1
|
Sultan AA, Karthikeyan S, Grigorian A, Kennedy KG, Mio M, MacIntosh BJ, Goldstein BI. Cerebral blood flow in relation to peripheral endothelial function in youth bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111087. [PMID: 39004332 DOI: 10.1016/j.pnpbp.2024.111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION Anomalous cerebral blood flow (CBF) is evident in bipolar disorder (BD), however the extent to which CBF reflects peripheral vascular function in BD is unknown. This study investigated endothelial function, an index of early atherosclerosis and cardiovascular disease risk, in relation to CBF among youth with BD. METHODS Participants included 113 youth, 13-20 years old (66 BD; 47 healthy controls [HC]). CBF was measured using arterial spin labeling with 3T MRI. Region of interest analyses (ROI; global grey matter, middle frontal gyrus, anterior cingulate cortex, temporal cortex, caudate) were undertaken alongside voxel-wise analyses. Reactive hyperemia index (RHI), a measure of endothelial function, was assessed non-invasively via pulse amplitude tonometry. General linear models were used to examine RHI and RHI-by-diagnosis associations with CBF, controlling for age, sex, and body mass index. Bonferroni correction for multiple comparisons was used for ROI analyses, such that the significance level was divided by the number of ROIs (α = 0.05/5 = 0.01). Cluster-extent thresholding was used to correct for multiple comparisons for voxel-wise analyses. RESULTS ROI findings were not significant after correction. Voxel-wise analyses found that higher RHI was associated with lower left thalamus CBF in the whole group (p < 0.001). Additionally, significant RHI-by-diagnosis associations with CBF were found in three clusters: left intracalcarine cortex (p < 0.001), left thalamus (p < 0.001), and right frontal pole (p = 0.006). Post-hoc analyses showed that in each cluster, higher RHI was associated with lower CBF in BD, but higher CBF in HC. CONCLUSION We found that RHI was differentially associated with CBF in youth with BD versus HC. The unanticipated association of higher RHI with lower CBF in BD could potentially reflect a compensatory mechanism. Future research, including prospective studies and experimental designs are warranted to build on the current findings.
Collapse
Affiliation(s)
- Alysha A Sultan
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sudhir Karthikeyan
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Anahit Grigorian
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Megan Mio
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Physical Sciences, Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Pastrnak M, Klirova M, Bares M, Novak T. Distinct connectivity patterns in bipolar and unipolar depression: a functional connectivity multivariate pattern analysis study. BMC Neurosci 2024; 25:46. [PMID: 39333843 PMCID: PMC11428473 DOI: 10.1186/s12868-024-00895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Patients with bipolar disorder (BD) and major depressive disorder (MDD) exhibit depressive episodes with similar symptoms despite having different and poorly understood underlying neurobiology, often leading to misdiagnosis and improper treatment. This exploratory study examined whole-brain functional connectivity (FC) using FC multivariate pattern analysis (fc-MVPA) to identify the FC patterns with the greatest ability to distinguish between currently depressed patients with BD type I (BD I) and those with MDD. METHODOLOGY In a cross-sectional design, 41 BD I, 40 MDD patients and 63 control participants completed resting state functional magnetic resonance imaging scans. Data-driven fc-MVPA, as implemented in the CONN toolbox, was used to identify clusters with differential FC patterns between BD patients and MDD patients. The identified cluster was used as a seed in a post hoc seed-based analysis (SBA) to reveal associated connectivity patterns, followed by a secondary ROI-to-ROI analysis to characterize differences in connectivity between these patterns among BD I patients, MDD patients and controls. RESULTS FC-MVPA identified one cluster located in the right frontal pole (RFP). The subsequent SBA revealed greater FC between the RFP and posterior cingulate cortex (PCC) and between the RFP and the left inferior/middle temporal gyrus (LI/MTG) and lower FC between the RFP and the left precentral gyrus (LPCG), left lingual gyrus/occipital cortex (LLG/OCC) and right occipital cortex (ROCC) in MDD patients than in BD patients. Compared with the controls, ROI-to-ROI analysis revealed lower FC between the RFP and the PCC and greater FC between the RFP and the LPCG, LLG/OCC and ROCC in BD patients; in MDD patients, the analysis revealed lower FC between the RFP and the LLG/OCC and ROCC and greater FC between the RFP and the LI/MTG. CONCLUSIONS Differences in the RFP FC patterns between currently depressed patients with BD and those with MDD suggest potential neuroimaging markers that should be further examined. Specifically, BD patients exhibit increased FC between the RFP and the motor and visual networks, which is associated with psychomotor symptoms and heightened compensatory frontoparietal FC to counter distractibility. In contrast, MDD patients exhibit increased FC between the RFP and the default mode network, corresponding to sustained self-focus and rumination.
Collapse
Grants
- Cooperatio Program, Neuroscience 3rd Faculty of Medicine, Charles University, Czech Republic
- Cooperatio Program, Neuroscience 3rd Faculty of Medicine, Charles University, Czech Republic
- Cooperatio Program, Neuroscience 3rd Faculty of Medicine, Charles University, Czech Republic
- Cooperatio Program, Neuroscience 3rd Faculty of Medicine, Charles University, Czech Republic
- NU22-04-00192 Agentura Pro Zdravotnický Výzkum České Republiky
- NU22-04-00192 Agentura Pro Zdravotnický Výzkum České Republiky
- NU22-04-00192 Agentura Pro Zdravotnický Výzkum České Republiky
Collapse
Affiliation(s)
- Martin Pastrnak
- National Institute of Mental Health, Clinic, Klecany, 250 67, Czech Republic.
- 3rd Faculty of Medicine, Charles University, Prague, 100 00, Czech Republic.
| | - Monika Klirova
- National Institute of Mental Health, Clinic, Klecany, 250 67, Czech Republic
- 3rd Faculty of Medicine, Charles University, Prague, 100 00, Czech Republic
| | - Martin Bares
- National Institute of Mental Health, Clinic, Klecany, 250 67, Czech Republic
- 3rd Faculty of Medicine, Charles University, Prague, 100 00, Czech Republic
| | - Tomas Novak
- National Institute of Mental Health, Clinic, Klecany, 250 67, Czech Republic
- 3rd Faculty of Medicine, Charles University, Prague, 100 00, Czech Republic
| |
Collapse
|
3
|
Bracht T, Mertse N, Breit S, Federspiel A, Wiest R, Soravia LM, Walther S, Denier N. Alterations of perfusion and functional connectivity of the cingulate motor area are associated with psychomotor retardation in major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01896-8. [PMID: 39297976 DOI: 10.1007/s00406-024-01896-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024]
Abstract
Psychomotor retardation, characterized by slowing of speech, thoughts, and a decrease of movements, is frequent in patients with major depressive disorder (MDD). However, its neurobiological correlates are still poorly understood. This study aimed to explore if cerebral blood flow (CBF) and resting state functional connectivity (rs-FC) of the motor network are altered in patients with MDD and if these changes are associated with psychomotor retardation. Thirty-six right-handed patients with depression and 19 right-handed healthy controls (HC) that did not differ regarding age and sex underwent arterial spin labelling (ASL) and resting-state functional MRI (rs-fMRI) scans. Psychomotor retardation was assessed with the motoric items of the core assessment of psychomotor change (CORE) questionnaire. Patients with MDD had more pronounced psychomotor retardation scores than HC. Patients with MDD had reduced CBF in bilateral cingulate motor area (CMA) and increased resting-state functional connectivity (rs-FC) between the cluster in the CMA and a cluster localized in bilateral supplementary motor areas (SMA). Furthermore, increased rs-FC between the CMA and the left SMA was associated with more pronounced psychomotor retardation. Our results suggest that reduced perfusion of the CMA and increased rs-FC between the CMA and the SMA are associated with psychomotor retardation in patients with depression.
Collapse
Affiliation(s)
- Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland.
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| | - Nicolas Mertse
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sigrid Breit
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Roland Wiest
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Leila M Soravia
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
4
|
Ho FYY, Poon CY, Wong VWH, Chan KW, Law KW, Yeung WF, Chung KF. Actigraphic monitoring of sleep and circadian rest-activity rhythm in individuals with major depressive disorder or depressive symptoms: A meta-analysis. J Affect Disord 2024; 361:224-244. [PMID: 38851435 DOI: 10.1016/j.jad.2024.05.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Disrupted sleep and rest-activity pattern are common clinical features in depressed individuals. This meta-analysis compared sleep and circadian rest-activity rhythms in people with major depressive disorder (MDD) or depressive symptoms and healthy controls. METHODS Eligible studies were identified in five databases up to December 2023. The search yielded 53 studies with a total of 11,115 participants, including 4000 depressed participants and 7115 healthy controls. RESULTS Pooled meta-analyses demonstrated that depressed individuals have significantly longer sleep latency (SMD = 0.23, 95 % CI: 0.12 to 0.33) and wake time after sleep onset (SMD = 0.37, 95 % CI: 0.22 to 0.52), lower sleep efficiency (SMD = -0.41, 95 % CI: -0.56 to -0.25), more nocturnal awakenings (SMD = 0.58, 95 % CI: 0.29 to 0.88), lower MESOR (SMD = -0.54, 95 % CI: -0.81 to -0.28), amplitude (SMD = -0.33, 95 % CI: -0.57 to -0.09), and interdaily stability (SMD = -0.17, 95 % CI: -0.28 to -0.05), less daytime (SMD = -0.79, 95 % CI: -1.08 to -0.49) and total activities (SMD = -0.89, 95 % CI: -1.28 to -0.50) when compared with healthy controls. LIMITATIONS Most of the included studies reported separate sleep and activity parameters instead of 24-hour rest-activity rhythms. The variabilities among actigraphy devices and the types of participants recruited also impede precise comparisons. CONCLUSIONS The findings emerging from this study offered a better understanding of sleep and rest-activity rhythm in individuals with MDD or depressive symptoms. Future studies could advocate for deriving objective, distinctive 24-hour rest-activity profiles contributing to the risk of depression. PROSPERO REGISTRATION NUMBER CRD42021259780.
Collapse
Affiliation(s)
- Fiona Yan-Yee Ho
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong.
| | - Chun-Yin Poon
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong
| | | | - Ka-Wai Chan
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong
| | - Ka-Wai Law
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong
| | - Wing-Fai Yeung
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong
| | - Ka-Fai Chung
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| |
Collapse
|
5
|
Kyrou A, Grünert E, Wüthrich F, Nadesalingam N, Chapellier V, Nuoffer MG, Pavlidou A, Lefebvre S, Walther S. Test-retest reliability of resting-state cerebral blood flow quantification using pulsed Arterial Spin Labeling (PASL) over 3 weeks vs 8 weeks in healthy controls. Psychiatry Res Neuroimaging 2024; 341:111823. [PMID: 38735229 DOI: 10.1016/j.pscychresns.2024.111823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
Arterial Spin Labeling is a valuable functional imaging tool for both clinical and research purposes. However, little is known about the test-retest reliability of cerebral blood flow measurements over longer periods. In this study, we investigated the reliability of pulsed Arterial Spin Labeling in assessing cerebral blood flow over a 3 (n = 28) vs 8 (n = 19) weeks interscan interval in 47 healthy participants. As a measure of cerebral blood flow reliability, we calculated voxel-wise, whole-brain, and regions of interest intraclass correlation coefficients. The whole-brain mean resting-state cerebral blood flow showed good to excellent reliability over time for both periods (intraclass correlation coefficients = 0.85 for the 3-week delay, intraclass correlation coefficients = 0.53 for the 8-week delay). However, the voxel-wise and regions of interest intraclass correlation coefficients fluctuated at 8-week compared to the 3-week interval, especially within cortical areas. These results confirmed previous findings that Arterial Spin Labeling could be used as a reliable method to assess brain perfusion. However, as the reliability seemed to decrease over time, caution is warranted when performing correlations with other variables, especially in clinical populations.
Collapse
Affiliation(s)
- Alexandra Kyrou
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| | - Elina Grünert
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| | - Florian Wüthrich
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| | - Niluja Nadesalingam
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| | - Victoria Chapellier
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| | - Melanie G Nuoffer
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Anastasia Pavlidou
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| | - Stephanie Lefebvre
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland.
| | - Sebastian Walther
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| |
Collapse
|
6
|
Leseur J, Boiret C, Romier A, Bazin B, Basquin L, Stern E, Pineau G, Lejoyeux M, Geoffroy PA, Maruani J. Comparative study of sleep and circadian rhythms in patients presenting unipolar or bipolar major depressive episodes. Psychiatry Res 2024; 334:115811. [PMID: 38442480 DOI: 10.1016/j.psychres.2024.115811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Currently, there is a major challenge in distinguishing between unipolar and bipolar major depressive episode. A significant body of research has been dedicated to identifying biomarkers that can aid in this differentiation due to its crucial implications, particularly for therapeutic and prognostic purposes. Among the biomarkers of interest, markers related to sleep and circadian rhythms show promise and could potentially aid in making this distinction. Nevertheless, no study has simultaneously examined sleep-wake disorders, circadian rhythms, and seasonal patterns using both subjective and objective measures. This study aims to characterize and compare the sleep-wake and rhythm disorders including patients with unipolar major depressive episode (n = 72) and with bipolar major depressive episode (n = 43) using both subjective markers (using self-report questionnaires and sleep complaints) and objective markers (using actigraphy). Patients with unipolar major depressive episode seem to experience significantly poorer quality of sleep, more symptoms of insomnia and lower sleep efficiency compared to patients with bipolar major depressive episode. On the other hand, patients with bipolar major depressive episode exhibit significantly more symptoms of motor retardation and hypersomnia compared to patients with unipolar disorder. These results hold significant implications for identifying individuals with unipolar major depressive episode or bipolar major depressive episode using sleep and circadian markers, and for developing recommended and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Jeanne Leseur
- Département de Psychiatrie et D'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat Claude Bernard, 46 rue Henri Huchard, Paris F-75018, France.
| | - Charlotte Boiret
- Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, Paris F-75019, France
| | - Alix Romier
- Département de Psychiatrie et D'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat Claude Bernard, 46 rue Henri Huchard, Paris F-75018, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, Paris F-75019, France
| | - Balthazar Bazin
- Centre ChronoS, GHU Paris, Psychiatry & Neurosciences, 1 rue Cabanis, Paris 75014, France
| | - Louise Basquin
- Département de Psychiatrie et D'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat Claude Bernard, 46 rue Henri Huchard, Paris F-75018, France
| | - Emilie Stern
- Centre ChronoS, GHU Paris, Psychiatry & Neurosciences, 1 rue Cabanis, Paris 75014, France
| | - Guillaume Pineau
- Département de Psychiatrie et D'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat Claude Bernard, 46 rue Henri Huchard, Paris F-75018, France
| | - Michel Lejoyeux
- Département de Psychiatrie et D'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat Claude Bernard, 46 rue Henri Huchard, Paris F-75018, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, Paris F-75019, France; Centre ChronoS, GHU Paris, Psychiatry & Neurosciences, 1 rue Cabanis, Paris 75014, France
| | - Pierre A Geoffroy
- Département de Psychiatrie et D'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat Claude Bernard, 46 rue Henri Huchard, Paris F-75018, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, Paris F-75019, France; Centre ChronoS, GHU Paris, Psychiatry & Neurosciences, 1 rue Cabanis, Paris 75014, France; CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, Strasbourg F-67000, France
| | - Julia Maruani
- Département de Psychiatrie et D'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat Claude Bernard, 46 rue Henri Huchard, Paris F-75018, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, Paris F-75019, France; Centre ChronoS, GHU Paris, Psychiatry & Neurosciences, 1 rue Cabanis, Paris 75014, France.
| |
Collapse
|
7
|
Marten LE, Singh A, Muellen AM, Noack SM, Kozyrev V, Schweizer R, Goya-Maldonado R. Motor performance and functional connectivity between the posterior cingulate cortex and supplementary motor cortex in bipolar and unipolar depression. Eur Arch Psychiatry Clin Neurosci 2024; 274:655-671. [PMID: 37638997 PMCID: PMC10995093 DOI: 10.1007/s00406-023-01671-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Although implicated in unsuccessful treatment, psychomotor deficits and their neurobiological underpinnings in bipolar (BD) and unipolar (UD) depression remain poorly investigated. Here, we hypothesized that motor performance deficits in depressed patients would relate to basal functional coupling of the hand primary motor cortex (M1) and the posterior cingulate cortex (PCC) with the supplementary motor area (SMA). We performed a longitudinal, naturalistic study in BD, UD and matched healthy controls comprising of two resting-state functional MRI measurements five weeks apart and accompanying assessments of motor performance using a finger tapping task (FTT). A subject-specific seed-based analysis describing functional connectivity between PCC-SMA as well as M1-SMA was conducted. The basal relationships with motor performance were investigated using linear regression models and all measures were compared across groups. Performance in FTT was impaired in BD in comparison to HC in both sessions. Behavioral performance across groups correlated significantly with resting state functional coupling of PCC-SMA, but not of M1-SMA regions. This relationship was partially reflected in a reduced PCC-SMA connectivity in BD vs HC in the second session. Exploratory evaluation of large-scale networks coupling (SMN-DMN) exhibited no correlation to motor performance. Our results shed new light on the association between the degree of disruption in the SMA-PCC anticorrelation and the level of motor impairment in BD.
Collapse
Affiliation(s)
- Lara E Marten
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Aditya Singh
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Anna M Muellen
- Cognitive Neuroscience Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Sören M Noack
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Vladislav Kozyrev
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
- Functional Imaging Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Straße 91, 4056, Basel, Switzerland
| | - Renate Schweizer
- Functional Imaging Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany.
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
8
|
Martino M, Magioncalda P. A three-dimensional model of neural activity and phenomenal-behavioral patterns. Mol Psychiatry 2024; 29:639-652. [PMID: 38114633 DOI: 10.1038/s41380-023-02356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
How phenomenal experience and behavior are related to neural activity in physiology and psychopathology represents a fundamental question in neuroscience and psychiatry. The phenomenal-behavior patterns may be deconstructed into basic dimensions, i.e., psychomotricity, affectivity, and thought, which might have distinct neural correlates. This work provides a data overview on the relationship of these phenomenal-behavioral dimensions with brain activity across physiological and pathological conditions (including major depressive disorder, bipolar disorder, schizophrenia, attention-deficit/hyperactivity disorder, anxiety disorders, addictive disorders, Parkinson's disease, Tourette syndrome, Alzheimer's disease, and frontotemporal dementia). Accordingly, we propose a three-dimensional model of neural activity and phenomenal-behavioral patterns. In this model, neural activity is organized into distinct units in accordance with connectivity patterns and related input/output processing, manifesting in the different phenomenal-behavioral dimensions. (1) An external neural unit, which involves the sensorimotor circuit/brain's sensorimotor network and is connected with the external environment, processes external inputs/outputs, manifesting in the psychomotor dimension (processing of exteroception/somatomotor activity). External unit hyperactivity manifests in psychomotor excitation (hyperactivity/hyperkinesia/catatonia), while external unit hypoactivity manifests in psychomotor inhibition (retardation/hypokinesia/catatonia). (2) An internal neural unit, which involves the interoceptive-autonomic circuit/brain's salience network and is connected with the internal/body environment, processes internal inputs/outputs, manifesting in the affective dimension (processing of interoception/autonomic activity). Internal unit hyperactivity manifests in affective excitation (anxiety/dysphoria-euphoria/panic), while internal unit hypoactivity manifests in affective inhibition (anhedonia/apathy/depersonalization). (3) An associative neural unit, which involves the brain's associative areas/default-mode network and is connected with the external/internal units (but not with the environment), processes associative inputs/outputs, manifesting in the thought dimension (processing of ideas). Associative unit hyperactivity manifests in thought excitation (mind-wandering/repetitive thinking/psychosis), while associative unit hypoactivity manifests in thought inhibition (inattention/cognitive deficit/consciousness loss). Finally, these neural units interplay and dynamically combine into various neural states, resulting in the complex phenomenal experience and behavior across physiology and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Matteo Martino
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| | - Paola Magioncalda
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
- Department of Medical Research, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
9
|
Wüthrich F, Lefebvre S, Mittal VA, Shankman SA, Alexander N, Brosch K, Flinkenflügel K, Goltermann J, Grotegerd D, Hahn T, Jamalabadi H, Jansen A, Leehr EJ, Meinert S, Nenadić I, Nitsch R, Stein F, Straube B, Teutenberg L, Thiel K, Thomas-Odenthal F, Usemann P, Winter A, Dannlowski U, Kircher T, Walther S. The neural signature of psychomotor disturbance in depression. Mol Psychiatry 2024; 29:317-326. [PMID: 38036604 PMCID: PMC11116107 DOI: 10.1038/s41380-023-02327-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Up to 70% of patients with major depressive disorder present with psychomotor disturbance (PmD), but at the present time understanding of its pathophysiology is limited. In this study, we capitalized on a large sample of patients to examine the neural correlates of PmD in depression. This study included 820 healthy participants and 699 patients with remitted (n = 402) or current (n = 297) depression. Patients were further categorized as having psychomotor retardation, agitation, or no PmD. We compared resting-state functional connectivity (ROI-to-ROI) between nodes of the cerebral motor network between the groups, including primary motor cortex, supplementary motor area, sensory cortex, superior parietal lobe, caudate, putamen, pallidum, thalamus, and cerebellum. Additionally, we examined network topology of the motor network using graph theory. Among the currently depressed 55% had PmD (15% agitation, 29% retardation, and 11% concurrent agitation and retardation), while 16% of the remitted patients had PmD (8% retardation and 8% agitation). When compared with controls, currently depressed patients with PmD showed higher thalamo-cortical and pallido-cortical connectivity, but no network topology alterations. Currently depressed patients with retardation only had higher thalamo-cortical connectivity, while those with agitation had predominant higher pallido-cortical connectivity. Currently depressed patients without PmD showed higher thalamo-cortical, pallido-cortical, and cortico-cortical connectivity, as well as altered network topology compared to healthy controls. Remitted patients with PmD showed no differences in single connections but altered network topology, while remitted patients without PmD did not differ from healthy controls in any measure. We found evidence for compensatory increased cortico-cortical resting-state functional connectivity that may prevent psychomotor disturbance in current depression, but may perturb network topology. Agitation and retardation show specific connectivity signatures. Motor network topology is slightly altered in remitted patients arguing for persistent changes in depression. These alterations in functional connectivity may be addressed with non-invasive brain stimulation.
Collapse
Affiliation(s)
- Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
- Graduate School of Health Science, University of Bern, Bern, Switzerland.
| | - Stephanie Lefebvre
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Vijay A Mittal
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Northwestern University, Institute for Innovations in Developmental Sciences, Evanston/Chicago, IL, USA
- Northwestern University, Institute for Policy Research, Evanston, IL, USA
- Northwestern University, Medical Social Sciences, Chicago, IL, USA
| | - Stewart A Shankman
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Kira Flinkenflügel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
- Core-Facility Brain imaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Robert Nitsch
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Conring F, Gangl N, Derome M, Wiest R, Federspiel A, Walther S, Stegmayer K. Associations of resting-state perfusion and auditory verbal hallucinations with and without emotional content in schizophrenia. Neuroimage Clin 2023; 40:103527. [PMID: 37871539 PMCID: PMC10598456 DOI: 10.1016/j.nicl.2023.103527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Auditory Verbal Hallucinations (AVH) are highly prevalent in patients with schizophrenia. AVH with high emotional content lead to particularly poor functional outcome. Increasing evidence shows that AVH are associated with alterations in structure and function in language and memory related brain regions. However, neural correlates of AVH with emotional content remain unclear. In our study (n = 91), we related resting-state cerebral perfusion to AVH and emotional content, comparing four groups: patients with AVH with emotional content (n = 13), without emotional content (n = 14), without hallucinations (n = 20) and healthy controls (n = 44). Patients with AVH and emotional content presented with increased perfusion within the amygdala and the ventromedial and dorsomedial prefrontal cortex (vmPFC/ dmPFC) compared to patients with AVH without emotional content. In addition, patients with any AVH showed hyperperfusion within the anterior cingulate gyrus, the vmPFC/dmPFC, the right hippocampus, and the left pre- and postcentral gyrus compared to patients without AVH. Our results indicate metabolic alterations in brain areas critical for the processing of emotions as key for the pathophysiology of AVH with emotional content. Particularly, hyperperfusion of the amygdala may reflect and even trigger emotional content of AVH, while hyperperfusion of the vmPFC/dmPFC cluster may indicate insufficient top-down amygdala regulation in patients with schizophrenia.
Collapse
Affiliation(s)
- Frauke Conring
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - Nicole Gangl
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Melodie Derome
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Sun X, Huang W, Wang J, Xu R, Zhang X, Zhou J, Zhu J, Qian Y. Cerebral blood flow changes and their genetic mechanisms in major depressive disorder: a combined neuroimaging and transcriptome study. Psychol Med 2023; 53:6468-6480. [PMID: 36601814 DOI: 10.1017/s0033291722003750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Extensive research has shown abnormal cerebral blood flow (CBF) in patients with major depressive disorder (MDD) that is a heritable disease. The objective of this study was to investigate the genetic mechanisms of CBF abnormalities in MDD. METHODS To achieve a more thorough characterization of CBF changes in MDD, we performed a comprehensive neuroimaging meta-analysis of previous literature as well as examined group CBF differences in an independent sample of 133 MDD patients and 133 controls. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial association analyses were conducted to identify genes whose expression correlated with CBF changes in MDD, followed by a set of gene functional feature analyses. RESULTS We found increased CBF in the reward circuitry and default-mode network and decreased CBF in the visual system in MDD patients. Moreover, these CBF changes were spatially associated with expression of 1532 genes, which were enriched for important molecular functions, biological processes, and cellular components of the cerebral cortex as well as several common mental disorders. Concurrently, these genes were specifically expressed in the brain tissue, in immune cells and neurons, and during nearly all developmental stages. Regarding behavioral relevance, these genes were associated with domains involving emotion and sensation. In addition, these genes could construct a protein-protein interaction network supported by 60 putative hub genes with functional significance. CONCLUSIONS Our findings suggest a cerebral perfusion redistribution in MDD, which may be a consequence of complex interactions of a wide range of genes with diverse functional features.
Collapse
Affiliation(s)
- Xuetian Sun
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Weisheng Huang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jie Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Ruoxuan Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Xiaohan Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jianhui Zhou
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| |
Collapse
|
12
|
Boisvert M, Lungu O, Pilon F, Dumais A, Potvin S. Regional cerebral blood flow at rest in schizophrenia and major depressive disorder: A functional neuroimaging meta-analysis. Psychiatry Res Neuroimaging 2023; 335:111720. [PMID: 37804739 DOI: 10.1016/j.pscychresns.2023.111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/01/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Severe mental disorders (SMDs) such as schizophrenia (SCZ), major depressive disorder (MDD) and bipolar disorder (BD) are associated with altered brain function. Neuroimaging studies have illustrated spontaneous activity alterations across SMDs, but no meta-analysis has directly compared resting-state regional cerebral blood flow (rCBF) with one another. We conducted a meta-analysis of PET, SPECT and ASL neuroimaging studies to identify specific alterations of rCBF at rest in SMDs. Included are 20 studies in MDD, and 18 studies in SCZ. Due to the insufficient number of studies in BD, this disorder was left out of the analyses. Compared to controls, the SCZ group displayed reduced rCBF in the triangular part of the left inferior frontal gyrus and in the medial orbital part of the bilateral superior frontal gyrus. After correction, only a small cluster in the right inferior frontal gyrus exhibited reduced rCBF in MDD, compared to controls. Differences were found in these brain regions between SCZ and MDD. SCZ displayed reduced rCBF at rest in regions associated with default-mode, reward processing and language processing. MDD was associated with reduced rCBF in a cluster involved in response inhibition. Our meta-analysis highlights differences in the resting-state rCBF alterations between SCZ and MDD.
Collapse
Affiliation(s)
- Mélanie Boisvert
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada
| | - Ovidiu Lungu
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada
| | - Florence Pilon
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada
| | - Alexandre Dumais
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada; Institut National de Psychiatrie Légale Philippe-Pinel, Montreal, Quebec, Canada
| | - Stéphane Potvin
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Xia Y, Sun H, Hua L, Dai Z, Wang X, Tang H, Han Y, Du Y, Zhou H, Zou H, Yao Z, Lu Q. Spontaneous beta power, motor-related beta power and cortical thickness in major depressive disorder with psychomotor disturbance. Neuroimage Clin 2023; 38:103433. [PMID: 37216848 PMCID: PMC10209543 DOI: 10.1016/j.nicl.2023.103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION The psychomotor disturbance is a common symptom in patients with major depressive disorder (MDD). The neurological mechanisms of psychomotor disturbance are intricate, involving alterations in the structure and function of motor-related regions. However, the relationship among changes in the spontaneous activity, motor-related activity, local cortical thickness, and psychomotor function remains unclear. METHOD A total of 140 patients with MDD and 68 healthy controls performed a simple right-hand visuomotor task during magnetoencephalography (MEG) scanning. All patients were divided into two groups according to the presence of psychomotor slowing. Spontaneous beta power, movement-related beta desynchronization (MRBD), absolute beta power during movement and cortical characteristics in the bilateral primary motor cortex were compared using general linear models with the group as a fixed effect and age as a covariate. Finally, the moderated mediation model was tested to examine the relationship between brain metrics with group differences and psychomotor performance. RESULTS The patients with psychomotor slowing showed higher spontaneous beta power, movement-related beta desynchronization and absolute beta power during movement than patients without psychomotor slowing. Compared with the other two groups, significant decreases were found in cortical thickness of the left primary motor cortex in patients with psychomotor slowing. Our moderated mediation model showed that the increased spontaneous beta power indirectly affected impaired psychomotor performance by abnormal MRBD, and the indirect effects were moderated by cortical thickness. CONCLUSION These results suggest that patients with MDD have aberrant cortical beta activity at rest and during movement, combined with abnormal cortical thickness, contributing to the psychomotor disturbance observed in this patient population.
Collapse
Affiliation(s)
- Yi Xia
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Sun
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Lingling Hua
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Xiaoqin Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Tang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yinglin Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yishan Du
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongliang Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haowen Zou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
14
|
Bracht T, Walther S, Breit S, Mertse N, Federspiel A, Meyer A, Soravia LM, Wiest R, Denier N. Distinct and shared patterns of brain plasticity during electroconvulsive therapy and treatment as usual in depression: an observational multimodal MRI-study. Transl Psychiatry 2023; 13:6. [PMID: 36627288 PMCID: PMC9832014 DOI: 10.1038/s41398-022-02304-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Electroconvulsive therapy (ECT) is a highly effective treatment for depression. Previous studies point to ECT-induced volume increase in the hippocampi and amygdalae, and to increase in cortical thickness. However, it is unclear if these neuroplastic changes are associated with treatment response. This observational study aimed to address this research question by comparing neuroplasticity between patients with depression receiving ECT and patients with depression that respond to treatment as usual (TAU-responders). Twenty ECT-patients (16 major depressive disorder (MDD), 4 depressed bipolar disorder), 20 TAU-responders (20 MDD) and 20 healthy controls (HC) were scanned twice with multimodal magnetic resonance imaging (structure: MP2RAGE; perfusion: arterial spin labeling). ECT-patients were scanned before and after an ECT-index series (ECT-group). TAU-responders were scanned during a depressive episode and following remission or treatment response. Volumes and cerebral blood flow (CBF) of the hippocampi and amygdalae, and global mean cortical thickness were compared between groups. There was a significant group × time interaction for hippocampal and amygdalar volumes, CBF in the hippocampi and global mean cortical thickness. Hippocampal and amygdalar enlargements and CBF increase in the hippocampi were observed in the ECT-group but neither in TAU-responders nor in HC. Increase in global mean cortical thickness was observed in the ECT-group and in TAU-responders but not in HC. The co-occurrence of increase in global mean cortical thickness in both TAU-responders and in ECT-patients may point to a shared mechanism of antidepressant response. This was not the case for subcortical volume and CBF increase.
Collapse
Affiliation(s)
- Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland. .,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| | - Sebastian Walther
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sigrid Breit
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Nicolas Mertse
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Andrea Federspiel
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Agnes Meyer
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Leila M. Soravia
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Roland Wiest
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland ,grid.5734.50000 0001 0726 5157Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Niklaus Denier
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
15
|
Mio M, Grigorian A, Zou Y, Dimick MK, Selkirk B, Kertes P, McCrindle BW, Swardfager W, Hahn MK, Black SE, MacIntosh BJ, Goldstein BI. Neurovascular correlates of retinal microvascular caliber in adolescent bipolar disorder. J Affect Disord 2023; 320:81-90. [PMID: 36162693 DOI: 10.1016/j.jad.2022.09.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND The connection between vascular and brain metrics is well-studied in older adults, but neglected in youth and in psychiatric populations at increased cardiovascular risk. We therefore examined the association of retinal vascular caliber with cerebral blood flow (CBF) in adolescents with and without bipolar disorder (BD). METHODS Ninety-four adolescents (n = 48 BD, n = 46 controls) completed retinal fundus imaging, yielding estimates of arteriolar and venular diameter. Arterial spin labelling MRI was performed to measure CBF. We tested for associations between retinal vascular caliber and CBF in regions of interest; anterior cingulate cortex (ACC), middle frontal gyrus, and hippocampus in BD and controls separately. Complementary voxel-wise analyses were also performed. RESULTS In the BD group, higher arteriovenous ratio (AVR) was associated with greater ACC CBF (β = 0.34, puncorrected = 0.02), after controlling for age, sex, and BMI, however this finding did not survive correction for multiple comparisons. The control group did not show any associations (β = 0.13, puncorrected = 0.40). Voxel-wise analyses within the BD group detected a significant positive association between AVR and regional CBF in two distinct clusters: i) left hippocampus (p < 0.0001); ii) right middle temporal gyrus (p = 0.04). LIMITATIONS Limited sample size; young, medically healthy sample limits signal detection; cross-sectional design. CONCLUSION This study reveals that higher AVR is associated with higher regional CBF in adolescents with BD. Present findings advance understanding of potential neurofunctional mechanisms linking retinal vascular caliber with psychiatric diagnoses. This proof-of-concept study was designed to generate initial insights to guide future studies focusing on the vascular-brain connection in youth and in psychiatry.
Collapse
Affiliation(s)
- Megan Mio
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.
| | - Anahit Grigorian
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada
| | - Yi Zou
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Beth Selkirk
- John and Liz Tory Eye Centre, Department of Ophthalmology and Vision Sciences, Sunnybrook Health Sciences Centre, Canada
| | - Peter Kertes
- John and Liz Tory Eye Centre, Department of Ophthalmology and Vision Sciences, Sunnybrook Health Sciences Centre, Canada; University of Toronto, Ophthalmology and Vision Sciences, Toronto, Canada
| | - Brian W McCrindle
- Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Canada; Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Walter Swardfager
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Margaret K Hahn
- Schizophrenia Department, Centre for Addiction and Mental Health, Toronto, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Sandra E Black
- Hurvitz Brain Sciences Research Program, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences Research Program, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Delvecchio G, Gritti D, Squarcina L, Brambilla P. Neurovascular alterations in bipolar disorder: A review of perfusion weighted magnetic resonance imaging studies. J Affect Disord 2022; 316:254-272. [PMID: 35940377 DOI: 10.1016/j.jad.2022.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bipolar Disorder (BD) is a severe chronic psychiatric disorder whose aetiology is still largely unknown. However, increasing literature reported the involvement of neurovascular factors in the pathophysiology of BD, suggesting that a measure of Cerebral Blood Flow (CBF) could be an important biomarker of the illness. Therefore, since, to date, Magnetic Resonance Perfusion Weighted Imaging (PWI) techniques, such as Dynamic Susceptibility Contrast (DSC) and Arterial Spin Labelling (ASL), are the most common approaches that allow non-invasive in-vivo perfusion measurements,this review aims to summarize the results from all PWI studies that evaluated the CBF in BD. METHODS A bibliographic search in PubMed up until May 2021 was performed. 16 PWI studies that used DSC or ASL sequences met our inclusion criteria. RESULTS Overall, the results supported the presence of hyper-perfusion in the cingulate cortex and fronto-temporal regions, as well as the presence of hypo-perfusion in the cerebellum in BD, compared with both healthy controls and patients with unipolar depression. CBF changes after cognitive and aerobic training, as well as in relation with other physiological, clinical, and neurocognitive variables were also reported. LIMITATIONS The heterogeneity across the studies, in terms of experimental designs, sample selection, and methodological approach employed, limited the studies' comparison. CONCLUSIONS These findings showed CBF alterations in the cingulate cortex, fronto-temporal regions, and cerebellum in BD, suggesting that CBF may be an important pathophysiological marker of BD that merits further investigation to clarify the extent of neurovascular alterations.
Collapse
Affiliation(s)
- Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - Davide Gritti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Letizia Squarcina
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
17
|
Siegel-Ramsay JE, Bertocci MA, Wu B, Phillips ML, Strakowski SM, Almeida JRC. Distinguishing between depression in bipolar disorder and unipolar depression using magnetic resonance imaging: a systematic review. Bipolar Disord 2022; 24:474-498. [PMID: 35060259 DOI: 10.1111/bdi.13176] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Magnetic resonance imaging (MRI) studies comparing bipolar and unipolar depression characterize pathophysiological differences between these conditions. However, it is difficult to interpret the current literature due to differences in MRI modalities, analysis methods, and study designs. METHODS We conducted a systematic review of publications using MRI to compare individuals with bipolar and unipolar depression. We grouped studies according to MRI modality and task design. Within the discussion, we critically evaluated and summarized the functional MRI research and then further complemented these findings by reviewing the structural MRI literature. RESULTS We identified 88 MRI publications comparing participants with bipolar depression and unipolar depressive disorder. Compared to individuals with unipolar depression, participants with bipolar disorder exhibited heightened function, increased within network connectivity, and reduced grey matter volume in salience and central executive network brain regions. Group differences in default mode network function were less consistent but more closely associated with depressive symptoms in participants with unipolar depression but distractibility in bipolar depression. CONCLUSIONS When comparing mood disorder groups, the neuroimaging evidence suggests that individuals with bipolar disorder are more influenced by emotional and sensory processing when responding to their environment. In contrast, depressive symptoms and neurofunctional response to emotional stimuli were more closely associated with reduced central executive function and less adaptive cognitive control of emotionally oriented brain regions in unipolar depression. Researchers now need to replicate and refine network-level trends in these heterogeneous mood disorders and further characterize MRI markers associated with early disease onset, progression, and recovery.
Collapse
Affiliation(s)
- Jennifer E Siegel-Ramsay
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas, Austin, Texas, USA
| | - Michele A Bertocci
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bryan Wu
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas, Austin, Texas, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Stephen M Strakowski
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas, Austin, Texas, USA
| | - Jorge R C Almeida
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas, Austin, Texas, USA
| |
Collapse
|
18
|
Shared and specific characteristics of regional cerebral blood flow and functional connectivity in unmedicated bipolar and major depressive disorders. J Affect Disord 2022; 309:77-84. [PMID: 35452757 DOI: 10.1016/j.jad.2022.04.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Identifying brain similarities and differences between bipolar disorder (BD) and major depressive disorder (MDD) can help us better understand their pathophysiological mechanisms and develop more effective treatments. However, the features of whole-brain regional cerebral blood flow (CBF) and intrinsic functional connectivity (FC) underlying BD and MDD have not been directly compared. METHODS Eighty-eight unmedicated BD II depression patients, 95 unmedicated MDD patients, and 96 healthy controls (HCs) underwent three-dimensional arterial spin labeling (3D ASL) and resting-state functional MRI (rs-fMRI). The functional properties of whole brain CBF and seed-based resting-state FC further performed based on those regions with changed CBF were analyzed between the three groups. RESULTS The patients with BD and MDD showed commonly increased CBF in the left posterior lobe of the cerebellum and the left middle temporal gyrus (MTG) compared with HCs. The CBF of the left MTG was positively associated with 24-items Hamilton Depression Rating Scale scores in MDD patients. Decreased FC between the left posterior lobe of the cerebellum and the left inferior frontal gyrus (IFG) was observed only in patients with BD compared with HCs. CONCLUSION Patients with BD and those with MDD shared common features of CBF in the posterior lobe of the cerebellum and the MTG. The altered posterior lobe of the cerebellum-IFG FC can be considered as a potential biomarker for the differentiation of patients with BD from those with MDD.
Collapse
|
19
|
Schaub N, Ammann N, Conring F, Müller T, Federspiel A, Wiest R, Hoepner R, Stegmayer K, Walther S. Effect of Season of Birth on Hippocampus Volume in a Transdiagnostic Sample of Patients With Depression and Schizophrenia. Front Hum Neurosci 2022; 16:877461. [PMID: 35769255 PMCID: PMC9234120 DOI: 10.3389/fnhum.2022.877461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Psychiatric disorders share an excess of seasonal birth in winter and spring, suggesting an increase of neurodevelopmental risks. Evidence suggests season of birth can serve as a proxy of harmful environmental factors. Given that prenatal exposure of these factors may trigger pathologic processes in the neurodevelopment, they may consequently lead to brain volume alterations. Here we tested the effects of season of birth on gray matter volume in a transdiagnostic sample of patients with schizophrenia and depression compared to healthy controls (n = 192). We found a significant effect of season of birth on gray matter volume with reduced right hippocampal volume in summer-born compared to winter-born patients with depression. In addition, the volume of the right hippocampus was reduced independent from season of birth in schizophrenia. Our results support the potential impact of season of birth on hippocampal volume in depression.
Collapse
Affiliation(s)
- Nora Schaub
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Nina Ammann
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Frauke Conring
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Thomas Müller
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging (SCAN), Inselspital, University Institute of Diagnostic and Interventional Neuroradiology, Bern, Switzerland
| | - Robert Hoepner
- Department of Neurology, Inselspital, University Hospital and University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
- *Correspondence: Katharina Stegmayer,
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| |
Collapse
|
20
|
Doney E, Cadoret A, Dion‐Albert L, Lebel M, Menard C. Inflammation-driven brain and gut barrier dysfunction in stress and mood disorders. Eur J Neurosci 2022; 55:2851-2894. [PMID: 33876886 PMCID: PMC9290537 DOI: 10.1111/ejn.15239] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Regulation of emotions is generally associated exclusively with the brain. However, there is evidence that peripheral systems are also involved in mood, stress vulnerability vs. resilience, and emotion-related memory encoding. Prevalence of stress and mood disorders such as major depression, bipolar disorder, and post-traumatic stress disorder is increasing in our modern societies. Unfortunately, 30%-50% of individuals respond poorly to currently available treatments highlighting the need to further investigate emotion-related biology to gain mechanistic insights that could lead to innovative therapies. Here, we provide an overview of inflammation-related mechanisms involved in mood regulation and stress responses discovered using animal models. If clinical studies are available, we discuss translational value of these findings including limitations. Neuroimmune mechanisms of depression and maladaptive stress responses have been receiving increasing attention, and thus, the first part is centered on inflammation and dysregulation of brain and circulating cytokines in stress and mood disorders. Next, recent studies supporting a role for inflammation-driven leakiness of the blood-brain and gut barriers in emotion regulation and mood are highlighted. Stress-induced exacerbated inflammation fragilizes these barriers which become hyperpermeable through loss of integrity and altered biology. At the gut level, this could be associated with dysbiosis, an imbalance in microbial communities, and alteration of the gut-brain axis which is central to production of mood-related neurotransmitter serotonin. Novel therapeutic approaches such as anti-inflammatory drugs, the fast-acting antidepressant ketamine, and probiotics could directly act on the mechanisms described here improving mood disorder-associated symptomatology. Discovery of biomarkers has been a challenging quest in psychiatry, and we end by listing promising targets worth further investigation.
Collapse
Affiliation(s)
- Ellen Doney
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Alice Cadoret
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| |
Collapse
|
21
|
Wüthrich F, Nabb CB, Mittal VA, Shankman SA, Walther S. Actigraphically measured psychomotor slowing in depression: systematic review and meta-analysis. Psychol Med 2022; 52:1208-1221. [PMID: 35550677 PMCID: PMC9875557 DOI: 10.1017/s0033291722000903] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Psychomotor slowing is a key feature of depressive disorders. Despite its great clinical importance, the pathophysiology and prevalence across different diagnoses and mood states are still poorly understood. Actigraphy allows unbiased, objective, and naturalistic assessment of physical activity as a marker of psychomotor slowing. Yet, the true effect-sizes remain unclear as recent, large systematic reviews are missing. We conducted a novel meta-analysis on actigraphically measured slowing in depression with strict inclusion and exclusion criteria for diagnosis ascertainment and sample duplications. Medline/PubMed and Web-of-Science were searched with terms combining mood-keywords and actigraphy-keywords until September 2021. Original research measuring actigraphy for ⩾24 h in at least two groups of depressed, remitted, or healthy participants and applying operationalized diagnosis was included. Studies in somatically ill patients, N < 10 participants/group, and studies using consumer-devices were excluded. Activity-levels between groups were compared using random-effects models with standardized-mean-differences and several moderators were examined. In total, 34 studies (n = 1804 patients) were included. Patients had lower activity than controls [standardized mean difference (s.m.d.) = -0.78, 95% confidence interval (CI) -0.99 to -0.57]. Compared to controls, patients with unipolar and bipolar disorder had lower activity than controls whether in depressed (unipolar: s.m.d. = -0.82, 95% CI -1.07 to -0.56; bipolar: s.m.d. = -0.94, 95% CI -1.41 to -0.46), or remitted/euthymic mood (unipolar: s.m.d. = -0.28, 95% CI -0.56 to 0.0; bipolar: s.m.d. = -0.92, 95% CI -1.36 to -0.47). None of the examined moderators had any significant effect. To date, this is the largest meta-analysis on actigraphically measured slowing in mood disorders. They are associated with lower activity, even in the remitted/euthymic mood-state. Studying objective motor behavior via actigraphy holds promise for informing screening and staging of affective disorders.
Collapse
Affiliation(s)
- Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Carver B Nabb
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
| | - Vijay A Mittal
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston/Chicago, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
- Medical Social Sciences, Northwestern University, Chicago, IL, USA
| | - Stewart A Shankman
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Cui L, Li H, Li JB, Zeng H, Zhang Y, Deng W, Zhou W, Cao L. Altered cerebellar gray matter and cerebellar-cortex resting-state functional connectivity in patients with bipolar disorder Ⅰ. J Affect Disord 2022; 302:50-57. [PMID: 35074460 DOI: 10.1016/j.jad.2022.01.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Bipolar disorder (BP) is a common psychiatric disorder characterized by extreme fluctuations in mood. Recent studies have indicated the involvement of cerebellum in the pathogenesis of BP. However, no study has focused on the precise role of cerebellum exclusively in patients with bipolar I disorder (BP-I). METHODS Forty-five patients with BP-I and 40 healthy controls were recruited. All subjects underwent clinical evaluation and Magnetic Resonance diffusion Tension Imaging scans. For structural images, we used a spatially unbiased infratentorial template toolbox to isolate the cerebellum and then preformed voxel-based morphometry (VBM) analyses to assess the difference in cerebellar gray matter volume (GMV) between the two groups. For the functional images, we chose the clusters that survived from VBM analysis as seeds and performed functional connectivity (FC) analysis. Between-group differences were assessed using the independent Students t test or the nonparametric Mann-Whitney U Test. For multiple comparisons, the results were further corrected with Gaussian random field (GRF) approach (voxel-level P < 0.001, cluster-level P < 0.05). RESULTS Compared with healthy controls, BP-I patients showed significantly decreased GMV in left lobule V and left lobule VI (P < 0.05, GRF corrected). The FC of cerebellum with bilateral superior temporal gyrus, bilateral insula, bilateral rolandic operculum, right putamen, and left precentral gyrus was disrupted in BP-I patients (P < 0.05, GRF corrected). CONCLUSIONS BP-I patients showed decreased cerebellar GMV and disrupted cerebellar-cortex resting-state FC. This suggests that cerebellar abnormalities may play an important role in the pathogenesis of BP-I.
Collapse
Affiliation(s)
- Liqian Cui
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China.
| | - Hao Li
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Jin Biao Li
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Huixing Zeng
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yizhi Zhang
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Wenhao Deng
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Wenjin Zhou
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Liping Cao
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China.
| |
Collapse
|
23
|
Mertse N, Denier N, Walther S, Breit S, Grosskurth E, Federspiel A, Wiest R, Bracht T. Associations between anterior cingulate thickness, cingulum bundle microstructure, melancholia and depression severity in unipolar depression. J Affect Disord 2022; 301:437-444. [PMID: 35026360 DOI: 10.1016/j.jad.2022.01.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Structural and functional alterations of the anterior cingulate cortex (ACC) have been related to emotional, cognitive and behavioral domains of major depressive disorder. In this study, we investigate cortical thickness of rostral and caudal ACC. In addition, we explore white matter microstructure of the cingulum bundle (CB), a white matter pathway connecting multiple segments of the ACC. We hypothesized reduced cortical thickness and reduced white matter microstructure of the CB in MDD, in particular in the melancholic subtype. In addition, we expect an association between depression severity and CB microstructure. METHODS Fifty-four patients with a current depressive episode and 22 healthy controls matched for age, gender and handedness underwent structural and diffusion-weighted MRI-scans. Cortical thickness of rostral and caudal ACC were computed. The CB was reconstructed bilaterally using manual tractography. Cortical thickness and fractional anisotropy (FA) of bilateral CB were compared first between all patients and healthy controls and second between healthy controls, melancholic and non-melancholic patients. Correlations between FA and depression severity were calculated. RESULTS We found no group differences in rostral and caudal ACC cortical thickness or in FA of the CB comparing all patients with healthy controls. Melancholic patients had reduced cortical thickness of bilateral caudal ACC compared to non-melancholic patients and compared to healthy controls. Across all patients, depression severity was associated with reduced FA in bilateral CB. LIMITATIONS Impact of medication CONCLUSIONS: Cortical thickness of the caudal ACC is associated with the melancholic syndrome. CB microstructure may represent a marker of depression severity.
Collapse
Affiliation(s)
- Nicolas Mertse
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Sigrid Breit
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Elmar Grosskurth
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland.
| |
Collapse
|
24
|
Investigating the association between depression and cerebral haemodynamics-A systematic review and meta-analysis. J Affect Disord 2022; 299:144-158. [PMID: 34800572 DOI: 10.1016/j.jad.2021.11.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/25/2021] [Accepted: 11/14/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Vascular mechanisms may play a role in depression. The aim of this review is to summarise the evidence on alterations in cerebral haemodynamics in depression. METHODS MEDLINE (1946- present), Embase (1947-present), Web of Science (1970-present), PsycINFO (1984-present), CINAHL (1976-present) and CENTRAL were searched using a predefined search strategy. A meta-analysis was conducted in four groups: 1) global cerebral blood flow (CBF) in ml/min/100 g, 2) CBF velocity (CBFv) in cm/s (maximum flow of left middle cerebral artery, 3) combined CBF and CBFv, 4) Ratio of uptake of Tc 99 m HMPAO (region of interest compared to whole brain). Data are presented as mean difference or standardised mean difference and 95% confidence interval (95% CI). A narrative synthesis of the remaining studies was performed. RESULTS 87 studies were included. CBF was significantly reduced in depressed patients compared to HC [15 studies, 538 patients, 416 HC, MD: -2.24 (95% CI -4.12, -0.36), p = 0.02, I2 = 64%]. There were no statistically significant differences in other parameters. The narrative synthesis revealed variable changes in CBF in depressed patients, particularly affecting the anterior cingulate and prefrontal cortices. LIMITATIONS There were various sources of heterogeneity including the severity of depression, use of antidepressant medication, imaging modality used and reporting of outcomes. All of these factors made direct comparisons between studies difficult. CONCLUSIONS The reduction in CBF in depressed patients compared to HCs may indicate a role for assessment and CBF altering interventions in high-risk groups. However, results were inconsistent across studies, warranting further work to investigate specific subgroups.
Collapse
|
25
|
Walther S, Mittal VA. Motor Behavior is Relevant for Understanding Mechanism, Bolstering Prediction, And Improving Treatment: A Transdiagnostic Perspective. Schizophr Bull 2022; 48:741-748. [PMID: 35137227 PMCID: PMC9212099 DOI: 10.1093/schbul/sbac003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sebastian Walther
- To whom the correspondence should be addressed; Murtenstrasse 21, 3008 Bern, Switzerland; tel: +41 31 632 8979, fax: +41 31 632 8950, e-mail:
| | - Vijay A Mittal
- Departments of Psychology, Psychiatry, and Medical Social Sciences, Institute for Policy Research and Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, IL,USA
| |
Collapse
|
26
|
Panchal P, de Queiroz Campos G, Goldman DA, Auerbach RP, Merikangas KR, Swartz HA, Sankar A, Blumberg HP. Toward a Digital Future in Bipolar Disorder Assessment: A Systematic Review of Disruptions in the Rest-Activity Cycle as Measured by Actigraphy. Front Psychiatry 2022; 13:780726. [PMID: 35677875 PMCID: PMC9167949 DOI: 10.3389/fpsyt.2022.780726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Disruptions in rest and activity patterns are core features of bipolar disorder (BD). However, previous methods have been limited in fully characterizing the patterns. There is still a need to capture dysfunction in daily activity as well as rest patterns in order to more holistically understand the nature of 24-h rhythms in BD. Recent developments in the standardization, processing, and analyses of wearable digital actigraphy devices are advancing longitudinal investigation of rest-activity patterns in real time. The current systematic review aimed to summarize the literature on actigraphy measures of rest-activity patterns in BD to inform the future use of this technology. METHODS A comprehensive systematic review using PRISMA guidelines was conducted through PubMed, MEDLINE, PsycINFO, and EMBASE databases, for papers published up to February 2021. Relevant articles utilizing actigraphy measures were extracted and summarized. These papers contributed to three research areas addressed, pertaining to the nature of rest-activity patterns in BD, and the effects of therapeutic interventions on these patterns. RESULTS Seventy articles were included. BD was associated with longer sleep onset latency and duration, particularly during depressive episodes and with predictive value for worsening of future manic symptoms. Lower overall daily activity was also associated with BD, especially during depressive episodes, while more variable activity patterns within a day were seen in mania. A small number of studies linked these disruptions with differential patterns of brain functioning and cognitive impairments, as well as more adverse outcomes including increased suicide risk. The stabilizing effect of therapeutic options, including pharmacotherapies and chronotherapies, on activity patterns was supported. CONCLUSION The use of actigraphy provides valuable information about rest-activity patterns in BD. Although results suggest that variability in rhythms over time may be a specific feature of BD, definitive conclusions are limited by the small number of studies assessing longitudinal changes over days. Thus, there is an urgent need to extend this work to examine patterns of rhythmicity and regularity in BD. Actigraphy research holds great promise to identify a much-needed specific phenotypic marker for BD that will aid in the development of improved detection, treatment, and prevention options.
Collapse
Affiliation(s)
- Priyanka Panchal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States.,Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | | | - Danielle A Goldman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
| | - Randy P Auerbach
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Kathleen R Merikangas
- Genetic Epidemiology Research Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, United States
| | - Holly A Swartz
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Anjali Sankar
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States.,Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - Hilary P Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States.,Department of Radiology and Biomedical Imaging, and the Child Study Center, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
27
|
Damme KS, Park JS, Vargas T, Walther S, Shankman SA, Mittal VA. Motor abnormalities, depression risk, and clinical course in adolescence. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:61-69. [PMID: 35419552 PMCID: PMC9000199 DOI: 10.1016/j.bpsgos.2021.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/02/2023] Open
Abstract
Background Motor abnormalities, such as psychomotor agitation and retardation, are widely recognized as core features of depression. However, it is not currently known if motor abnormalities connote risk for depression. Methods Using data from the Adolescent Brain Cognitive Development (ABCD) Study, a nationally representative sample of youth (n=10,835, 9-11 years old), the present paper examines whether motor abnormalities are associated with (a) depression symptoms in early adolescence, (b) familial risk for depression (familial risk loading), and (c) future depression symptoms. Motor abnormalities measures included traditional (DSM) motor signs such as psychomotor agitation and retardation as well as other motor domains such as developmental motor delays and dyscoordination. Results Traditional motor abnormalities were less prevalent (agitation=3.2%, retardation=0.3%) than non-traditional domains (delays=13.79%, coordination=35.5%) among adolescents. Motor dysfunction was associated with depression symptoms (Cohen's ds=0.02 to 0.12). Familial risk for depression was related to motor abnormalities (Cohen's ds=0.08 to 0.27), with the exception of motor retardation. Family vulnerability varied in sensitivity to depression risk (e.g., retardation: .53%; dyscoordination: 32.05%). Baseline endorsement of motor abnormalities predicted future depression symptoms at one-year follow-up. Conclusions These findings suggest that motor signs reflect a novel, promising future direction for examining vulnerability to depression risk in early adolescence.
Collapse
Affiliation(s)
- Katherine S.F. Damme
- Department of Psychology, Northwestern University, Evanston, Illinois
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, Illinois
| | - Jadyn S. Park
- Department of Psychology, Northwestern University, Evanston, Illinois
- Department of Psychiatry, Northwestern University, Chicago, Illinois
| | - Teresa Vargas
- Department of Psychology, Northwestern University, Evanston, Illinois
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, Illinois
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Stewart A. Shankman
- Department of Psychology, Northwestern University, Evanston, Illinois
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, Illinois
- Department of Psychiatry, Northwestern University, Chicago, Illinois
| | - Vijay A. Mittal
- Department of Psychology, Northwestern University, Evanston, Illinois
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, Illinois
- Medical Social Sciences, Northwestern University, Chicago, Illinois
- Institute for Policy Research, Northwestern University, Chicago, Illinois
| |
Collapse
|
28
|
Cerebellar-thalamic circuits play a critical role in psychomotor function. Mol Psychiatry 2021; 26:3666-3668. [PMID: 33203993 PMCID: PMC8126567 DOI: 10.1038/s41380-020-00935-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Accepted: 10/22/2020] [Indexed: 01/13/2023]
|
29
|
Tang G, Chen P, Chen G, Zhong S, Gong J, Zhong H, Ye T, Chen F, Wang J, Luo Z, Qi Z, Jia Y, Wang Y, Huang L. Inflammation is correlated with abnormal functional connectivity in unmedicated bipolar depression: an independent component analysis study of resting-state fMRI. Psychol Med 2021; 52:1-11. [PMID: 33602352 DOI: 10.1017/s003329172100009x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Inflammation might play a role in bipolar disorder (BD), but it remains unclear the relationship between inflammation and brain structural and functional abnormalities in patients with BD. In this study, we focused on the alterations of functional connectivity (FC), peripheral pro-inflammatory cytokines and their correlations to investigate the role of inflammation in FC in BD depression. METHODS In this study, 42 unmedicated patients with BD II depression and 62 healthy controls (HCs) were enrolled. Resting-state-functional magnetic resonance imaging was performed in all participants and independent component analysis was used. Serum levels of Interleukin-6 (IL-6) and Interleukin-8 (IL-8) were measured in all participants. Correlation between FC values and IL-6 and IL-8 levels in BD was calculated. RESULTS Compared with the HCs, BD II patients showed decreased FC in the left orbitofrontal cortex (OFC) implicating the limbic network and the right precentral gyrus implicating the somatomotor network. BD II showed increased IL-6 (p = 0.039), IL-8 (p = 0.002) levels. Moreover, abnormal FC in the right precentral gyrus were inversely correlated with the IL-8 (r = -0.458, p = 0.004) levels in BD II. No significant correlation was found between FC in the left OFC and cytokines levels. CONCLUSIONS Our findings that serum IL-8 levels are associated with impaired FC in the right precentral gyrus in BD II patients suggest that inflammation might play a crucial role in brain functional abnormalities in BD.
Collapse
Affiliation(s)
- Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - JiaYing Gong
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
- Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou510655, China
| | - Hui Zhong
- Biomedical Translational Research Institute, Jinan University, Guangzhou510630, China
| | - Tao Ye
- Clinical Laboratory Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
| | - Jurong Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
| | - Zhenye Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou510630, China
| |
Collapse
|
30
|
Müller M, Wüthrich F, Federspiel A, Wiest R, Egloff N, Reichenbach S, Exadaktylos A, Jüni P, Curatolo M, Walther S. Altered central pain processing in fibromyalgia-A multimodal neuroimaging case-control study using arterial spin labelling. PLoS One 2021; 16:e0235879. [PMID: 33529254 PMCID: PMC7853499 DOI: 10.1371/journal.pone.0235879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/19/2021] [Indexed: 01/12/2023] Open
Abstract
Fibromyalgia is characterized by chronic pain and a striking discrepancy between objective signs of tissue damage and severity of pain. Function and structural alterations in brain areas involved in pain processing may explain this feature. Previous case-control studies in fibromyalgia focused on acute pain processing using experimentally-evoked pain paradigms. Yet, these studies do not allow conclusions about chronic, stimulus-independent pain. Resting-state cerebral blood flow (rsCBF) acquired by arterial spin labelling (ASL) may be a more accurate marker for chronic pain. The objective was to integrate four different functional and structural neuroimaging markers to evaluate the neural correlate of chronic, stimulus-independent pain using a resting-state paradigm. In line with the pathophysiological concept of enhanced central pain processing we hypothesized that rsCBF is increased in fibromyalgia in areas involved in processing of acute pain. We performed an age matched case-control study of 32 female fibromyalgia patients and 32 pain-free controls and calculated group differences in rsCBF, resting state functional connectivity, grey matter volume and cortical thickness using whole-brain and region of interest analyses. We adjusted all analyses for depression and anxiety. As centrally acting drugs are likely to interfere with neuroimaging markers, we performed a subgroup analysis limited to patients not taking such drugs. We found no differences between cases and controls in rsCBF of the thalamus, the basal ganglia, the insula, the somatosensory cortex, the prefrontal cortex, the anterior cingulum and supplementary motor area as brain areas previously identified to be involved in acute processing in fibromyalgia. The results remained robust across all neuroimaging markers and when limiting the study population to patients not taking centrally acting drugs and matched controls. In conclusion, we found no evidence for functional or structural alterations in brain areas involved in acute pain processing in fibromyalgia that could reflect neural correlates of chronic stimulus-independent pain.
Collapse
Affiliation(s)
- Monika Müller
- University Clinic of Anesthesiology and Pain Medicine, Inselspital, Bern, Switzerland
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Roland Wiest
- Department of Neuroradiology, University Clinic of Radiology, Inselspital, Bern, Switzerland
| | - Niklaus Egloff
- Department of Psychosomatic Medicine, University Clinic of Internal Medicine, Inselspital, Bern, Switzerland
| | - Stephan Reichenbach
- University Clinic of Rheumatology, Clinical Immunology and Allergology, Inselspital, Bern, Switzerland
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | - Peter Jüni
- Applied Health Research Centre (AHRC), Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Department of Medicine, University of Toronto, Toronto, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| | - Michele Curatolo
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| |
Collapse
|
31
|
Denier N, Walther S, Schneider C, Federspiel A, Wiest R, Bracht T. Reduced tract length of the medial forebrain bundle and the anterior thalamic radiation in bipolar disorder with melancholic depression. J Affect Disord 2020; 274:8-14. [PMID: 32469836 DOI: 10.1016/j.jad.2020.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The supero-lateral medial forebrain bundle (slMFB) and the anterior thalamic radiation (ATR) play a core role in reward anticipation and motivational processes. In this study, the slMFB and the ATR were investigated in a group of depressed bipolar disorder (BD) and in healthy controls (HC) using tract length as a measure of fibre geometry and fractional anisotropy (FA) as a measure of white matter microstructure. We hypothesized reduced tract length and FA of the slMFB and the ATR in BD. We expect alterations to be driven by the melancholic subtype. METHODS Nineteen depressed patients with BD and 19 HC matched for age and gender underwent diffusion-weighted magnetic resonance imaging (MRI) scans. Diffusion tensor imaging (DTI) based tractography was used to reconstruct bilateral slMFB and ATR. Mean tract length and FA were computed for the slMFB and the ATR. Mixed-model ANCOVAs and post-hoc ANCOVAs, controlling for age and intracranial volume, were used to compare tract length and FA of bilateral slMFB and ATR between HC and BD and between HC and subgroups with melancholic and non-melancholic symptoms. RESULTS In BD we found a significantly shortened tract length of the right slMFB and ATR in BD compared to HC. Subgroup analyses showed that these findings were driven by the melancholic subgroup. Mean-FA did not differ between HC and BD. LIMITATIONS Sample size CONCLUSIONS: Tract length of the right slMFB and the right ATR is reduced in BD. Those changes of fibre geometry are driven by the melancholic subtype.
Collapse
Affiliation(s)
- Niklaus Denier
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Christoph Schneider
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Tobias Bracht
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| |
Collapse
|
32
|
Walther S, Alexaki D, Schoretsanitis G, Weiss F, Vladimirova I, Stegmayer K, Strik W, Schäppi L. Inhibitory Repetitive Transcranial Magnetic Stimulation to Treat Psychomotor Slowing: A Transdiagnostic, Mechanism-Based Randomized Double-Blind Controlled Trial. ACTA ACUST UNITED AC 2020. [DOI: 10.1093/schizbullopen/sgaa020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Psychomotor slowing is frequently distressing patients with depression and schizophrenia. Increased neural activity within premotor cortices is linked to psychomotor slowing. This transdiagnostic study tested whether add-on inhibitory repetitive transcranial magnetic stimulation (rTMS) of the supplementary motor area (SMA) may alleviate psychomotor slowing. Forty-five patients with severe psychomotor slowing (26 psychosis, 19 major depression) were randomized in this transdiagnostic, double-blind, parallel-group, sham-controlled trial of 15 daily sessions of add-on rTMS over 3 weeks. Treatment arms included inhibitory 1 Hz stimulation of the SMA, facilitatory intermittent theta burst stimulation (iTBS) of the SMA, facilitatory 15 Hz stimulation of the left dorsolateral prefrontal cortex (DLPFC), and sham stimulation of the occipital cortex. The primary outcome was response (>30% reduction from baseline) according to the Salpêtrière Retardation Rating Scale (SRRS). Secondary outcomes were course of SRRS and further symptom rating scales. Last-observation carried forward method was applied to all subjects with baseline data. Response rates differed between protocols: 82% with inhibitory 1 Hz rTMS of the SMA, 0% with facilitatory iTBS of the SMA, 30% with sham, and 33% with 15 Hz DLPFC rTMS (χ 2 = 16.6, P < .001). Dropouts were similarly distributed across protocols. Response rates were similar in the completer analysis. This transdiagnostic trial of rTMS demonstrates that inhibitory SMA stimulation may ameliorate psychomotor slowing in severely ill patients. It further provides proof-of-concept that motor inhibition is linked to increased neural activity in the SMA because the inhibitory protocol performed best in reducing symptoms.
Trial registration: NCT03275766 (www.clinicaltrials.gov).
Collapse
Affiliation(s)
- Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Danai Alexaki
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Georgios Schoretsanitis
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
- The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY
| | - Florian Weiss
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Irena Vladimirova
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Lea Schäppi
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
33
|
Abstract
Major depressive disorder (MDD) is a serious public health problem that has, at best, modest treatment response—potentially due to its heterogeneous clinical presentation. One way to parse the heterogeneity is to investigate the role of particular features of MDD, an endeavor that can also help identify novel and focal targets for treatment and prevention efforts. Our R01 focuses on the feature of psychomotor disturbance (e.g., psychomotor agitation (PmA) and retardation (PmR)), a particularly pernicious feature of MDD, that has not been examined extensively in MDD. Aim 1 is comparing three groups of individuals—those with current MDD (n = 100), remitted MDD (n = 100), and controls (n = 50)—on multiple measures of PmR and PmA (assessed both in the lab and in the subjects’ natural environment). Aim 2 is examining the structural (diffusion MRI) and functional (resting state fMRI) connectivity of motor circuitry of the three groups as well as the relation between motor circuitry and the proposed indicators of PmR and PmA. Aim 3 is following up with subjects three times over 18 months to evaluate whether motor symptoms change in tandem with overall depressive symptoms and functioning over time and/or whether baseline PmR/PmA predicts course of depression and functioning. Aim 3 is particularly clinically significant. Finding that motor functioning and overall depression severity co-vary over time, or that motor variables predict subsequent change in overall depression severity, would support the potential clinical utility of these novel, reliable, and easily administered motor assessments.
Collapse
|
34
|
Cheniaux E, Silva RDAD, Santana CMT, Nardi AE, Filgueiras A. Mood versus energy/activity symptoms in bipolar disorder: which cluster of Hamilton Depression Rating Scale better distinguishes between mania, depression, and euthymia? TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2020; 41:401-408. [PMID: 31967199 DOI: 10.1590/2237-6089-2018-0116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/22/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Although bipolar disorder (BD) is traditionally included among mood disorders, some authors believe that changes in energy and motor activity, rather than mood changes, represent the true cardinal symptoms in mania and depression. The aim of the current study was to identify which cluster of the Hamilton Depression Rating Scale (HAM-D) better distinguishes between mania, depression and euthymia. METHOD A group of 106 patients with BD were followed for 13 years and repeatedly assessed with the HAM-D as well as with other clinical scales. To perform a comparison, HAM-D items were classified according to clinical criteria into three clusters: energy/activity symptoms, mood symptoms, and other symptoms. Item response theory (IRT) analyses were performed to provide a test information curve for those three clusters. We measured the prevalence of one cluster of symptoms over the other two throughout the latent trait. RESULTS Considering HAM-D items individually, the IRT analysis revealed that there was a mixture of mood and energy/activity symptoms among the most discriminative items, both in depression and in euthymia. However, in mania, only energy/activity symptoms - i.e., general somatic symptoms and retardation - were among the most informative items. Considering the classification of items, both in depression as in mania, the energy/activity cluster was more informative than the mood cluster according to the IRT analysis. CONCLUSION Our data reinforce the view of hyperactivity and motor retardation as cardinal changes of mania and depression, respectively.
Collapse
Affiliation(s)
- Elie Cheniaux
- Instituto de Psiquiatria - Universidade Federal do Rio de Janeiro (IPUB-UFRJ), Rio de Janeiro, RJ, Brazil.,Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Rafael de Assis da Silva
- Instituto de Psiquiatria - Universidade Federal do Rio de Janeiro (IPUB-UFRJ), Rio de Janeiro, RJ, Brazil.,Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Cristina M T Santana
- Instituto de Psiquiatria - Universidade Federal do Rio de Janeiro (IPUB-UFRJ), Rio de Janeiro, RJ, Brazil
| | - Antonio Egidio Nardi
- Instituto de Psiquiatria - Universidade Federal do Rio de Janeiro (IPUB-UFRJ), Rio de Janeiro, RJ, Brazil
| | - Alberto Filgueiras
- Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
35
|
Tazawa Y, Wada M, Mitsukura Y, Takamiya A, Kitazawa M, Yoshimura M, Mimura M, Kishimoto T. Actigraphy for evaluation of mood disorders: A systematic review and meta-analysis. J Affect Disord 2019; 253:257-269. [PMID: 31060012 DOI: 10.1016/j.jad.2019.04.087] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/01/2019] [Accepted: 04/21/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Actigraphy has enabled consecutive observation of individual health conditions such as sleep or daily activity. This study aimed to examine the usefulness of actigraphy in evaluating depressive and/or bipolar disorder symptoms. METHOD A systematic review and meta-analysis was conducted. We selected studies that used actigraphy to compare either patients vs. healthy controls, or pre- vs. post-treatment data from the same patient group. Common actigraphy measurements, namely daily activity and sleep-related data, were extracted and synthesized. RESULTS Thirty-eight studies (n = 3,758) were included in the analysis. Compared with healthy controls, depressive patients were less active (standardized mean difference; SMD=1.27, 95%CI=[0.97, 1.57], P<0.001) and had longer wake after sleep onset (SMD= - 0.729, 95%CI=[- 1.20, - 0.25], p = 0.003). Total sleep time (SMD= - 0.33, 95%CI=[- 0.55, - 0.11], P = 0.004), sleep latency (SMD= - 0.22, 95%CI=[- 0.42, - 0.02], P = 0.032), and wake after sleep onset (SMD= - 0.22, 95%CI=[- 0.39, - 0.04], P = 0.015) were longer in euthymic/remitted patients compared to healthy controls. In pre- and post-treatment comparisons, sleep latency (SMD=- 0.85, 95%CI=[- 1.53, - 0.17], P = 0.015), wake after sleep onset (SMD= - 0.65, 95%CI=[- 1.20, - 0.10], P = 0.022), and sleep efficiency (SMD=0.77, 95%CI=[0.29, 1.24], P = 0.002) showed significant improvement. LIMITATION The sample sizes for each outcome were small. The type of actigraphy devices and patients' illness severity differed across studies. It is possible that hospitalizations and medication influenced the outcomes. CONCLUSION We found significant differences between healthy controls and mood disorders patients for some actigraphy-measured modalities. Specific measurement patterns characterizing each mood disorder/status were also found. Additional actigraphy data linked to severity and/or treatment could enhance the clinical utility of actigraphy.
Collapse
Affiliation(s)
- Yuuki Tazawa
- Keio University School of Medicine, Department of Neuropsychiatry, Tokyo, Japan
| | - Masataka Wada
- Keio University School of Medicine, Department of Neuropsychiatry, Tokyo, Japan
| | - Yasue Mitsukura
- Keio University, Faculty of Science and Technology, Kanagawa, Japan
| | - Akihiro Takamiya
- Keio University School of Medicine, Department of Neuropsychiatry, Tokyo, Japan
| | - Momoko Kitazawa
- Keio University School of Medicine, Department of Neuropsychiatry, Tokyo, Japan
| | - Michitaka Yoshimura
- Keio University School of Medicine, Department of Neuropsychiatry, Tokyo, Japan
| | - Masaru Mimura
- Keio University School of Medicine, Department of Neuropsychiatry, Tokyo, Japan
| | - Taishiro Kishimoto
- Keio University School of Medicine, Department of Neuropsychiatry, Tokyo, Japan.
| |
Collapse
|
36
|
Walther S, Bernard JA, Mittal VA, Shankman SA. The utility of an RDoC motor domain to understand psychomotor symptoms in depression. Psychol Med 2019; 49:212-216. [PMID: 30322416 DOI: 10.1017/s0033291718003033] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite the clinical impact of motor symptoms such as agitation or retardation on the course of depression, these symptoms are poorly understood. Novel developments in the field of instrumentation and mobile devices allow for dimensional and continuous recording of motor behavior in various settings, particularly outside the laboratory. Likewise, the use of novel assessments enables to combine multimodal neuroimaging with behavioral measures in order to investigate the neural correlates of motor dysfunction in depression. The research domain criteria (RDoC) framework will soon include a motor domain that will provide a framework for studying motor dysfunction in mood disorders. In addition, new studies within this framework will allow investigators to study motor symptoms across different stages of depression as well as other psychiatric diagnoses. Finally, the introduction of the RDoC motor domain will help test how motor symptoms integrate with the original five RDoC domains (negative valence, positive valence, cognitive, social processes, and arousal/regulation).
Collapse
Affiliation(s)
- S Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern,Bern,Switzerland
| | - J A Bernard
- Department of Psychological and Brain Sciences,Texas A&M Institute for Neuroscience, Texas A & M University,College Station, TX,USA
| | - V A Mittal
- Department of Psychology, Department of Psychiatry,Northwestern University,Evanston, IL,USA
| | - S A Shankman
- Department of Psychiatry,Northwestern University,Evanston, IL,USA
| |
Collapse
|
37
|
Toma S, MacIntosh BJ, Swardfager W, Goldstein BI. Cerebral blood flow in bipolar disorder: A systematic review. J Affect Disord 2018; 241:505-513. [PMID: 30149339 DOI: 10.1016/j.jad.2018.08.040] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/01/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Neuroimaging of cerebral blood flow (CBF) can inform our understanding of the pathophysiology of bipolar disorder (BD) as there is increasing support for the concept that BD is in part a vascular disease. Despite numerous studies examining CBF in BD, there has not yet been a review of the literature on the topic of CBF in BD. METHODS A systematic review of the literature on CBF in BD was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Studies included measured CBF by single-photon emission computerized tomography (SPECT), positron emission tomography (PET), arterial spin labelling (ASL) or perfusion weighted imaging (PWI) in a group of BD patients. RESULTS Thirty-three studies with a total of 508 subjects with BD and 538 controls were included (n = 15 SPECT; n = 8 PET; n = 7 ASL; n = 1 PWI; n = 2 other). The majority of studies in BD depression and mania reported widespread resting hypoperfusion in cingulate gyrus, frontal, and anterior temporal regions in comparison to healthy controls (HC). Findings in euthymic BD subjects and in symptomatically heterogeneous groups were less consistent. Studies that examined CBF responses to cognitive or emotional stimuli in BD subjects have reported hypoperfusion or different regions involved in comparison to HC. LIMITATIONS Important methodological heterogeneity between studies, and small number of subjects per study. CONCLUSIONS The most consistent findings to date are hypoperfusion in BD mood episodes, and hypoactive CBF responses to emotional or cognitive challenges. Future studies examining CBF are warranted, including prospective studies, studies examining CBF as a treatment target, and multimodal imaging studies.
Collapse
Affiliation(s)
- Simina Toma
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Bradley J MacIntosh
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Department of Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Walter Swardfager
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada.
| |
Collapse
|
38
|
Bracht T, Steinau S, Federspiel A, Schneider C, Wiest R, Walther S. Physical activity is associated with left corticospinal tract microstructure in bipolar depression. NEUROIMAGE-CLINICAL 2018; 20:939-945. [PMID: 30308380 PMCID: PMC6178191 DOI: 10.1016/j.nicl.2018.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/07/2018] [Accepted: 09/29/2018] [Indexed: 12/22/2022]
Abstract
Psychomotor retardation and reduced daily activities are core features of the depressive syndrome including bipolar disorder (BD). It was the aim of this study to investigate white matter microstructure of the motor system in BD during depression and its association with motor activity. We hypothesized reduced physical activity, microstructural alterations of motor tracts and different associations between activity levels and motor tract microstructure in BD. Nineteen bipolar patients with a current depressive episode (BD) and 19 healthy controls (HC) underwent diffusion weighted magnetic resonance imaging (DW-MRI)-scans. Quantitative motor activity was assessed with 24 h actigraphy recordings. Bilateral corticospinal tracts (CST), interhemispheric connections between the primary motor cortices (M1) and between the pre-supplementary motor areas (pre-SMA) were reconstructed individually based on anatomical landmarks using Diffusion Tensor Imaging (DTI) based tractography. Mean fractional anisotropy (FA) was sampled along the tracts. To enhance specificity of putative findings a segment of the optic radiation was reconstructed as comparison tract. Analyses were complemented with Tract Based Spatial Statistics (TBSS) analyses. BD had lower activity levels (AL). There was a sole increase of fractional anisotropy (FA) in BD in the left CST. Further, there was a significant group x AL interaction for FA of the left CST pointing to a selective positive association between FA and AL in BD. The comparison tract and TBSS analyses did not detect significant group differences. Our results point to white matter microstructure alterations of the left CST in BD. The positive association between motor activity and white matter microstructure suggests a compensatory role of the left CST for psychomotor retardation in BD. Daily physical activity is reduced in bipolar patients with a current depressive episode (BD) The left corticospinal tract (CST) in BD shows increased fractional anisotropy (FA) Increases of FA in the left corticospinal tract in BD are related to less pronounced psychomotor retardation
Collapse
Affiliation(s)
- Tobias Bracht
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.
| | - Sarah Steinau
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Psychiatric University Hospital Zurich, Department of Forensic Psychiatry, Zurich, Switzerland
| | - Andrea Federspiel
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Christoph Schneider
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland; Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
39
|
Kübel S, Stegmayer K, Vanbellingen T, Walther S, Bohlhalter S. Deficient supplementary motor area at rest: Neural basis of limb kinetic deficits in Parkinson's disease. Hum Brain Mapp 2018; 39:3691-3700. [PMID: 29722099 DOI: 10.1002/hbm.24204] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) patients frequently suffer from limb kinetic apraxia (LKA) affecting quality of life. LKA denotes an impairment of precise and independent finger movements beyond bradykinesia, which is reliably assessed by coin rotation (CR) task. BOLD fMRI detected activation of a left inferior parietal-premotor praxis network in PD during CR. Here, we explored which network site is most critical for LKA using arterial spin labeling (ASL). Based on a hierarchical model, we hypothesized that LKA would predominantly affect the functional integrity of premotor areas including supplementary motor areas (SMA). Furthermore, we suspected that for praxis function with higher demand on temporal-spatial processing such as gesturing, inferior parietal lobule (IPL) upstream to premotor areas would be essential. A total of 21 PD patients and 20 healthy controls underwent ASL acquisition during rest. Behavioral assessment outside the scanner involved the CR, finger tapping task, and the test of upper limb apraxia (TULIA). Whole-brain analysis of activity at rest showed a significant reduction of CR-related perfusion in the left SMA of PD. Furthermore, the positive correlation between SMA perfusion and CR, seen in controls, was lost in patients. By contrast, TULIA was significantly associated with the perfusion of left IPL in both patients and controls. In conclusion, the findings suggest that LKA in PD are linked to an intrinsic disruption of the left SMA function, which may only be overcome by compensatory network activation. In addition, gestural performance relies on IPL which remains available for functional recruitment in early PD.
Collapse
Affiliation(s)
- Stefanie Kübel
- Neurocenter, Luzerner Kantonsspital, Spitalstrasse 31, Luzern 16, 6000, Switzerland
| | - Katharina Stegmayer
- University Hospital of Psychiatry, Bolligenstrasse 111, Bern 60, 3000, Switzerland
| | - Tim Vanbellingen
- Neurocenter, Luzerner Kantonsspital, Spitalstrasse 31, Luzern 16, 6000, Switzerland.,Gerontechnology and Rehabilitation Group, University of Bern, Murtenstrasse 50, Bern, 3008, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry, Bolligenstrasse 111, Bern 60, 3000, Switzerland
| | - Stephan Bohlhalter
- Neurocenter, Luzerner Kantonsspital, Spitalstrasse 31, Luzern 16, 6000, Switzerland.,Department of Clinical Research, University of Bern, Bern, 3000, Switzerland
| |
Collapse
|
40
|
Yin Y, Wang M, Wang Z, Xie C, Zhang H, Zhang H, Zhang Z, Yuan Y. Decreased cerebral blood flow in the primary motor cortex in major depressive disorder with psychomotor retardation. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:438-444. [PMID: 28823848 DOI: 10.1016/j.pnpbp.2017.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/07/2017] [Accepted: 08/15/2017] [Indexed: 11/25/2022]
Abstract
Psychomotor retardation (PMR) is one of the core symptoms of major depressive disorder (MDD) and has a specific pathophysiology, but studies of PMR remains sparse. The purpose of this study was to explore the cerebral blood flow (CBF) of PMR in MDD. One-hundred-seven antidepressant-free MDD patients and 48 normal controls (NCs) were recruited for this study. All subjects underwent arterial spin labeling-magnetic resonance imaging (ASL-MRI) for the CBF calculation. MDD patients were divided into the PMR group (N=35) and NPMR (non-PMR) group (N=72) according to the Salpetriere Retardation Rating Scale (SRRS) score. After a baseline MRI scan, patients began to receive antidepressant treatment. Thirty-nine patients (15 PMR, 24 NPMR) who were remitted after 8weeks participated in the follow-up MRI scan. For statistical analysis, subjects with unqualified MRI image and unmatched demographic data were ruled out. Consequently, 30 NCs and 60 patients (30 PMR, 30 NPMR) at baseline as well as 22 patients (11 PMR, 11 NPMR) at follow-up underwent statistical analysis. The PMR group showed significantly decreased CBF in the right primary motor cortex (PMC) at baseline, and the CBF value of the right PMC was significantly correlated with the SRRS score, whereas the CBF of the right PMC was increased in the PMR group at follow-up compared with the baseline in longitudinal comparison. Our findings suggest that the CBF of the right PMC is a potential biomarker of PMR in MDD.
Collapse
Affiliation(s)
- Yingying Yin
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Institute of Psychosomatics, Medical School of Southeast University, Nanjing 210009, China
| | - Meijian Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ze Wang
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chunming Xie
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Haisan Zhang
- Department of Clinical Magnetic Resonance Imaging, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Hongxing Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Zhijun Zhang
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Institute of Psychosomatics, Medical School of Southeast University, Nanjing 210009, China.
| |
Collapse
|
41
|
Guo P, Wang S, Chen C, Tian H, Li J, Zheng W, Qian M. Aberrant brain grey matter volume patterns differ among Chinese Han drug-naïve depression patients with acute and chronic stress. Oncotarget 2017; 8:91958-91964. [PMID: 29190889 PMCID: PMC5696155 DOI: 10.18632/oncotarget.20954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/26/2017] [Indexed: 01/18/2023] Open
Abstract
Chronic or acute stress can induce structural changes and brain alterations associated with the neural mechanisms of depression. Aimed to investigate the GMV alterations in the drug-naïve depression patients with chronic and acute stress experience,we enrolled fifty depression patients with acute stress experience, fifty five depression patients with chronic stress experience and forty seven healthy controls(HC) to participant in the present study. We used voxel-based morphometry to analyze the brain grey matter volume (GMV) alterations. Compared with the HC, the patients with acute stress and those with chronic stress exhibited a distinct GMV impairment pattern. Widespread, decreased GMV was detected in most of the cerebral cortex in all the depression patients. Importantly, the greatest finding in our study is that the decreased GMV in the depression patients with chronic stress was more widespread than that in the patients with acute stress. All brain regions with decreased GMV participated in the regulation of emotions, memory, and executive function processing, which is consistent with previous findings. There was no significant difference between the major depression disorder patients with acute stressful life events and those with chronic stressful life events, and this finding largely weakens the support of our current conclusion. Thus, we cannot confirm this postulation. However, our findings probably indicate that GMV may be more sensitive to major depression disorder patients when compared to healthy controls, it did not sensitive when in the comparison of patient's group. Overall, our findings provide important information for the use of appropriate treatment methods to address acute stress and alleviate chronic stress in patients with depression, and such treatments can delay the deterioration of the affected brain regions and improve remission rates. More importantly, all the inexplicable findings in the present study encourage us to conduct a follow-up study to describe the developmental trajectory of the pathological brain features of depression patients and explore therapeutic targets for future personalized treatment.
Collapse
Affiliation(s)
- Ping Guo
- Department of Psychological Medicine, Huzhou Third People's Hospital, Huzhou, China
| | - Shikai Wang
- Department of Psychological Medicine, Huzhou Third People's Hospital, Huzhou, China
| | - Ce Chen
- Department of Psychological Medicine, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Hongjun Tian
- Department of Psychological Medicine, Tianjin Anding Hospital, Tianjin, China
| | - Jie Li
- Department of Psychological Medicine, Tianjin Anding Hospital, Tianjin, China
| | - Weifang Zheng
- Department of Psychological Medicine, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Mincai Qian
- Department of Psychological Medicine, Huzhou Third People's Hospital, Huzhou, China
| |
Collapse
|
42
|
Altered interhemispheric functional connectivity in remitted bipolar disorder: A Resting State fMRI Study. Sci Rep 2017; 7:4698. [PMID: 28680123 PMCID: PMC5498592 DOI: 10.1038/s41598-017-04937-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 05/23/2017] [Indexed: 01/10/2023] Open
Abstract
Abnormalities in structural and functional brain connectivity have been increasingly reported in patients with bipolar disorder (BD). However, alterations of remitted BD (RBD) in functional connectivity between the cerebral hemispheres are still not well understood. This study was designed to analyze the pattern of the interhemispheric functional connectivity of the whole brain in patients with remitted BD during resting state. Twenty patients with RBD and 38 healthy controls (HC) underwent the resting-state functional magnetic resonance imaging. The functional connectivity between any pair of symmetrical interhemispheric voxels (i.e., functional homotopy) was measured by voxel-mirrored homotopic connectivity (VMHC). The patients with RBD showed lower VMHC than HC in the middle frontal gyrus and precentral gyrus. No regions of increased VMHC were detected in the RBD patients. There were no significant correlations between the VMHC values in these regions and the clinical variables. These findings suggest substantial impairment of interhemispheric coordination in RBD and they may represent trait, rather than state, neurobiological feature of brain function in BD.
Collapse
|
43
|
Steinau S, Stegmayer K, Lang FU, Jäger M, Strik W, Walther S. Comparison of psychopathological dimensions between major depressive disorder and schizophrenia spectrum disorders focusing on language, affectivity and motor behavior. Psychiatry Res 2017; 250:169-176. [PMID: 28167432 DOI: 10.1016/j.psychres.2017.01.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 12/25/2016] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
This study tested whether patients with major depressive disorder (MDD) and schizophrenia spectrum disorders would differ in three dimensions of psychopathology (language, affectivity and motor behavior) as assessed by the Bern Psychopathology Scale (BPS) in a cohort of 58 patients with MDD and 146 patients with schizophrenia spectrum disorders. The overall estimation of severity of each of the three dimensions was rated on a seven-point Likert scale from severely inhibited to severely disinhibited. Here, more than half of the patients endorsed ratings that showed normal or mildly (dis-)inhibited behavior. At group level more pronounced negative ratings of affect were seen in MDD. Group comparisons of the severity ratings on language or motor behavior yielded no differences between schizophrenia spectrum disorders and MDD. At the individuals' levels, extreme ratings in the language and motor dimensions were more frequent in schizophrenia spectrum disorders and in the affectivity dimension more frequent in MDD. Shared psychopathological features could be seen across diagnoses, supporting a dimensional approach to psychopathology in endogenous psychoses. However, the groups differ in the severity of affect ratings as well as in the distribution of language, affectivity and motor ratings with more variance among the group of schizophrenia spectrum disorders.
Collapse
Affiliation(s)
- Sarah Steinau
- University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Katharina Stegmayer
- University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Fabian U Lang
- Department of Psychiatry and Psychotherapy II, Ulm University, Günzburg, Germany
| | - Markus Jäger
- Department of Psychiatry and Psychotherapy II, Ulm University, Günzburg, Germany
| | - Werner Strik
- University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland.
| |
Collapse
|