1
|
Perez RF, Conner KE, Erickson MA, Nabatanzi M, Huffman KJ. Alcohol and lactation: Developmental deficits in a mouse model. Front Neurosci 2023; 17:1147274. [PMID: 36992847 PMCID: PMC10040541 DOI: 10.3389/fnins.2023.1147274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
It is well documented that prenatal ethanol exposure via maternal consumption of alcohol during pregnancy alters brain and behavioral development in offspring. Thus, the Centers for Disease Control (CDC) advises against maternal alcohol consumption during pregnancy. However, little emphasis has been placed on educating new parents about alcohol consumption while breastfeeding. This is partly due to a paucity of research on lactational ethanol exposure (LEE) effects in children; although, it has been shown that infants exposed to ethanol via breast milk frequently present with reduced body mass, low verbal IQ scores, and altered sleeping patterns. As approximately 36% of breastfeeding mothers in the US consume alcohol, continued research in this area is critical. Our study employed a novel murine LEE model, where offspring were exposed to ethanol via nursing from postnatal day (P) 6 through P20, a period correlated with infancy in humans. Compared to controls, LEE mice had reduced body weights and neocortical lengths at P20 and P30. Brain weights were also reduced in both ages in males, and at P20 for females, however, female brain weights recovered to control levels by P30. We investigated neocortical features and found that frontal cortex thickness was reduced in LEE males compared to controls. Analyses of dendritic spines in the prelimbic subdivision of medial prefrontal cortex revealed a trend of reduced densities in LEE mice. Results of behavioral tests suggest that LEE mice engage in higher risk-taking behavior, show abnormal stress regulation, and exhibit increased hyperactivity. In summary, our data describe potential adverse brain and behavioral developmental outcomes due to LEE. Thus, women should be advised to refrain from consuming alcohol during breastfeeding until additional research can better guide recommendations of safe maternal practices in early infancy.
Collapse
Affiliation(s)
- Roberto F. Perez
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Kathleen E. Conner
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA, United States
| | - Michael A. Erickson
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Mirembe Nabatanzi
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Kelly J. Huffman
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Kelly J. Huffman,
| |
Collapse
|
2
|
Beer consumption negatively regulates hormonal reproductive status and reduces apoptosis in Leydig cells in peripubertal rats. Alcohol 2019; 78:21-31. [PMID: 30690073 DOI: 10.1016/j.alcohol.2019.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 12/02/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
Abstract
Beer is one of the most popular alcoholic beverages consumed by young people. Ethanol intake is associated with harmful effects to the reproductive system. Bioactive compounds present in beer may diminish the toxics effect of ethanol. However, there is still little knowledge about the effect of beer consumption on hormonal regulation of male reproduction in organisms exposed to alcohol after the peripubertal age. Therefore, the aim of this study was to determine the influence of beer intake on plasma reproductive hormones, immunolocalization of cleaved caspase-3 (casp-3), and the level of the neuronal isoform of nitric oxide synthase (nNOS) in Leydig cells (LCs) in adolescent male Wistar rats. The animals, beginning at the age of 30 days, drank beer (10% ethanol; B2 group [2 weeks' exposure] and B4 group [4 weeks' exposure]), 10% ethanol solution (CE2 group [2 weeks' exposure] and CE4 group [4 weeks' exposure]), or water (C2 group [2 weeks' exposure] and C4 group [4 weeks' exposure]). Rats drinking beer for 4 weeks showed higher phenolic acid intake compared to rats drinking beer for 2 weeks. Rats exposed to beer for 4 weeks showed decreased plasma levels of follicle-stimulating hormone (FSH) and 17β-estradiol (E2) (3.173 ng/mL and 11.49 pg/mL, respectively), compared to the CE4 (5.293 ng/mL and 43.912 pg/mL, respectively) and the C4 groups (5.002 ng/mL and 41.121 pg mL, respectively). Expression of cleaved caspase-3 in LCs was lower in the B4 group rats, compared to the CE4 group rats (ID score: 1.676 vs. 2.190). No changes in nNOS expression were observed. Beer consumption revealed a similar negative effect on hormonal regulation of male reproductive function, but lower apoptosis in LCs may be beneficial for steroidogenic activity.
Collapse
|
3
|
Nguyen LT, Reverter A, Cánovas A, Venus B, Islas-Trejo A, Porto-Neto LR, Lehnert SA, Medrano JF, Moore SS, Fortes MRS. Global differential gene expression in the pituitary gland and the ovaries of pre- and postpubertal Brahman heifers. J Anim Sci 2017; 95:599-615. [PMID: 28380590 DOI: 10.2527/jas.2016.0921] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To understand genes, pathways, and networks related to puberty, we characterized the transcriptome of two tissues: the pituitary gland and ovaries. Samples were harvested from pre- and postpubertal Brahman heifers (same age group). Brahman heifers () are older at puberty compared with , a productivity issue. With RNA sequencing, we identified differentially expressed (DEx) genes and important transcription factors (TF) and predicted coexpression networks. The number of DEx genes detected in the pituitary gland was 284 ( < 0.05), and was the most DEx gene (fold change = 4.12, = 0.01). The gene promotes bone mineralization through transforming growth factor-β (TGFβ) signaling. Further studies of the link between bone mineralization and puberty could target . In ovaries, 3,871 genes were DEx ( < 0.05). Four highly DEx genes were noteworthy for their function: (a γ-aminobutyric acid [GABA] transporter), (), and () and its receptor . These genes had higher ovarian expression in postpubertal heifers. The GABA and its receptors and transporters were expressed in the ovaries of many mammals, suggesting a role for this pathway beyond the brain. The pathway has been known to influence the timing of puberty in rats, via modulation of GnRH. The effects of at the hypothalamus, pituitary gland, and ovaries have been documented. and its receptors are known factors in the release of GnRH, similar to and GABA, although their roles in ovarian tissue are less clear. Pathways previously related to puberty such as TGFβ signaling ( = 6.71 × 10), Wnt signaling ( = 4.1 × 10), and peroxisome proliferator-activated receptor (PPAR) signaling ( = 4.84 × 10) were enriched in our data set. Seven genes were identified as key TF in both tissues: , , , , , , and a novel gene. An ovarian subnetwork created with TF and significant ovarian DEx genes revealed five zinc fingers as regulators: , , , , and . Recent work of hypothalamic gene expression also pointed to zinc fingers as TF for bovine puberty. Although some zinc fingers may be ubiquitously expressed, the identification of DEx genes in common across tissues points to key regulators of puberty. The hypothalamus and pituitary gland had eight DEx genes in common. The hypothalamus and ovaries had 89 DEx genes in common. The pituitary gland and ovaries had 48 DEx genes in common. Our study confirmed the complexity of puberty and suggested further investigation on genes that code zinc fingers.
Collapse
|
4
|
Xu W, Huo L, Li J, Xu C, Wang S, Yang Y, Liu C, Zheng X, Feng X, Yan X. Effects of Alcohol on Mitochondrial Functions of Cumulus Cells in Mice. Cell Reprogram 2017; 19:123-131. [PMID: 28170286 DOI: 10.1089/cell.2016.0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alcohol is an important compound used in food, agriculture, and medicine. In this study, we investigated the effect of alcohol on oocyte quality in mice by exposing animals for different duration times during an estrous cycle. Cumulus-oocyte complexes were collected from mice after pregnant mare serum gonadotropin- and human chorionic gonadotropin-induced superovulation. Ovulation number, E2 level in serum, and parthenogenetic embryo development in vitro were evaluated. Mitochondrial gene expression, mitochondrial membrane potential, and reactive oxygen species (ROS) levels in the cumulus were also assessed. The results showed that acute exposure to alcohol did not affect ovulation time (p > 0.05). Blasocyst formation rate in vitro was significantly improved after 1 and 2 days of alcohol exposure (p < 0.01). Mitochondrial membrane potential was significantly increased after 1-4 days of alcohol exposure (p < 0.05), but it decreased after 5 days (p < 0.05). ROS levels remained relatively low after 2, 3, and 4 days of exposure (p < 0.05), and they significantly increased after 6 days (p < 0.05). In addition, alcohol altered the expression of mitochondrial and nuclear genes in the cumulus. Taken together, our data suggest that acute exposure to alcohol affects oocyte quality by influencing the function and gene expression in the cumulus. These results underscore potential implications for the development of human reproductive therapeutics.
Collapse
Affiliation(s)
- Wanlu Xu
- 1 Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University , Xi'an, China
| | - Lihui Huo
- 1 Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University , Xi'an, China
| | - Jingjing Li
- 1 Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University , Xi'an, China
| | - Chunli Xu
- 1 Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University , Xi'an, China
| | - Shuang Wang
- 2 Department of Experimental Surgery of Xijing Hospital, The Fourth Military Medical University , Xi'an, China
| | - Yanhong Yang
- 3 Department of Obstetrics & Gynecology, Tangdu Hospital, The Fourth Military Medical University , Xi'an, China
| | - Chuang Liu
- 3 Department of Obstetrics & Gynecology, Tangdu Hospital, The Fourth Military Medical University , Xi'an, China
| | - Xiaomin Zheng
- 4 Key Laboratory of Fertility Preservation and Maintenance , Ministry of Education, Yinchuan, China .,5 Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, University of Helsinki , Helsinki, Finland
| | - Xiuliang Feng
- 2 Department of Experimental Surgery of Xijing Hospital, The Fourth Military Medical University , Xi'an, China
| | - Xingrong Yan
- 1 Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University , Xi'an, China
| |
Collapse
|
5
|
Manganese protects against the effects of alcohol on hypothalamic puberty-related hormones. Life Sci 2016; 148:106-11. [PMID: 26876914 DOI: 10.1016/j.lfs.2016.02.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 11/20/2022]
Abstract
AIMS Since manganese (Mn) is capable of stimulating the hypothalamic-pituitary unit and advancing female puberty, we assessed the possibility that this element might overcome some of the detrimental effects of prepubertal alcohol (ALC) exposure on the hypothalamic control of pituitary function. MAIN METHODS Rats received either saline or Mn (10mg/kg) daily by gastric gavage from day 12 to day 31. After weaning, all rats were provided Lab Chow diet ad libitum until day 27 when they began receiving either the Bio Serv control or ALC diet regime. On day 31, the medial basal hypothalamus (MBH) was collected to assess luteinizing hormone-releasing hormone (LHRH) and cyclooxygenase 2 (COX2) protein levels. Release of prostaglandin-E2 (PGE2), LHRH and serum luteinizing hormone (LH) were also assessed. Other animals were not terminated on day 31, but remained in study to assess timing of puberty. KEY FINDINGS Short-term ALC exposure caused elevated hypothalamic LHRH content, suggesting an inhibition in peptide release, resulting in a decrease in LH. Both actions of ALC were reversed by Mn supplementation. COX2 synthesis, as well as PGE2 and LHRH release were suppressed by ALC exposure, but Mn supplementation caused an increase in COX2 synthesis and subsequent PGE2 and LHRH release in the presence of ALC. Mn supplementation also ameliorated the action of ALC to delay puberty. SIGNIFICANCE These results suggest that low level Mn supplementation acts to protect the hypothalamus from some of the detrimental effects of ALC on puberty-related hormones.
Collapse
|
6
|
Srivastava VK, Hiney JK, Stevener K, Dees WL. Differential Effects of Alcohol on Excitatory and Inhibitory Puberty-Related Peptides in the Basal Hypothalamus of the Female Rat. Alcohol Clin Exp Res 2015; 39:2386-93. [PMID: 26608747 DOI: 10.1111/acer.12905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/13/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND An increase in development of excitatory inputs along with a decline in inhibitory inputs ultimately govern the timely increased secretion of hypothalamic luteinizing hormone-releasing hormone (LHRH) at the time of puberty. As chronic alcohol (ALC) exposure acts at the hypothalamic level to suppress LHRH secretion and delay puberty, we assessed its ability to differentially affect the expression of key puberty-related proteins. METHODS ALC was administered to female rats from days 27 to 33, at which time animals were killed and tissues collected for protein expression. In the medial basal hypothalamus (MBH), we assessed kisspeptin (Kp) 10, an excitatory peptide critical for prepubertal LHRH secretion, and Lin28b, a peptide with an inhibitory influence on puberty. As a direct mechanism of action of Lin28b was not known, we determined whether its central administration could induce dynorphin (DYN), a peptide that is inhibitory on LHRH secretion. Also, ALC's effect on DYN protein expression was assessed, as well as its effect on DYN release in vitro. RESULTS ALC markedly suppressed (p < 0.01) the expression of the excitatory Kp protein, while at the same time increased (p < 0.001) the expression of inhibitory Lin28b protein. Subsequently, we showed for the first time that the central administration of Lin28b stimulated (p < 0.01) the synthesis of DYN. Finally, ALC also induced (p < 0.01) the protein expression and stimulated (p < 0.01) the in vitro release of DYN from the MBH. CONCLUSIONS These results indicate that ALC can simultaneously and differentially alter both excitatory and inhibitory influences governing pubertal development, show for the first time a mechanism of action by which Lin28b exerts its prepubertal inhibitory tone, and further demonstrate the negative influences of ALC on the pubertal process.
Collapse
Affiliation(s)
- Vinod K Srivastava
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Jill K Hiney
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Kristyn Stevener
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - William L Dees
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| |
Collapse
|
7
|
Dees W, Hiney J, Srivastava V. Alcohol alters hypothalamic glial-neuronal communications involved in the neuroendocrine control of puberty: In vivo and in vitro assessments. Alcohol 2015; 49:631-7. [PMID: 26362096 DOI: 10.1016/j.alcohol.2015.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
The onset of puberty is the result of the increased secretion of hypothalamic luteinizing hormone-releasing hormone (LHRH). The pubertal process can be altered by substances that can affect the prepubertal secretion of this peptide. Alcohol is one such substance known to diminish LHRH secretion and delay the initiation of puberty. The increased secretion of LHRH that normally occurs at the time of puberty is due to a decrease of inhibitory tone that prevails prior to the onset of puberty, as well as an enhanced development of excitatory inputs to the LHRH secretory system. Additionally, it has become increasingly clear that glial-neuronal communications are important for pubertal development because they play an integral role in facilitating the pubertal rise in LHRH secretion. Thus, in recent years attempts have been made to identify specific glial-derived components that contribute to the development of coordinated communication networks between glia and LHRH cell bodies, as well as their nerve terminals. Transforming growth factor-α and transforming growth factor-β1 are two such glial substances that have received attention in this regard. This review summarizes the use of multiple neuroendocrine research techniques employed to assess these glial-neuronal communication pathways involved in regulating prepubertal LHRH secretion and the effects that alcohol can have on their respective functions.
Collapse
|
8
|
Stipursky J, Francis D, Dezonne RS, Bérgamo de Araújo AP, Souza L, Moraes CA, Alcantara Gomes FC. TGF-β1 promotes cerebral cortex radial glia-astrocyte differentiation in vivo. Front Cell Neurosci 2014; 8:393. [PMID: 25484855 PMCID: PMC4240069 DOI: 10.3389/fncel.2014.00393] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/03/2014] [Indexed: 11/18/2022] Open
Abstract
The major neural stem cell population in the developing cerebral cortex is composed of the radial glial cells, which generate glial cells and neurons. The mechanisms that modulate the maintenance of the radial glia (RG) stem cell phenotype, or its differentiation, are not yet completely understood. We previously demonstrated that the transforming growth factor-β1 (TGF-β1) promotes RG differentiation into astrocytes in vitro (Glia 2007; 55:1023-33) through activation of multiple canonical and non-canonical signaling pathways (Dev Neurosci 2012; 34:68-81). However, it remains unknown if TGF-β1 acts in RG-astrocyte differentiation in vivo. Here, we addressed the astrogliogenesis induced by TGF-β1 by using the intraventricular in utero injection in vivo approach. We show that injection of TGF-β1 in the lateral ventricles of E14,5 mice embryos resulted in RG fibers disorganization and premature gliogenesis, evidenced by appearance of GFAP positive cells in the cortical wall. These events were followed by decreased numbers of neurons in the cortical plate (CP). Together, we also described that TGF-β1 actions are region-dependent, once RG cells from dorsal region of the cerebral cortex demonstrated to be more responsive to this cytokine compared with RG from lateral cortex either in vitro as well as in vivo. Our work demonstrated that TGF-β1 is a critical cytokine that regulates RG fate decision and differentiation into astrocytes in vitro and in vivo. We also suggest that RG cells are heterogeneous population that acts as distinct targets of TGF-β1 during cerebral cortex development.
Collapse
Affiliation(s)
- Joice Stipursky
- Laboratório de Neurobiologia Celular, Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro - Centro de Ciências da Saúde Rio de Janeiro, RJ, Brazil
| | - Daniel Francis
- Laboratório de Neurobiologia Celular, Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro - Centro de Ciências da Saúde Rio de Janeiro, RJ, Brazil
| | - Rômulo Sperduto Dezonne
- Laboratório de Neurobiologia Celular, Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro - Centro de Ciências da Saúde Rio de Janeiro, RJ, Brazil
| | - Ana Paula Bérgamo de Araújo
- Laboratório de Neurobiologia Celular, Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro - Centro de Ciências da Saúde Rio de Janeiro, RJ, Brazil
| | - Lays Souza
- Laboratório de Neurobiologia Celular, Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro - Centro de Ciências da Saúde Rio de Janeiro, RJ, Brazil
| | - Carolina A Moraes
- Laboratório de Neurobiologia Celular, Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro - Centro de Ciências da Saúde Rio de Janeiro, RJ, Brazil
| | - Flávia Carvalho Alcantara Gomes
- Laboratório de Neurobiologia Celular, Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro - Centro de Ciências da Saúde Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
Hiney JK, Srivastava VK, Volz CE, Dees WL. Alcohol alters insulin-like growth factor-1-induced transforming growth factor β1 synthesis in the medial basal hypothalamus of the prepubertal female rat. Alcohol Clin Exp Res 2014; 38:2572-8. [PMID: 25335926 PMCID: PMC4211981 DOI: 10.1111/acer.12534] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Insulin-like growth factor-1 (IGF-1) and transforming growth factor β1 (TGFβ1) are produced in hypothalamic astrocytes and facilitate luteinizing hormone-releasing hormone (LHRH) secretion. IGF-1 stimulates release by acting directly on the LHRH nerve terminals and both peptides act indirectly through specific plastic changes on glial/tanycyte processes that further support LHRH secretion. Because the relationship between these growth factors in the hypothalamus is not known, we assessed the ability of IGF-1 to induce TGFβ1 synthesis and release and the actions of alcohol (ALC) on this mechanism prior to the onset of puberty. METHODS Hypothalamic astrocytes were exposed to medium only, medium plus IGF-1 (200 ng/ml), or medium plus IGF-1 with 50 mM ALC. After 18 hours, media were collected and assayed for TGFβ1. For the in vivo experiment, prepubertal female rats were administered either ALC (3 g/kg) or water via gastric gavage at 07:30 hours and at 11:30 hours. At 09:00 hours, saline or IGF-1 was administered into the third ventricle. Rats were killed at 15:00 hours and the medial basal hypothalamus (MBH) was collected for assessment of TGFβ1, IGF-1 receptor (IGF-1R), and Akt. RESULTS IGF-1 induced TGFβ1 release (p < 0.01) from hypothalamic astrocytes in culture, an action blocked by ALC. In vivo, IGF-1 administration caused an increase in TGFβ1 protein compared with controls (p < 0.05), an action blocked by ALC as well as a phosphatidylinositol 3 kinase/Akt inhibitor. IGF-1 stimulation also increased both total (p< 0.01) and phosphorylated (p)-IGF-1R (p < 0.05) protein levels, and phosphorylated (p)-Akt levels (p < 0.01), which were also blocked by ALC. CONCLUSIONS This study shows that ALC blocks IGF-1 actions to stimulate synthesis and release of hypothalamic TGFβ1, total and p-IGF-1R, and p-Akt levels further demonstrating the inhibitory actions of ALC on puberty-related events associated with hypothalamic LHRH release.
Collapse
Affiliation(s)
- Jill K Hiney
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | | | | | | |
Collapse
|
10
|
Xue H, Gai X, Sun W, Li C, Liu Q. Morphological changes of gonadotropin-releasing hormone neurons in the rat preoptic area across puberty. Neural Regen Res 2014; 9:1303-12. [PMID: 25221583 PMCID: PMC4160857 DOI: 10.4103/1673-5374.137578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2014] [Indexed: 11/23/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons in the preoptic area may undergo morphological changes during the pubertal period when their activities are upregulated. To clarify the regulatory mechanism of puberty onset, this study aimed to investigate the morphological changes of GnRH neurons in the preoptic area of GnRH-enhanced green fluorescent protein transgenic rats. Under confocal laser microscopy, pubertal GnRH neurons exhibited an inverted Y distribution pattern. Prepubertal GnRH neurons were generally unipolar and bipolar, and were distinguished as smooth type cells with few small processes or irregular type cells with many spine-like processes in the proximal dendrites. The number of GnRH neurons in the preoptic area and spine-like processes were increased during the course of reproductive maturation. There was no significant difference between male and female rats. Immunofluorescence staining revealed synaptophysin punctae close to the distal end of GnRH neurons, indicating that some presynaptic terminals may form a synaptic linkage with these neurons.
Collapse
Affiliation(s)
- Haogang Xue
- Department of Orthopedic Surgery, Affiliated Hospital of Beihua University, Changchun, Jilin Province, China
| | - Xiaodong Gai
- Department of Pathology, Beihua University, Changchun, Jilin Province, China
| | - Weiqi Sun
- College of Public Health, Beihua University, Changchun, Jilin Province, China
| | - Chun Li
- Department of Pathology, Beihua University, Changchun, Jilin Province, China
| | - Quan Liu
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|