy
| | - Daniele Guasti
- Department of Experimental & Clinical Medicine; Section of Anatomy & Histology; Research Unit of Histology & Embryology; University of Florence; Florence Italy
| | - Roberto Baronti
- Clinical Toxicology Laboratory; Local Health Service; Florence Italy
| | - Flavio Moroni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa); Section of Pharmacology and Toxicology; University of Florence; Florence Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa); Section of Pharmacology and Toxicology; University of Florence; Florence Italy
| | | |
Collapse
|
29
|
Mayfield J, Arends MA, Harris RA, Blednov YA. Genes and Alcohol Consumption: Studies with Mutant Mice. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:293-355. [PMID: 27055617 PMCID: PMC5302130 DOI: 10.1016/bs.irn.2016.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this chapter, we review the effects of global null mutant and overexpressing transgenic mouse lines on voluntary self-administration of alcohol. We examine approximately 200 publications pertaining to the effects of 155 mouse genes on alcohol consumption in different drinking models. The targeted genes vary in function and include neurotransmitter, ion channel, neuroimmune, and neuropeptide signaling systems. The alcohol self-administration models include operant conditioning, two- and four-bottle choice continuous and intermittent access, drinking in the dark limited access, chronic intermittent ethanol, and scheduled high alcohol consumption tests. Comparisons of different drinking models using the same mutant mice are potentially the most informative, and we will highlight those examples. More mutants have been tested for continuous two-bottle choice consumption than any other test; of the 137 mouse genes examined using this model, 97 (72%) altered drinking in at least one sex. Overall, the effects of genetic manipulations on alcohol drinking often depend on the sex of the mice, alcohol concentration and time of access, genetic background, as well as the drinking test.
Collapse
Affiliation(s)
- J Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - M A Arends
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, United States
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States.
| | - Y A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
30
|
Chastain LG, Sarkar DK. Role of microglia in regulation of ethanol neurotoxic action. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 118:81-103. [PMID: 25175862 DOI: 10.1016/b978-0-12-801284-0.00004-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exposure to alcohol, during development or adulthood, may result in damage to the nervous system, which underlies neurological and cognitive disruptions observed in patients with alcohol-related disorders, including fetal alcohol spectrum disorders (FASDs) and alcohol-use disorders (AUDs). Both clinical and preclinical evidence suggest microglia, the immune cells of the central nervous system, play a key role in modulating alcohol-induced neurotoxicity. Particularly, microglia are implicated in alcohol-induced neuroinflammation and in alcohol-induced increases in oxidative stress, which can lead to neuronal apoptosis. Recent studies also suggest a regenerative role for microglia in reestablishing homeostasis after alcohol exposure. These studies are summarized and reviewed in this chapter with emphasis on relevance to FASD and AUD.
Collapse
Affiliation(s)
- Lucy G Chastain
- Endocrinology Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Dipak K Sarkar
- Endocrinology Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.
| |
Collapse
|
31
|
Osterndorff-Kahanek EA, Becker HC, Lopez MF, Farris SP, Tiwari GR, Nunez YO, Harris RA, Mayfield RD. Chronic ethanol exposure produces time- and brain region-dependent changes in gene coexpression networks. PLoS One 2015; 10:e0121522. [PMID: 25803291 PMCID: PMC4372440 DOI: 10.1371/journal.pone.0121522] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/02/2015] [Indexed: 01/19/2023] Open
Abstract
Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY), nucleus accumbens (NAC), prefrontal cortex (PFC), and liver after four weekly cycles of chronic intermittent ethanol (CIE) vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000) at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600). Within each region, there was little gene overlap across time (~20%). All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global 'rewiring' of coexpression systems involving glial and immune signaling as well as neuronal genes.
Collapse
Affiliation(s)
| | - Howard C. Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Marcelo F. Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Sean P. Farris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Gayatri R. Tiwari
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Yury O. Nunez
- Pharmacotherapy Education and Research Center, College of Pharmacy, The University of Texas at Austin, Austin, Texas, United States of America
| | - R. Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
32
|
Crews FT, Sarkar DK, Qin L, Zou J, Boyadjieva N, Vetreno RP. Neuroimmune Function and the Consequences of Alcohol Exposure. Alcohol Res 2015; 37:331-41, 344-51. [PMID: 26695754 PMCID: PMC4590627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Induction of neuroimmune genes by binge drinking increases neuronal excitability and oxidative stress, contributing to the neurobiology of alcohol dependence and causing neurodegeneration. Ethanol exposure activates signaling pathways featuring high-mobility group box 1 and Toll-like receptor 4 (TLR4), resulting in induction of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells, which regulates expression of several cytokine genes involved in innate immunity, and its target genes. This leads to persistent neuroimmune responses to ethanol that stimulate TLRs and/or certain glutamate receptors (i.e., N-methyl-d-aspartate receptors). Alcohol also alters stress responses, causing elevation of peripheral cytokines, which further sensitize neuroimmune responses to ethanol. Neuroimmune signaling and glutamate excitotoxicity are linked to alcoholic neurodegeneration. Models of alcohol abuse have identified significant frontal cortical degeneration and loss of hippocampal neurogenesis, consistent with neuroimmune activation pathology contributing to these alcohol-induced, long-lasting changes in the brain. These alcohol-induced long-lasting increases in brain neuroimmune-gene expression also may contribute to the neurobiology of alcohol use disorder.
Collapse
|
33
|
Drew PD, Kane CJM. Fetal alcohol spectrum disorders and neuroimmune changes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:41-80. [PMID: 25175861 DOI: 10.1016/b978-0-12-801284-0.00003-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The behavioral consequences of fetal alcohol spectrum disorders (FASD) are serious and persist throughout life. The causative mechanisms underlying FASD are poorly understood. However, much has been learned about FASD from human structural and functional studies as well as from animal models, which have provided a greater understanding of the mechanisms underlying FASD. Using animal models of FASD, it has been recently discovered that ethanol induces neuroimmune activation in the developing brain. The resulting microglial activation, production of proinflammatory molecules, and alteration in expression of developmental genes are postulated to alter neuron survival and function and lead to long-term neuropathological and cognitive defects. It has also been discovered that microglial loss occurs, reducing microglia's ability to protect neurons and contribute to neuronal development. This is important, because emerging evidence demonstrates that microglial depletion during brain development leads to long-term neuropathological and cognitive defects. Interestingly, the behavioral consequences of microglial depletion and neuroimmune activation in the fetal brain are particularly relevant to FASD. This chapter reviews the neuropathological and behavioral abnormalities of FASD and delineates correlates in animal models. This serves as a foundation to discuss the role of the neuroimmune system in normal brain development, the consequences of microglial depletion and neuroinflammation, the evidence of ethanol induction of neuroinflammatory processes in animal models of FASD, and the development of anti-inflammatory therapies as a new strategy for prevention or treatment of FASD. Together, this knowledge provides a framework for discussion and further investigation of the role of neuroimmune processes in FASD.
Collapse
Affiliation(s)
- Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
34
|
Neuroimmune pathways in alcohol consumption: evidence from behavioral and genetic studies in rodents and humans. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:13-39. [PMID: 25175860 DOI: 10.1016/b978-0-12-801284-0.00002-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immune or brain proinflammatory signaling has been linked to some of the behavioral effects of alcohol. Immune signaling appears to regulate voluntary ethanol intake in rodent models, and ethanol intake activates the immune system in multiple models. This bidirectional link raises the possibility that consumption increases immune signaling, which in turn further increases consumption in a feed-forward cycle. Data from animal and human studies provide overlapping support for the involvement of immune-related genes and proteins in alcohol action, and combining animal and human data is a promising approach to systematically evaluate and nominate relevant pathways. Based on rodent models, neuroimmune pathways may represent unexplored, nontraditional targets for medication development to reduce alcohol consumption and prevent relapse. Peroxisome proliferator-activated receptor agonists are one class of anti-inflammatory medications that demonstrate antiaddictive properties for alcohol and other drugs of abuse. Expression of immune-related genes is altered in animals and humans following chronic alcohol exposure, and the regulatory influences of specific mRNAs, microRNAs, and activated cell types are areas of intense study. Ultimately, the use of multiple datasets combined with behavioral validation will be needed to link specific neuroimmune pathways to addiction vulnerability.
Collapse
|
35
|
McCall NM, Sprow GM, Delpire E, Thiele TE, Kash TL, Pleil KE. Effects of sex and deletion of neuropeptide Y2 receptors from GABAergic neurons on affective and alcohol drinking behaviors in mice. Front Integr Neurosci 2013; 7:100. [PMID: 24399943 PMCID: PMC3872329 DOI: 10.3389/fnint.2013.00100] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/08/2013] [Indexed: 12/13/2022] Open
Abstract
A large literature has demonstrated that neuropeptide Y (NPY) regulates many emotional and reward-related behaviors via its primary receptors, Y1R and Y2R. Classically, NPY actions at postsynaptic Y1R decrease anxiety, depression, and alcohol drinking, while its actions at presynaptic Y2R produce the opposite behavioral phenotypes. However, emerging evidence suggests that activation of Y2R can also produce anxiolysis in a brain region and neurotransmitter system-dependent fashion. Further, numerous human and rodent studies have reported that females display higher levels of anxiety, depression, and alcohol drinking. In this study, we evaluated sex differences and the role of Y2R on GABAergic transmission in these behaviors using a novel transgenic mouse that lacks Y2R specifically in VGAT-expressing neurons (VGAT-Y2R knockout). First, we confirmed our genetic manipulation by demonstrating that Y2R protein expression was decreased and that a Y2R agonist could not alter GABAergic transmission in the extended amygdala, a limbic brain region critically implicated in the regulation of anxiety and alcohol drinking behaviors, using immunofluorescence and slice electrophysiology. Then, we tested male and female VGAT-Y2R knockout mice on a series of behavioral assays for anxiety, depression, fear, anhedonia, and alcohol drinking. We found that females displayed greater basal anxiety, higher levels of ethanol consumption, and faster fear conditioning than males, and that knockout mice exhibited enhanced depressive-like behavior in the forced swim test. Together, these results confirm previous studies that demonstrate higher expression of negative affective and alcohol drinking behaviors in females than males, and they highlight the importance of Y2R function in GABAergic systems in the expression of depressive-like behavior.
Collapse
Affiliation(s)
- Nora M McCall
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Pharmacology, University of North Carolina School of Medicine Chapel Hill, NC, USA
| | - Gretchen M Sprow
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Psychology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Nashville, TN, USA ; Department of Molecular Physiology and Biophysics, Vanderbilt University Nashville, TN, USA
| | - Todd E Thiele
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Psychology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Pharmacology, University of North Carolina School of Medicine Chapel Hill, NC, USA
| | - Kristen E Pleil
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Pharmacology, University of North Carolina School of Medicine Chapel Hill, NC, USA
| |
Collapse
|